1
|
Byrne AB, Bonnin FA, López EL, Polack FP, Talarico LB. C1q modulation of antibody-dependent enhancement of dengue virus infection in human myeloid cell lines is dependent on cell type and antibody specificity. Microbes Infect 2024; 26:105378. [PMID: 38880233 DOI: 10.1016/j.micinf.2024.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is one of the mechanisms contributing to increased severity during heterotypic, secondary infection. The complement protein C1q has been shown to reduce the magnitude of ADE in vitro. Therefore, we investigated the mechanisms of C1q modulation of ADE, focusing on processes of viral entry. Using a model of ADE of DENV-1 infection in human myeloid cell lines in the presence of monoclonal antibodies, 4G2 and 2H2, we found that C1q produced nearly a 40-fold reduction of ADE of DENV-1 in K562 cells, but had no effect in U937 cells. In K562 cells, C1q reduced adsorption of DENV-1/4G2 and exerted a dual inhibitory effect on adsorption and internalization of DENV-1/2H2. Distinct endocytic pathways in the presence of antibody corresponded to conditions where C1q produced a differential action. Also, C1q did not affect the intrinsic cell response mediated by FcγR in human myeloid cells. The modulation of ADE of DENV-1 by C1q is dependent on the FcγR expressed on immune cells and the specificity of the antibody comprising the immune complex. Understanding protective and pathogenic mechanisms in the humoral response to DENV infections is crucial for the successful design of antivirals and vaccines.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Fundación INFANT, Gavilán 94, Buenos Aires 1406, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires 1425, Argentina.
| | - Florencia A Bonnin
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina
| | - Eduardo L López
- Departamento de Medicina, Programa de Infectología Pediátrica, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Gallo 1330, Buenos Aires 1425, Argentina
| | | | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Fundación INFANT, Gavilán 94, Buenos Aires 1406, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires 1425, Argentina.
| |
Collapse
|
2
|
Henriques P, Rosa A, Caldeira-Araújo H, Soares P, Vigário AM. Flying under the radar - impact and factors influencing asymptomatic DENV infections. Front Cell Infect Microbiol 2023; 13:1284651. [PMID: 38076464 PMCID: PMC10704250 DOI: 10.3389/fcimb.2023.1284651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The clinical outcome of DENV and other Flaviviruses infections represents a spectrum of severity that ranges from mild manifestations to severe disease, which can ultimately lead to death. Nonetheless, most of these infections result in an asymptomatic outcome that may play an important role in the persistent circulation of these viruses. Also, although little is known about the mechanisms that lead to these asymptomatic infections, they are likely the result of a complex interplay between viral and host factors. Specific characteristics of the infecting viral strain, such as its replicating efficiency, coupled with host factors, like gene expression of key molecules involved in the immune response or in the protection against disease, are among crucial factors to study. This review revisits recent data on factors that may contribute to the asymptomatic outcome of the world's widespread DENV, highlighting the importance of silent infections in the transmission of this pathogen and the immune status of the host.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), Braga, Portugal
- Department of Biology, Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
4
|
Dias AG, Atyeo C, Loos C, Montoya M, Roy V, Bos S, Narvekar P, Singh T, Katzelnick LC, Kuan G, Lauffenburger DA, Balmaseda A, Alter G, Harris E. Antibody Fc characteristics and effector functions correlate with protection from symptomatic dengue virus type 3 infection. Sci Transl Med 2022; 14:eabm3151. [PMID: 35767652 PMCID: PMC10115655 DOI: 10.1126/scitranslmed.abm3151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Preexisting cross-reactive antibodies have been implicated in both protection and pathogenesis during subsequent infections with different dengue virus (DENV) serotypes (DENV1-4). Nonetheless, humoral immune correlates and mechanisms of protection have remained elusive. Using a systems serology approach to evaluate humoral responses, we profiled plasma collected before inapparent or symptomatic secondary DENV3 infection from our pediatric cohort in Nicaragua. Children protected from symptomatic infections had more anti-envelope (E) and anti-nonstructural protein 1 (NS1) total immunoglobulin G (IgG), IgG4, and greater Fc effector functions than those with symptoms. Fc effector functions were also associated with protection from hemorrhagic manifestations in the pre-symptomatic group. Furthermore, in vitro virological assays using these plasma samples revealed that protection mediated by antibody-dependent complement deposition was associated with both lysis of virions and DENV-infected cells. These data suggest that E- and NS1-specific Fc functions may serve as correlates of protection, which can be potentially applied toward the design and evaluation of dengue vaccines.
Collapse
Affiliation(s)
- Antonio G. Dias
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Magelda Montoya
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
| | - Sandra Bos
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| | - Parnal Narvekar
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| | - Tulika Singh
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| | - Leah C. Katzelnick
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | | | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
| | - Eva Harris
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| |
Collapse
|
5
|
New Proteomic Signatures to Distinguish Between Zika and Dengue Infections. Mol Cell Proteomics 2021; 20:100052. [PMID: 33582300 PMCID: PMC8042398 DOI: 10.1016/j.mcpro.2021.100052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
Distinguishing between Zika and dengue virus infections is critical for accurate treatment, but we still lack detailed understanding of their impact on their host. To identify new protein signatures of the two infections, we used next-generation proteomics to profile 122 serum samples from 62 Zika and dengue patients. We quantified >500 proteins and identified 13 proteins that were significantly differentially expressed (adjusted p-value < 0.05). These proteins typically function in infection and wound healing, with several also linked to pregnancy and brain function. We successfully validated expression differences with Carbonic Anhydrase 2 in both the original and an independent sample set. Three of the differentially expressed proteins, i.e., Fibrinogen Alpha, Platelet Factor 4 Variant 1, and Pro-Platelet Basic Protein, predicted Zika virus infection at a ∼70% true-positive and 6% false-positive rate. Further, we showed that intraindividual temporal changes in protein signatures can disambiguate diagnoses and serve as indicators for past infections. Taken together, we demonstrate that serum proteomics can provide new resources that serve to distinguish between different viral infections. Analysis of human serum samples with extreme protein abundance ranges Unique protein signatures for Zika and dengue virus infection Temporal changes in protein signatures as indicators for past infections Machine learning to account for confounding factors
Collapse
|
6
|
Byrne AB, Talarico LB. Role of the complement system in antibody-dependent enhancement of flavivirus infections. Int J Infect Dis 2020; 103:404-411. [PMID: 33352325 DOI: 10.1016/j.ijid.2020.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022] Open
Abstract
Flavivirus infections have increased dramatically in the last decades in tropical and subtropical regions of the world. Antibody-dependent enhancement of dengue virus infections has been one of the main hypotheses to explain severity of disease and one of the major challenges to safe and effective vaccine development. In the presence of cross-reactive sub-neutralizing concentrations of anti-dengue antibodies, immune complexes can amplify viral infection in mononuclear phagocytic cells, triggering a cytokine cascade and activating the complement system that leads to severe disease. The complement system comprises a family of plasma and cellular surface proteins that recognize pathogen associated molecular patterns, modified ligands and immune complexes, interacting in a regulated manner and forming an enzymatic cascade. Pathogenic as well as protective effects of complement have been reported in flavivirus infections. This review provides updated knowledge on complement activation during flavivirus infection, including antiviral effects of complement and its regulation, as well as mechanisms of complement evasion and dysregulation of complement activity during viral infection leading to pathogenesis. Particularly, insights into classical pathway activation and its protective role on antibody-dependent enhancement of flavivirus infections are highlighted.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
7
|
Giraldo-Calderón GI, Calle-Tobón A, Rozo-López P, Colpitts TM, Park Y, Rua-Uribe GL, Londono-Renteria B. Transcriptome of the Aedes aegypti Mosquito in Response to Human Complement Proteins. Int J Mol Sci 2020; 21:ijms21186584. [PMID: 32916828 PMCID: PMC7555780 DOI: 10.3390/ijms21186584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022] Open
Abstract
Aedes aegypti is the primary mosquito vector of several human arboviruses, including the dengue virus (DENV). Vector control is the principal intervention to decrease the transmission of these viruses. The characterization of molecules involved in the mosquito physiological responses to blood-feeding may help identify novel targets useful in designing effective control strategies. In this study, we evaluated the in vivo effect of feeding adult female mosquitoes with human red blood cells reconstituted with either heat-inactivated (IB) or normal plasma (NB). The RNA-seq based transcript expression of IB and NB mosquitoes was compared against sugar-fed (SF) mosquitoes. In in vitro experiments, we treated Aag2 cells with a recombinant version of complement proteins (hC3 or hC5a) and compared transcript expression to untreated control cells after 24 h. The transcript expression analysis revealed that human complement proteins modulate approximately 2300 transcripts involved in multiple biological functions, including immunity. We also found 161 upregulated and 168 downregulated transcripts differentially expressed when human complement protein C3 (hC3) and human complement protein C5a (hC5a) treated cells were compared to the control untreated cells. We conclude that active human complement induces significant changes to the transcriptome of Ae. aegypti mosquitoes, which may influence the physiology of these arthropods.
Collapse
Affiliation(s)
- Gloria I. Giraldo-Calderón
- VectorBase, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
- Departamento de Ciencias Biológicasy, Universidad Icesi, Calle 18 No. 122–135, 760020 Cali, Colombia
- Departamento de Ciencias Básicas Médicas, Universidad Icesi, Calle 18 No. 122–135, 760020 Cali, Colombia
| | - Arley Calle-Tobón
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (A.C.-T.); (P.R.-L.); (Y.P.)
- Grupo Entomología Médica, Universidad de Antioquia, 050001 Medellín, Colombia;
| | - Paula Rozo-López
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (A.C.-T.); (P.R.-L.); (Y.P.)
| | - Tonya M. Colpitts
- Department of Microbiology & National Emerging Infectious Diseases Laboratories, Boston University School of Medicine; Boston, MA 02118, USA;
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (A.C.-T.); (P.R.-L.); (Y.P.)
| | | | - Berlin Londono-Renteria
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (A.C.-T.); (P.R.-L.); (Y.P.)
- Correspondence:
| |
Collapse
|
8
|
Corticosteroid actions on dengue immune pathology; A review article. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Fischinger S, Fallon JK, Michell AR, Broge T, Suscovich TJ, Streeck H, Alter G. A high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies to induce complement activation. J Immunol Methods 2019; 473:112630. [PMID: 31301278 PMCID: PMC6722412 DOI: 10.1016/j.jim.2019.07.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/21/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
The complement system plays a critical role in innate immune defense against pathogens, both via non-specific direct pathogen recognition and killing or via antigen-specific indirect recruitment by complement fixing antibodies. While various assays for measuring complement activation have been developed, few provide a high-throughput, sample-sparing approach to interrogate the qualitative differences in the ability of antibodies to drive complement activation. Here we present a high-throughput, sample-sparing, bead-based assay to evaluate antigen-specific antibody-dependent complement activation against nearly any antigen. Optimization of buffer composition, kinetics of immune complex formation, as well as complement source all contribute critically to the development of a robust, highly flexible and high-throughput approach to analyze antibody-dependent complement deposition (ADCD). Thus, the optimized bead-based, antigen-specific assay represents a simple, highly adaptable platform to profile antibody-dependent complement activation across pathogens and diseases.
Collapse
Affiliation(s)
- Stephanie Fischinger
- Ragon Institute of MGH, Harvard and MIT, Cambridge 02139, USA; University of Duisburg-Essen, Essen 47057, Germany
| | | | | | - Thomas Broge
- Ragon Institute of MGH, Harvard and MIT, Cambridge 02139, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard and MIT, Cambridge 02139, USA.
| |
Collapse
|
10
|
Glover KKM, Gao A, Zahedi-Amiri A, Coombs KM. Vero Cell Proteomic Changes Induced by Zika Virus Infection. Proteomics 2019; 19:e1800309. [PMID: 30578658 DOI: 10.1002/pmic.201800309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/06/2018] [Indexed: 12/12/2022]
Abstract
The re-emergence and the recent spread of the Zika virus (ZIKV) has raised significant global concerns due to lack of information in patient diagnosis and management. Thus, in addition to gaining more basic information about ZIKV biology, appropriate interventions and management strategies are being sought to control ZIKV-associated diseases and its spread. This study's objective is to identify host cell proteins that are significantly dysregulated during ZIKV infection. SOMAScan, a novel aptamer-based assay, is used to simultaneously screen >1300 host proteins to detect ZIKV-induced host protein dysregulation at multiple time points during infection. A total of 125 Vero cell host proteins, including cytokines such as CXCL11 and CCL5, interferon stimulated gene 15, and translation initiation factors EIF5A and EIF4G2, are significantly dysregulated after ZIKV infection. Bioinformatic analyses of 77 host proteins, that are significantly dysregulated ≥1.25-fold, identify several activated biological processes, including the JAK/STAT, Tec kinase, and complement cascade pathways.
Collapse
Affiliation(s)
- Kathleen K M Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E OJ9, Canada.,Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E OJ9, Canada.,Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E OJ9, Canada.,Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, R3E 3P4, Canada.,Children's Hospital Research Institute of Manitoba, Buhler Research Centre, Winnipeg, Manitoba, R3E 3P4, Canada
| |
Collapse
|
11
|
Quach QH, Ang SK, Chu JHJ, Kah JCY. Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomater 2018; 78:224-235. [PMID: 30099200 DOI: 10.1016/j.actbio.2018.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Dengue results in substantial human morbidity and significant socio-economic impacts, but a specific dengue therapeutic is not available. The currently available dengue vaccine has low efficacy and high rate of adverse effects, necessitating different strategies for the development of a safer and more efficient vaccine against dengue virus. We describe here a hybrid combination of different-sized gold nanoparticles (AuNPs) and domain III of envelope glycoprotein derived from serotype 2 of dengue virus (EDIII) as dengue subunit vaccine. The efficacy of the EDIII-functionalized AuNPs (AuNP-E) to induce neutralizing antibody in BALB/c mice is evaluated. Obtained results show that AuNP-E induced a high level of antibody which mediates serotype-specific neutralization of dengue virus. More importantly, the level of antibody is dependent on both the size of AuNPs and the concentration of AuNP-E, implicating the possibility to modulate it through adjusting these parameters. These results represent an important step towards the development of tetravalent AuNP-based subunit dengue vaccine. STATEMENT OF SIGNIFICANCE This research presents a novel subunit vaccine against dengue virus using a hybrid comprising gold nanoparticles (AuNPs) and domain III of envelop protein (EDIII). We proved the neutralizing activity of anti-EDIII antibody induced in immunized mice on Dengue virus serotype 2 in an AuNP core size and concentration dependent manner. The hybrid concept behind this work could also be adopted for the development of a tetravalent vaccine against four serotypes of Dengue virus.
Collapse
|
12
|
Dengue Virus Induces Increased Activity of the Complement Alternative Pathway in Infected Cells. J Virol 2018; 92:JVI.00633-18. [PMID: 29743365 DOI: 10.1128/jvi.00633-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023] Open
Abstract
Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro were investigated. mRNA for factor H (FH), a major negative regulator of the AP, was significantly increased in DENV-infected endothelial cells (EC) and macrophages, but, in contrast, production of extracellular FH protein was not. This discord was not seen for the AP activator factor B (FB), with DENV induction of both FB mRNA and protein, nor was it seen with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface-bound and intracellular FH protein was, however, induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalized cell lines (ARPE-19 and human retinal endothelial cells), FH protein was induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there was an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells, with lower FH relative to FB protein, an increased ability to promote AP-mediated lytic activity, and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease.IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with a global medical and economic impact. DENV may cause serious and life-threatening disease, with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however, overactivity of the complement alternative pathway has been suggested to play a role. In this study, we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease.
Collapse
|
13
|
Conde JN, Silva EM, Barbosa AS, Mohana-Borges R. The Complement System in Flavivirus Infections. Front Microbiol 2017; 8:213. [PMID: 28261172 PMCID: PMC5306369 DOI: 10.3389/fmicb.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/30/2017] [Indexed: 01/29/2023] Open
Abstract
The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.
Collapse
Affiliation(s)
- Jonas N Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Angela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan São Paulo, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Guy B, Lang J, Saville M, Jackson N. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med 2016; 67:387-404. [DOI: 10.1146/annurev-med-091014-090848] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno Guy
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Jean Lang
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Melanie Saville
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | | |
Collapse
|
15
|
Yeo ASL, Azhar NA, Yeow W, Talbot CC, Khan MA, Shankar EM, Rathakrishnan A, Azizan A, Wang SM, Lee SK, Fong MY, Manikam R, Sekaran SD. Lack of clinical manifestations in asymptomatic dengue infection is attributed to broad down-regulation and selective up-regulation of host defence response genes. PLoS One 2014; 9:e92240. [PMID: 24727912 PMCID: PMC3984081 DOI: 10.1371/journal.pone.0092240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Objectives Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic. Methods We determined the levels of neutralizing antibodies (nAbs) and gene expression profiles of host immune factors in individuals with asymptomatic infections, and whose cognate household members showed symptoms consistent to clinical dengue infection. Results We observed broad down-regulation of host defense response (innate, adaptive and matrix metalloprotease) genes in asymptomatic individuals as against symptomatic patients, with selective up-regulation of distinct genes that have been associated with protection. Selected down-regulated genes include: TNF α (TNF), IL8, C1S, factor B (CFB), IL2, IL3, IL4, IL5, IL8, IL9, IL10 and IL13, CD80, CD28, and IL18, MMP8, MMP10, MMP12, MMP15, MMP16, and MMP24. Selected up-regulated genes include: RANTES (CCL5), MIP-1α (CCL3L1/CCL3L3), MIP-1β (CCL4L1), TGFβ (TGFB), and TIMP1. Conclusion Our findings highlight the potential association of certain host genes conferring protection against clinical dengue. These data are valuable to better explore the mysteries behind the hitherto poorly understood immunopathogenesis of subclinical dengue infection.
Collapse
Affiliation(s)
- Adeline S. L. Yeo
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nur Atiqah Azhar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - Wanyi Yeow
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mohammad Asif Khan
- Perdana University Graduate School of Medicine & Centre for Bioinformatics, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Esaki M. Shankar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Anusyah Rathakrishnan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Azliyati Azizan
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Seok Mui Wang
- Institute for Medical Molecular Biotechnology, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Siew Kim Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University of Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
16
|
Foroushani ABK, Brinkman FSL, Lynn DJ. Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures. PeerJ 2013; 1:e229. [PMID: 24432194 PMCID: PMC3883547 DOI: 10.7717/peerj.229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/02/2013] [Indexed: 12/28/2022] Open
Abstract
Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/.
Collapse
Affiliation(s)
- Amir B K Foroushani
- Animal & Bioscience Research Department, AGRIC, Teagasc , Grange, Dunsany, Co. Meath , Ireland ; Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, British Columbia , Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, British Columbia , Canada
| | - David J Lynn
- Animal & Bioscience Research Department, AGRIC, Teagasc , Grange, Dunsany, Co. Meath , Ireland
| |
Collapse
|
17
|
Pastor AF, Moura LR, Neto JW, Nascimento EJ, Calzavara-Silva CE, Gomes ALV, da Silva AM, Cordeiro MT, Braga-Neto U, Crovella S, Gil LH, Marques ET, Acioli-Santos B. Complement factor H gene (CFH) polymorphisms C-257T, G257A and haplotypes are associated with protection against severe dengue phenotype, possible related with high CFH expression. Hum Immunol 2013; 74:1225-30. [PMID: 23747994 PMCID: PMC3909654 DOI: 10.1016/j.humimm.2013.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 04/18/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Four genetic polymorphisms located at the promoter (C-257T) and coding regions of CFH gene (exon 2 G257A, exon 14 A2089G and exon 19 G2881T) were investigated in 121 dengue patients (DENV-3) in order to assess the relationship between allele/haplotypes variants and clinical outcomes. A statistical value was found between the CFH-257T allele (TT/TC genotypes) and reduced susceptibility to severe dengue (SD). Statistical associations indicate that individuals bearing a T allele presented significantly higher protein levels in plasma. The -257T variant is located within a NF-κB binding site, suggesting that this variant might have effect on the ability of the CFH gene to respond to signals via the NF-κB pathway. The G257A allelic variant showed significant protection against severe dengue. When CFH haplotypes effect was considered, the ancestral CG/CG promoter-exon 2 SNP genotype showed significant risk to SD either in a general comparison (ancestral × all variant genotypes), as well as in individual genotypes comparison (ancestral × each variant genotype), where the most prevalent effect was observed in the CG/CG × CA/TG comparison. These findings support the involvement of -257T, 257A allele variants and haplotypes on severe dengue phenotype protection, related with high basal CFH expression.
Collapse
Affiliation(s)
- André F. Pastor
- Virology and Experimental Therapy Laboratory, FIOCRUZ-PE, Recife, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | | - José W.D. Neto
- Virology and Experimental Therapy Laboratory, FIOCRUZ-PE, Recife, Brazil
| | - Eduardo J.M. Nascimento
- Department of Infectious Diseases and Microbiology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, USA
| | | | - Ana Lisa V. Gomes
- Virology and Experimental Therapy Laboratory, FIOCRUZ-PE, Recife, Brazil
| | - Ana Maria da Silva
- Virology and Experimental Therapy Laboratory, FIOCRUZ-PE, Recife, Brazil
| | - Marli T. Cordeiro
- Virology and Experimental Therapy Laboratory, FIOCRUZ-PE, Recife, Brazil
| | - Ulisses Braga-Neto
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, USA
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Laura H.V.G. Gil
- Virology and Experimental Therapy Laboratory, FIOCRUZ-PE, Recife, Brazil
| | - Ernesto T.A. Marques
- Virology and Experimental Therapy Laboratory, FIOCRUZ-PE, Recife, Brazil
- Department of Infectious Diseases and Microbiology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, USA
| | | |
Collapse
|
18
|
Dengue nonstructural protein-1 status is not associated to circulating levels of interleukin-17, C-reactive protein and complement in children with acute dengue. J Clin Virol 2013. [DOI: 10.1016/j.jcv.2012.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Non-HLA gene polymorphisms and their implications on dengue virus infection. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2012.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Appanna R, Wang SM, Ponnampalavanar SA, Lum LCS, Sekaran SD. Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cells. Am J Trop Med Hyg 2012; 87:936-42. [PMID: 22987650 DOI: 10.4269/ajtmh.2012.11-0606] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Plasma leakage in severe dengue has been postulated to be associated with skewed cytokine immune responses. In this study, the association of cytokines with vascular permeability in dengue patients was investigated. Human serum samples collected from 48 persons (13 with dengue fever, 29 with dengue hemorrhagic fever, and 6 healthy) were subjected to cytokines analysis by using Luminex Multiplex Technology. Selected serum samples from patients with dengue hemorrhagic fever sera and recombinant human cytokines were then tested for roles on inducing vascular permeability by treatment of human umbilical vein endothelial cells. Confocal immunofluorescence staining indicated morphologic alteration of human umbilical vein endothelial cells treated with serum samples from patients with dengue hemorrhagic fever compared with serum samples from healthy persons. The findings suggest that cytokines produced during dengue hemorrhagic infections could induce alterations in the vascular endothelium, which may play a fundamental role in the pathophysiology of dengue.
Collapse
Affiliation(s)
- Ramapraba Appanna
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|