1
|
Robins WP, Meader BT, Toska J, Mekalanos JJ. DdmABC-dependent death triggered by viral palindromic DNA sequences. Cell Rep 2024; 43:114450. [PMID: 39002129 DOI: 10.1016/j.celrep.2024.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/24/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
Defense systems that recognize viruses provide important insights into both prokaryotic and eukaryotic innate immunity mechanisms. Such systems that restrict foreign DNA or trigger cell death have recently been recognized, but the molecular signals that activate many of these remain largely unknown. Here, we characterize one such system in pandemic Vibrio cholerae responsible for triggering cell density-dependent death (CDD) of cells in response to the presence of certain genetic elements. We show that the key component is the Lamassu DdmABC anti-phage/plasmid defense system. We demonstrate that signals that trigger CDD were palindromic DNA sequences in phages and plasmids that are predicted to form stem-loop hairpins from single-stranded DNA. Our results suggest that agents that damage DNA also trigger DdmABC activation and inhibit cell growth. Thus, any infectious process that results in damaged DNA, particularly during DNA replication, can in theory trigger DNA restriction and death through the DdmABC abortive infection system.
Collapse
Affiliation(s)
- William P Robins
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Bradley T Meader
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonida Toska
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Torres M, Paszti S, Eberl L. Shedding light on bacteria-host interactions with the aid of TnSeq approaches. mBio 2024; 15:e0039024. [PMID: 38722161 PMCID: PMC11237515 DOI: 10.1128/mbio.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Bacteria are highly adaptable and grow in diverse niches, where they often interact with eukaryotic organisms. These interactions with different hosts span the entire spectrum from symbiosis to pathogenicity and thus determine the lifestyle of the bacterium. Knowledge of the genetic determinants involved in animal and plant host colonization by pathogenic and mutualistic bacteria is not only crucial to discover new drug targets for disease management but also for developing novel biostimulant strategies. In the last decades, significant progress in genome-wide high-throughput technologies such as transposon insertion sequencing has led to the identification of pathways that enable efficient host colonization. However, the extent to which similar genes play a role in this process in different bacteria is yet unclear. This review highlights the commonalities and specificities of bacterial determinants important for bacteria-host interaction.
Collapse
Affiliation(s)
- Marta Torres
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
3
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Waldor MK. Inducible transposon mutagenesis for genome-scale forward genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595064. [PMID: 38826325 PMCID: PMC11142078 DOI: 10.1101/2024.05.21.595064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale functional genetics in bacteria. However, its effectiveness is often limited by a lack of mutant diversity, caused by either inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks. Here, we introduce "InducTn-seq", which leverages inducible mutagenesis for temporal control of transposition. InducTn-seq generates millions of transposon mutants from a single colony, enabling the sensitive detection of subtle fitness defects and transforming binary classifications of gene essentiality into a quantitative fitness measurement across both essential and non-essential genes. Using a mouse model of infectious colitis, we show that InducTn-seq bypasses a highly restrictive host bottleneck to generate a diverse transposon mutant population from the few cells that initiate infection, revealing the role of oxygen-related metabolic plasticity in pathogenesis. Overall, InducTn-seq overcomes the limitations of traditional Tn-seq, unlocking new possibilities for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W. Basta
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J. Sullivan
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
4
|
Dominguez SR, Doan PN, Rivera-Chávez F. The intersection between host-pathogen interactions and metabolism during Vibrio cholerae infection. Curr Opin Microbiol 2024; 77:102421. [PMID: 38215547 DOI: 10.1016/j.mib.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Vibrio cholerae (V. cholerae), the etiological agent of cholera, uses cholera toxin (CT) to cause severe diarrheal disease. Cholera is still a significant cause of mortality worldwide with about half of all cholera cases and deaths occurring in children under five. Owing to the lack of cost-effective vaccination and poor vaccine efficacy in children, there is a need for alternative preventative and therapeutic strategies. Recent advances in our knowledge of the interplay between CT-induced disease and host-pathogen metabolism have opened the door for investigating how modulation of intestinal metabolism by V. cholerae during disease impacts host intestinal immunity, the gut microbiota, and pathogen-phage interactions. In this review article, we examine recent progress in our understanding of host-pathogen interactions during V. cholerae infection and discuss future work deciphering how modulation of gut metabolism during cholera intersects these processes to enable successful fecal-oral transmission of the pathogen.
Collapse
Affiliation(s)
- Sedelia R Dominguez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Phillip N Doan
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fabian Rivera-Chávez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
Abstract
In order for successful fecal-oral transmission, enteric bacterial pathogens have to successfully compete with the intestinal microbiota and reach high concentrations during infection. Vibrio cholerae requires cholera toxin (CT) to cause diarrheal disease, which is thought to promote the fecal-oral transmission of the pathogen. Besides inducing diarrheal disease, the catalytic activity of CT also alters host intestinal metabolism, which promotes the growth of V. cholerae during infection through the acquisition of host-derived nutrients. Furthermore, recent studies have found that CT-induced disease activates a niche-specific suite of V. cholerae genes during infection, some of which may be important for fecal-oral transmission of the pathogen. Our group is currently exploring the concept that CT-induced disease promotes the fecal-oral transmission of V. cholerae by modulating both host and pathogen metabolism. Furthermore, the role of the intestinal microbiota in pathogen growth and transmission during toxin-induced disease merits further investigation. These studies open the door to investigating whether other bacterial toxins also enhance pathogen growth and transmission during infection, which may shed light on the design of novel therapeutics for intervention or prevention of diarrheal diseases.
Collapse
Affiliation(s)
- Claire M. L. Chapman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Andrew Kapinos
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Fabian Rivera-Chávez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Tai JSB, Ferrell MJ, Yan J, Waters CM. New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:17-39. [PMID: 36792869 PMCID: PMC10726288 DOI: 10.1007/978-3-031-22997-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.
Collapse
Affiliation(s)
- Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Micah J Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Sit B, Srisuknimit V, Bueno E, Zingl FG, Hullahalli K, Cava F, Waldor MK. Undecaprenyl phosphate translocases confer conditional microbial fitness. Nature 2023; 613:721-728. [PMID: 36450355 PMCID: PMC9876793 DOI: 10.1038/s41586-022-05569-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
The microbial cell wall is essential for maintenance of cell shape and resistance to external stressors1. The primary structural component of the cell wall is peptidoglycan, a glycopolymer with peptide crosslinks located outside of the cell membrane1. Peptidoglycan biosynthesis and structure are responsive to shifting environmental conditions such as pH and salinity2-6, but the mechanisms underlying such adaptations are incompletely understood. Precursors of peptidoglycan and other cell surface glycopolymers are synthesized in the cytoplasm and then delivered across the cell membrane bound to the recyclable lipid carrier undecaprenyl phosphate7 (C55-P, also known as UndP). Here we identify the DUF368-containing and DedA transmembrane protein families as candidate C55-P translocases, filling a critical gap in knowledge of the proteins required for the biogenesis of microbial cell surface polymers. Gram-negative and Gram-positive bacteria lacking their cognate DUF368-containing protein exhibited alkaline-dependent cell wall and viability defects, along with increased cell surface C55-P levels. pH-dependent synthetic genetic interactions between DUF368-containing proteins and DedA family members suggest that C55-P transporter usage is dynamic and modulated by environmental inputs. C55-P transporter activity was required by the cholera pathogen for growth and cell shape maintenance in the intestine. We propose that conditional transporter reliance provides resilience in lipid carrier recycling, bolstering microbial fitness both inside and outside the host.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Franz G Zingl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Sit B, Fakoya B, Waldor MK. Animal models for dissecting Vibrio cholerae intestinal pathogenesis and immunity. Curr Opin Microbiol 2022; 65:1-7. [PMID: 34695646 PMCID: PMC8792189 DOI: 10.1016/j.mib.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
The human diarrheal disease cholera is caused by the bacterium Vibrio cholerae. Efforts to develop animal models that closely mimic cholera to study the pathogenesis of this disease began >125 years ago. Here, we review currently used non-surgical, oral inoculation-based animal models for investigation of V. cholerae intestinal colonization and disease and highlight recent discoveries that have illuminated mechanisms of cholera pathogenesis and immunity, particularly in the area of how V. cholerae interacts with the gut microbiome to influence infection. The emergence of high-throughput tools for studies of pathogen-host interactions, along with continued advances in host genetic engineering and manipulation in animal models of V. cholerae will deepen understanding of cholera pathogenesis, uncovering knowledge important for control of this globally important bacterial pathogen.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bolutife Fakoya
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Massachusetts, USA,Howard Hughes Medical Institute, Bethesda, Maryland, USA,corresponding author: , Phone: 6175254646, Address: MCP-759, 181 Longwood Avenue, Boston, Massachusetts, USA 02115
| |
Collapse
|
10
|
Melnik LI, Guha S, Ghimire J, Smither AR, Beddingfield BJ, Hoffmann AR, Sun L, Ungerleider NA, Baddoo MC, Flemington EK, Gallaher WR, Wimley WC, Garry RF. Ebola virus delta peptide is an enterotoxin. Cell Rep 2022; 38:110172. [PMID: 34986351 DOI: 10.1016/j.celrep.2021.110172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
During the 2013-2016 West African (WA) Ebola virus (EBOV) outbreak, severe gastrointestinal symptoms were common in patients and associated with poor outcome. Delta peptide is a conserved product of post-translational processing of the abundant EBOV soluble glycoprotein (sGP). The murine ligated ileal loop model was used to demonstrate that delta peptide is a potent enterotoxin. Dramatic intestinal fluid accumulation follows injection of biologically relevant amounts of delta peptide into ileal loops, along with gross alteration of villous architecture and loss of goblet cells. Transcriptomic analyses show that delta peptide triggers damage response and cell survival pathways and downregulates expression of transporters and exchangers. Induction of diarrhea by delta peptide occurs via cellular damage and regulation of genes that encode proteins involved in fluid secretion. While distinct differences exist between the ileal loop murine model and EBOV infection in humans, these results suggest that delta peptide may contribute to EBOV-induced gastrointestinal pathology.
Collapse
Affiliation(s)
- Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Allison R Smither
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Brandon J Beddingfield
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew R Hoffmann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Leisheng Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | - William R Gallaher
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA; Mockingbird Nature Research Group, Pearl River, LA 70452, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Zalgen Labs, Germantown, MD 20876, USA.
| |
Collapse
|
11
|
Macbeth JC, Liu R, Alavi S, Hsiao A. A dysbiotic gut microbiome suppresses antibody mediated-protection against Vibrio cholerae. iScience 2021; 24:103443. [PMID: 34877500 PMCID: PMC8633975 DOI: 10.1016/j.isci.2021.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Cholera is a severe diarrheal disease that places a significant burden on global health. Cholera's high morbidity demands effective prophylactic strategies, but oral cholera vaccines exhibit variable efficacy in human populations. One contributor of variance in human populations is the gut microbiome, which in cholera-endemic areas is modulated by malnutrition, cholera, and non-cholera diarrhea. We conducted fecal transplants from healthy human donors and model communities of either human gut microbes that resemble healthy individuals or those of individuals recovering from diarrhea in various mouse models. We show microbiome-specific effects on host antibody responses against Vibrio cholerae, and that dysbiotic human gut microbiomes representative of cholera-endemic areas suppress the immune response against V. cholerae via CD4+ lymphocytes. Our findings suggest that gut microbiome composition at time of infection or vaccination may be pivotal for providing robust mucosal immunity, and suggest a target for improved prophylactic and therapeutic strategies for cholera.
Collapse
Affiliation(s)
- John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Salma Alavi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Zoued A, Zhang H, Zhang T, Giorgio RT, Kuehl CJ, Fakoya B, Sit B, Waldor MK. Proteomic analysis of the host-pathogen interface in experimental cholera. Nat Chem Biol 2021; 17:1199-1208. [PMID: 34675415 DOI: 10.1038/s41589-021-00894-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
The microbial cell surface is a site of critical microbe-host interactions that often control infection outcomes. Defining the set of host proteins present at this interface has been challenging. Here we used a surface-biotinylation approach coupled to quantitative mass spectrometry to identify and quantify both bacterial and host proteins present on the surface of diarrheal fluid-derived Vibrio cholerae in an infant rabbit model of cholera. The V. cholerae surface was coated with numerous host proteins, whose abundance were driven by the presence of cholera toxin, including the C-type lectin SP-D. Mice lacking SP-D had enhanced V. cholerae intestinal colonization, and SP-D production shaped both host and pathogen transcriptomes. Additional host proteins (AnxA1, LPO and ZAG) that bound V. cholerae were also found to recognize distinct taxa of the murine intestinal microbiota, suggesting that these host factors may play roles in intestinal homeostasis in addition to host defense.
Collapse
Affiliation(s)
- Abdelrahim Zoued
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Carole J Kuehl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Bolutife Fakoya
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
13
|
Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat Commun 2021; 12:5751. [PMID: 34599171 PMCID: PMC8486750 DOI: 10.1038/s41467-021-26041-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
While the major virulence factors for Vibrio cholerae, the cause of the devastating diarrheal disease cholera, have been extensively studied, the initial intestinal colonization of the bacterium is not well understood because non-human adult animals are refractory to its colonization. Recent studies suggest the involvement of an interbacterial killing device known as the type VI secretion system (T6SS). Here, we tested the T6SS-dependent interaction of V. cholerae with a selection of human gut commensal isolates. We show that the pathogen efficiently depleted representative genera of the Proteobacteria in vitro, while members of the Enterobacter cloacae complex and several Klebsiella species remained unaffected. We demonstrate that this resistance against T6SS assaults was mediated by the production of superior T6SS machinery or a barrier exerted by group I capsules. Collectively, our data provide new insights into immunity protein-independent T6SS resistance employed by the human microbiota and colonization resistance in general.
Collapse
|
14
|
Das S, Chourashi R, Mukherjee P, Gope A, Koley H, Dutta M, Mukhopadhyay AK, Okamoto K, Chatterjee NS. Multifunctional transcription factor CytR of Vibrio cholerae is important for pathogenesis. MICROBIOLOGY-SGM 2021; 166:1136-1148. [PMID: 33150864 DOI: 10.1099/mic.0.000949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vibrio cholerae, the Gram-negative facultative pathogen, resides in the aquatic environment and infects humans and causes diarrhoeagenic cholera. Although the environment differs drastically, V. cholerae thrives in both of these conditions aptly and chitinases play a vital role in their persistence and nutrient acquisition. Chitinases also play a role in V. cholerae pathogenesis. Chitinases and its downstream chitin utilization genes are regulated by sensor histidine kinase ChiS, which also plays a significant role in pathogenesis. Recent exploration suggests that CytR, a transcription factor of the LacI family in V. cholerae, also regulates chitinase secretion in environmental conditions. Since chitinases and chitinase regulator ChiS is involved in pathogenesis, CytR might also play a significant role in pathogenicity. However, the role of CytR in pathogenesis is yet to be known. This study explores the regulation of CytR on the activation of ChiS in the presence of mucin and its role in pathogenesis. Therefore, we created a CytR isogenic mutant strain of V. cholerae (CytR¯) and found considerably less β-hexosaminidase enzyme production, which is an indicator of ChiS activity. The CytR¯ strain greatly reduced the expression of chitinases chiA1 and chiA2 in mucin-supplemented media. Electron microscopy showed that the CytR¯ strain was aflagellate. The expression of flagellar-synthesis regulatory genes flrB, flrC and class III flagellar-synthesis genes were reduced in the CytR¯ strain. The isogenic CytR mutant showed less growth compared to the wild-type in mucin-supplemented media as well as demonstrated highly retarded motility and reduced mucin-layer penetration. The CytR mutant revealed decreased adherence to the HT-29 cell line. In animal models, reduced fluid accumulation and colonization were observed during infection with the CytR¯ strain due to reduced expression of ctxB, toxT and tcpA. Collectively these data suggest that CytR plays an important role in V. cholerae pathogenesis.
Collapse
Affiliation(s)
- Suman Das
- Division of Biochemistry, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Rhishita Chourashi
- Division of Biochemistry, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Priyadarshini Mukherjee
- Division of Bacteriology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases at NICED, Kolkata, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| |
Collapse
|
15
|
Abstract
Vibrio is a large and diverse genus of bacteria, of which most are nonpathogenic species found in the aquatic environment. However, a subset of the Vibrio genus includes several species that are highly pathogenic, either to humans or to aquatic animals. In recent years, Danio rerio, commonly known as the zebrafish, has emerged as a major animal model used for studying nearly every aspect of biology, including infectious diseases. Zebrafish are especially useful because the embryos are transparent, larvae are small and facilitate imaging studies, and numerous transgenic fish strains have been constructed. Zebrafish models for several pathogenic Vibrio species have been described, and indeed a fish model is highly relevant for the study of aquatic bacterial pathogens. Here, we summarize the zebrafish models that have been used to study pathogenic Vibrio species to date.
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dustin A Farr
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Madison G Walton
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
16
|
Kimura S, Dedon PC, Waldor MK. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat Chem Biol 2020; 16:964-972. [PMID: 32514182 DOI: 10.1038/s41589-020-0558-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Chemical modifications of the nucleosides that comprise transfer RNAs are diverse. However, the structure, location and extent of modifications have been systematically charted in very few organisms. Here, we describe an approach in which rapid prediction of modified sites through reverse transcription-derived signatures in high-throughput transfer RNA-sequencing (tRNA-seq) data is coupled with identification of tRNA modifications through RNA mass spectrometry. Comparative tRNA-seq enabled prediction of several Vibrio cholerae modifications that are absent from Escherichia coli and also revealed the effects of various environmental conditions on V. cholerae tRNA modification. Through RNA mass spectrometric analyses, we showed that two of the V. cholerae-specific reverse transcription signatures reflected the presence of a new modification (acetylated acp3U (acacp3U)), while the other results from C-to-Ψ RNA editing, a process not described before. These findings demonstrate the utility of this approach for rapid surveillance of tRNA modification profiles and environmental control of tRNA modification.
Collapse
Affiliation(s)
- Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institution of Technology, Cambridge, MA, USA.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
17
|
Abstract
The bacterial pathogen Shigella flexneri causes more than 250 million cases of bacillary dysentery (blood in stool) every year across the world. This human-specific disease is characterized by profuse bloody diarrhea, dramatic ulceration of the colonic epithelium and immune cell infiltration of the colonic tissue. A major challenge in understanding the mechanisms supporting bacillary dysentery is the reliance on animal models that do not fully recapitulate the symptoms observed in humans, including bloody diarrhea. Here we outline advances provided by a recently developed infant rabbit model of bacillary dysentery. The infant rabbit model defines bacillary dysentery as a critical combination of massive vascular lesions and dramatic epithelial fenestration due to intracellular infection and cell-to-cell spread, respectively. The infant rabbit model provides an unprecedented framework for understanding how the cell biology of Shigella flexneri infection relates to pathogenesis.
Collapse
Affiliation(s)
- Lauren K. Yum
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA,CONTACT Hervé Agaisse Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia22908, USA
| |
Collapse
|
18
|
Davoodi S, Foley E. Host-Microbe-Pathogen Interactions: A Review of Vibrio cholerae Pathogenesis in Drosophila. Front Immunol 2020; 10:3128. [PMID: 32038640 PMCID: PMC6993214 DOI: 10.3389/fimmu.2019.03128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Most animals maintain mutually beneficial symbiotic relationships with their intestinal microbiota. Resident microbes in the gastrointestinal tract breakdown indigestible food, provide essential nutrients, and, act as a barrier against invading microbes, such as the enteric pathogen Vibrio cholerae. Over the last decades, our knowledge of V. cholerae pathogenesis, colonization, and transmission has increased tremendously. A number of animal models have been used to study how V. cholerae interacts with host-derived resources to support gastrointestinal colonization. Here, we review studies on host-microbe interactions and how infection with V. cholerae disrupts these interactions, with a focus on contributions from the Drosophila melanogaster model. We will discuss studies that highlight the connections between symbiont, host, and V. cholerae metabolism; crosstalk between V. cholerae and host microbes; and the impact of the host immune system on the lethality of V. cholerae infection. These studies suggest that V. cholerae modulates host immune-metabolic responses in the fly and improves Vibrio fitness through competition with intestinal microbes.
Collapse
Affiliation(s)
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Kuehl CJ, D'Gama JD, Warr AR, Waldor MK. An Oral Inoculation Infant Rabbit Model for Shigella Infection. mBio 2020; 11:e03105-19. [PMID: 31964739 PMCID: PMC6974573 DOI: 10.1128/mbio.03105-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella species cause diarrheal disease globally. Shigellosis is typically characterized by bloody stools and colitis with mucosal damage and is the leading bacterial cause of diarrheal death worldwide. After the pathogen is orally ingested, it invades and replicates within the colonic epithelium through mechanisms that rely on its type III secretion system (T3SS). Currently, oral infection-based small animal models to study the pathogenesis of shigellosis are lacking. Here, we found that orogastric inoculation of infant rabbits with Shigella flexneri resulted in diarrhea and colonic pathology resembling that found in human shigellosis. Fasting animals prior to S. flexneri inoculation increased the frequency of disease. The pathogen colonized the colon, where both luminal and intraepithelial foci were observed. The intraepithelial foci likely arise through S. flexneri spreading from cell to cell. Robust S. flexneri intestinal colonization, invasion of the colonic epithelium, and epithelial sloughing all required the T3SS as well as IcsA, a factor required for bacterial spreading and adhesion in vitro Expression of the proinflammatory chemokine interleukin 8 (IL-8), detected with in situ mRNA labeling, was higher in animals infected with wild-type S. flexneri versus mutant strains deficient in icsA or T3SS, suggesting that epithelial invasion promotes expression of this chemokine. Collectively, our findings suggest that oral infection of infant rabbits offers a useful experimental model for studies of the pathogenesis of shigellosis and for testing of new therapeutics.IMPORTANCEShigella species are the leading bacterial cause of diarrheal death globally. The pathogen causes bacillary dysentery, a bloody diarrheal disease characterized by damage to the colonic mucosa and is usually spread through the fecal-oral route. Small animal models of shigellosis that rely on the oral route of infection are lacking. Here, we found that orogastric inoculation of infant rabbits with S. flexneri led to a diarrheal disease and colonic pathology reminiscent of human shigellosis. Diarrhea, intestinal colonization, and pathology in this model were dependent on the S. flexneri type III secretion system and IcsA, canonical Shigella virulence factors. Thus, oral infection of infant rabbits offers a feasible model to study the pathogenesis of shigellosis and to develop and test new therapeutics.
Collapse
Affiliation(s)
- Carole J Kuehl
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D D'Gama
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyson R Warr
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Pore D, Hoque KM, Chakrabarti MK. Animal models in advancement of research in enteric diseases. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Bhandare S, Colom J, Baig A, Ritchie JM, Bukhari H, Shah MA, Sarkar BL, Su J, Wren B, Barrow P, Atterbury RJ. Reviving Phage Therapy for the Treatment of Cholera. J Infect Dis 2019; 219:786-794. [PMID: 30395214 DOI: 10.1093/infdis/jiy563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
Cholera remains a major risk in developing countries, particularly after natural or man-made disasters. Vibrio cholerae El Tor is the most important cause of these outbreaks, and is becoming increasingly resistant to antibiotics, so alternative therapies are urgently needed. In this study, a single bacteriophage, Phi_1, was used to control cholera prophylactically and therapeutically in an infant rabbit model. In both cases, phage-treated animals showed no clinical signs of disease, compared with 69% of untreated control animals. Bacterial counts in the intestines of phage-treated animals were reduced by up to 4 log10 colony-forming units/g. There was evidence of phage multiplication only in animals that received a V. cholerae challenge. No phage-resistant bacterial mutants were isolated from the animals, despite extensive searching. This is the first evidence that a single phage could be effective in the treatment of cholera, without detectable levels of resistance. Clinical trials in human patients should be considered.
Collapse
Affiliation(s)
- Sudhakar Bhandare
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Joan Colom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Abiyad Baig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Jenny M Ritchie
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Habib Bukhari
- Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad campus, Islamabad, Pakistan
| | - Muhammad A Shah
- Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad campus, Islamabad, Pakistan
| | - Banwarilal L Sarkar
- National Institute of Cholera & Enteric Diseases, WHO Collaborating Centre for Diarrhoeal Diseases Research & Training, Kolkata, India
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| |
Collapse
|
22
|
Hubbard TP, Billings G, Dörr T, Sit B, Warr AR, Kuehl CJ, Kim M, Delgado F, Mekalanos JJ, Lewnard JA, Waldor MK. A live vaccine rapidly protects against cholera in an infant rabbit model. Sci Transl Med 2019; 10:10/445/eaap8423. [PMID: 29899024 DOI: 10.1126/scitranslmed.aap8423] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Outbreaks of cholera, a rapidly fatal diarrheal disease, often spread explosively. The efficacy of reactive vaccination campaigns-deploying Vibrio cholerae vaccines during epidemics-is partially limited by the time required for vaccine recipients to develop adaptive immunity. We created HaitiV, a live attenuated cholera vaccine candidate, by deleting diarrheagenic factors from a recent clinical isolate of V. cholerae and incorporating safeguards against vaccine reversion. We demonstrate that administration of HaitiV 24 hours before lethal challenge with wild-type V. cholerae reduced intestinal colonization by the wild-type strain, slowed disease progression, and reduced mortality in an infant rabbit model of cholera. HaitiV-mediated protection required viable vaccine, and rapid protection kinetics are not consistent with development of adaptive immunity. These features suggest that HaitiV mediates probiotic-like protection from cholera, a mechanism that is not known to be elicited by traditional vaccines. Mathematical modeling indicates that an intervention that works at the speed of HaitiV-mediated protection could improve the public health impact of reactive vaccination.
Collapse
Affiliation(s)
- Troy P Hubbard
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gabriel Billings
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tobias Dörr
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brandon Sit
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alyson R Warr
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carole J Kuehl
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Minsik Kim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fernanda Delgado
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph A Lewnard
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. .,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA.,Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
23
|
You JS, Yong JH, Kim GH, Moon S, Nam KT, Ryu JH, Yoon MY, Yoon SS. Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine. MICROBIOME 2019; 7:132. [PMID: 31521198 PMCID: PMC6744661 DOI: 10.1186/s40168-019-0746-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Recent evidence suggests that the commensal microbes act as a barrier against invading pathogens and enteric infections are the consequences of multi-layered interactions among commensals, pathogens, and the host intestinal tissue. However, it remains unclear how perturbations of the gut microbiota compromise host infection resistance, especially through changes at species and metabolite levels. RESULTS Here, we illustrate how Bacteroides vulgatus, a dominant species of the Bacteroidetes phylum in mouse intestine, suppresses infection by Vibrio cholerae, an important human pathogen. Clindamycin (CL) is an antibiotic that selectively kills anaerobic bacteria, and accordingly Bacteroidetes are completely eradicated from CL-treated mouse intestines. The Bacteroidetes-depleted adult mice developed severe cholera-like symptoms, when infected with V. cholerae. Germ-free mice mono-associated with B. vulgatus became resistant to V. cholerae infection. Levels of V. cholerae growth-inhibitory metabolites including short-chain fatty acids plummeted upon CL treatment, while levels of compounds that enhance V. cholerae proliferation were elevated. Furthermore, the intestinal colonization process of V. cholerae was well-simulated in CL-treated adult mice. CONCLUSIONS Overall, we provide insights into how a symbiotic microbe and a pathogenic intruder interact inside host intestine. We identified B. vulgatus as an indigenous microbial species that can suppress intestinal infection. Our results also demonstrate that commensal-derived metabolites are a critical determinant for host resistance against V. cholerae infection, and that CL pretreatment of adult mice generates a simple yet useful model of cholera infection.
Collapse
Affiliation(s)
- Jin Sun You
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu Seoul, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Hyun Yong
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu Seoul, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Gwang Hee Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu Seoul, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sungmin Moon
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ki Taek Nam
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Hwan Ryu
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu Seoul, Seoul, 03722, Korea.
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu Seoul, Seoul, 03722, Korea.
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
24
|
Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 2019; 15:e1007652. [PMID: 31404118 PMCID: PMC6705877 DOI: 10.1371/journal.ppat.1007652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Troy P. Hubbard
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana Munera
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos J. Blondel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pia Abel zur Wiesch
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sören Abel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoxue Wang
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- HHMI, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature 2019; 572:244-248. [PMID: 31367037 PMCID: PMC6727848 DOI: 10.1038/s41586-019-1453-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 06/24/2019] [Indexed: 11/08/2022]
Abstract
Vibrio cholerae is the causative agent of cholera, a
potentially lethal enteric bacterial infection1. Cholera toxin (CT) is required for
V. cholerae to cause severe disease and is also thought to
promote transmission of the organism in that victims can shed many liters of
diarrheal fluid that typically contains in excess of 1011 organisms
per liter. How the pathogen is able to reach such high concentrations in the
intestine during infection remains poorly understood. Here we show that
CT-mediated disease enhances pathogen growth and induces a distinct V.
cholerae transcriptome signature that is indicative an
iron-depleted gut niche. During infection, bacterial pathogens need to acquire
iron, a nutrient essential for growth2. The majority of iron in the mammalian host resides in a
chelated form within the porphyrin structure of heme, and V.
cholerae genetically encodes the ability to utilize heme as a
source of iron3. We show that
V. cholerae heme and vibriobactin
utilization genes confer a growth advantage to the pathogen only when CT is
produced. Furthermore, CT-induced capillary congestion pathology in the terminal
ileum correlated with an increased bioavailability of luminal heme. CT-induced
disease in the ileum also led to increased luminal concentrations of long-chain
fatty acids (LCFAs) and L-lactate metabolites, as well as upregulation of
V. cholerae iron-sulfur cluster-containing TCA cycle enzyme
genes. Genetic analysis of V. cholerae suggested that heme and
LCFA uptake-dependent growth of V. cholerae occurs during
infection but only in a strain capable of producing CT in vivo.
We conclude that CT-induced disease creates an iron-depleted metabolic niche in
the gut that selectively promotes the explosive growth of this pathogen through
acquisition of host-derived heme and fatty acids as nutrients.
Collapse
|
26
|
Role of coaggregation in the pathogenicity and prolonged colonisation of Vibrio cholerae. Med Microbiol Immunol 2019; 208:793-809. [DOI: 10.1007/s00430-019-00628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
|
27
|
Oral immunization with a probiotic cholera vaccine induces broad protective immunity against Vibrio cholerae colonization and disease in mice. PLoS Negl Trop Dis 2019; 13:e0007417. [PMID: 31150386 PMCID: PMC6561597 DOI: 10.1371/journal.pntd.0007417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
Abstract
Oral cholera vaccines (OCVs) are being increasingly employed, but current killed formulations generally require multiple doses and lack efficacy in young children. We recently developed a new live-attenuated OCV candidate (HaitiV) derived from a Vibrio cholerae strain isolated during the 2010 Haiti cholera epidemic. HaitiV exhibited an unexpected probiotic-like activity in infant rabbits, preventing intestinal colonization and disease by wild-type V. cholerae before the onset of adaptive immunity. However, it remained unknown whether HaitiV would behave similarly to other OCVs to stimulate adaptive immunity against V. cholerae. Here, we orally immunized adult germ-free female mice to test HaitiV’s immunogenicity. HaitiV safely and stably colonized vaccinated mice and induced known adaptive immune correlates of cholera protection within 14 days of administration. Pups born to immunized mice were protected against lethal challenges of both homologous and heterologous V. cholerae strains. Cross-fostering experiments revealed that protection was not dependent on vaccine colonization in or transmission to the pups. These findings demonstrate the protective immunogenicity of HaitiV and support its development as a new tool for limiting cholera. Oral cholera vaccines are increasingly used as public health tools for prevention of cholera and curtailing the spread of outbreaks. However, current killed vaccines provide minimal protection in young children, who are especially susceptible to this diarrheal disease, and require ~7–14 days between vaccination and development of protective immunity. We recently created HaitiV, a live-attenuated oral cholera vaccine candidate derived from a clinical isolate from the Haiti cholera outbreak. Unexpectedly, HaitiV protected against cholera-like illness in infant rabbits within 24 hours of administration, before the onset of adaptive immunity. However, HaitiV’s capacity to stimulate adaptive immune responses against the cholera pathogen were not investigated. Here, we report that HaitiV induces immunological correlates of protection against cholera in adult germ-free mice and leads to protection against disease in their offspring. Protection against disease was transferable through the milk of the immunized mice and was not due to transmission or colonization of HaitiV in this model. Coupling the immunogenicity data presented here with our previous observation that HaitiV can protect from cholera prior to the induction of adaptive immunity, we propose that HaitiV may provide both rapid-onset short-term protection from disease while eliciting stable and long-lasting immunity against cholera.
Collapse
|
28
|
Yum LK, Byndloss MX, Feldman SH, Agaisse H. Critical role of bacterial dissemination in an infant rabbit model of bacillary dysentery. Nat Commun 2019; 10:1826. [PMID: 31015451 PMCID: PMC6478941 DOI: 10.1038/s41467-019-09808-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The bacterial pathogen Shigella flexneri causes 270 million cases of bacillary dysentery (blood in stool) worldwide every year, resulting in more than 200,000 deaths. A major challenge in combating bacillary dysentery is the lack of a small-animal model that recapitulates the symptoms observed in infected individuals, including bloody diarrhea. Here, we show that similar to humans, infant rabbits infected with S. flexneri experience severe inflammation, massive ulceration of the colonic mucosa, and bloody diarrhea. T3SS-dependent invasion of epithelial cells is necessary and sufficient for mediating immune cell infiltration and vascular lesions. However, massive ulceration of the colonic mucosa, bloody diarrhea, and dramatic weight loss are strictly contingent on the ability of the bacteria to spread from cell to cell. The infant rabbit model features bacterial dissemination as a critical determinant of S. flexneri pathogenesis and provides a unique small-animal model for research and development of therapeutic interventions.
Collapse
Affiliation(s)
- Lauren K Yum
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sanford H Feldman
- Center for Comparative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
29
|
Abstract
Transposon insertion sequencing (TIS) is a widely used technique for conducting genome-scale forward genetic screens in bacteria. However, few methods enable comparison of TIS data across multiple replicates of a screen or across independent screens, including screens performed in different organisms. Here, we introduce a post hoc analytic framework, comparative TIS (CompTIS), which utilizes unsupervised learning to enable meta-analysis of multiple TIS data sets. CompTIS first implements screen-level principal-component analysis (PCA) and clustering to identify variation between the TIS screens. This initial screen-level analysis facilitates the selection of related screens for additional analyses, reveals the relatedness of complex environments based on growth phenotypes measured by TIS, and provides a useful quality control step. Subsequently, PCA is performed on genes to identify loci whose corresponding mutants lead to concordant/discordant phenotypes across all or in a subset of screens. We used CompTIS to analyze published intestinal colonization TIS data sets from two vibrio species. Gene-level analyses identified both pan-vibrio genes required for intestinal colonization and conserved genes that displayed species-specific requirements. CompTIS is applicable to virtually any combination of TIS screens and can be implemented without regard to either the number of screens or the methods used for upstream data analysis.IMPORTANCE Forward genetic screens are powerful tools for functional genomics. The comparison of similar forward genetic screens performed in different organisms enables the identification of genes with similar or different phenotypes across organisms. Transposon insertion sequencing is a widely used method for conducting genome-scale forward genetic screens in bacteria, yet few bioinformatic approaches have been developed to compare the results of screen replicates and different screens conducted across species or strains. Here, we used principal-component analysis (PCA) and hierarchical clustering, two unsupervised learning approaches, to analyze the relatedness of multiple in vivo screens of pathogenic vibrios. This analytic framework reveals both shared pan-vibrio requirements for intestinal colonization and strain-specific dependencies. Our findings suggest that PCA-based analytics will be a straightforward widely applicable approach for comparing diverse transposon insertion sequencing screens.
Collapse
|
30
|
Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66-73. [PMID: 30711745 DOI: 10.1016/j.mib.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities. Characterizing novel functions associated with Vibrio-specific effectors is, therefore, essential for understanding how vibrios employ T3SS mechanisms to cause disease in a broad range of hosts and how T3SS island composition potentially defines species-specific disease.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Katharine F Tomberlin
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
31
|
Nag D, Mitchell K, Breen P, Withey JH. Quantifying Vibrio cholerae Colonization and Diarrhea in the Adult Zebrafish Model. J Vis Exp 2018:57767. [PMID: 30059022 PMCID: PMC6126457 DOI: 10.3791/57767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vibrio cholerae is best known as the infectious agent that causes the human disease cholera. Outside the human host, V. cholerae primarily exists in the aquatic environment, where it interacts with a variety of higher aquatic species. Vertebrate fish are known to be an environmental host and are a potential V. cholerae reservoir in nature. Both V. cholerae and the teleost fish species Danio rerio, commonly known as zebrafish, originate from the Indian subcontinent, suggesting a long-standing interaction in aquatic environments. Zebrafish are an ideal model organism for studying many aspects of biology, including infectious diseases. Zebrafish can be easily and rapidly colonized by V. cholerae after exposure in water. Intestinal colonization by V. cholerae leads to the production of diarrhea and the excretion of replicated V. cholerae. These excreted bacteria can then go on to colonize new fish hosts. Here, we demonstrate how to assess V. cholerae-intestinal colonization in zebrafish and how to quantify V. cholerae-induced zebrafish diarrhea. The colonization model should be useful to researchers who are studying whether genes of interest may be important for host colonization and/or for environmental survival. The quantification of zebrafish diarrhea should be useful to researchers studying any intestinal pathogen who are interested in exploring zebrafish as a model system.
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine
| | - Kristie Mitchell
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine
| | - Paul Breen
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine
| | - Jeffrey H Withey
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine;
| |
Collapse
|
32
|
Alisson-Silva F, Liu JZ, Diaz SL, Deng L, Gareau MG, Marchelletta R, Chen X, Nizet V, Varki N, Barrett KE, Varki A. Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathog 2018; 14:e1007133. [PMID: 29912959 PMCID: PMC6023241 DOI: 10.1371/journal.ppat.1007133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/28/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023] Open
Abstract
While infectious agents have typical host preferences, the noninvasive enteric bacterium Vibrio cholerae is remarkable for its ability to survive in many environments, yet cause diarrheal disease (cholera) only in humans. One key V. cholerae virulence factor is its neuraminidase (VcN), which releases host intestinal epithelial sialic acids as a nutrition source and simultaneously remodels intestinal polysialylated gangliosides into monosialoganglioside GM1. GM1 is the optimal binding target for the B subunit of a second virulence factor, the AB5 cholera toxin (Ctx). This coordinated process delivers the CtxA subunit into host epithelia, triggering fluid loss via cAMP-mediated activation of anion secretion and inhibition of electroneutral NaCl absorption. We hypothesized that human-specific and human-universal evolutionary loss of the sialic acid N-glycolylneuraminic acid (Neu5Gc) and the consequent excess of N-acetylneuraminic acid (Neu5Ac) contributes to specificity at one or more steps in pathogenesis. Indeed, VcN was less efficient in releasing Neu5Gc than Neu5Ac. We show enhanced binding of Ctx to sections of small intestine and isolated polysialogangliosides from human-like Neu5Gc-deficient Cmah-/- mice compared to wild-type, suggesting that Neu5Gc impeded generation of the GM1 target. Human epithelial cells artificially expressing Neu5Gc were also less susceptible to Ctx binding and CtxA intoxication following VcN treatment. Finally, we found increased fluid secretion into loops of Cmah-/- mouse small intestine injected with Ctx, indicating an additional direct effect on ion transport. Thus, V. cholerae evolved into a human-specific pathogen partly by adapting to the human evolutionary loss of Neu5Gc, optimizing multiple steps in cholera pathogenesis.
Collapse
Affiliation(s)
- Frederico Alisson-Silva
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Janet Z. Liu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
| | - Sandra L. Diaz
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Lingquan Deng
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Mélanie G. Gareau
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Ronald Marchelletta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis CA, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Nissi Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Kim E. Barrett
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (AV); (KEB)
| | - Ajit Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (AV); (KEB)
| |
Collapse
|
33
|
Valiente E, Davies C, Mills DC, Getino M, Ritchie JM, Wren BW. Vibrio cholerae accessory colonisation factor AcfC: a chemotactic protein with a role in hyperinfectivity. Sci Rep 2018; 8:8390. [PMID: 29849063 PMCID: PMC5976639 DOI: 10.1038/s41598-018-26570-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
Vibrio cholerae O1 El Tor is an aquatic Gram-negative bacterium responsible for the current seventh pandemic of the diarrheal disease, cholera. A previous whole-genome analysis on V. cholerae O1 El Tor strains from the 2010 epidemic in Pakistan showed that all strains contained the V. cholerae pathogenicity island-1 and the accessory colonisation gene acfC (VC_0841). Here we show that acfC possess an open reading frame of 770 bp encoding a protein with a predicted size of 28 kDa, which shares high amino acid similarity with two adhesion proteins found in other enteropathogens, including Paa in serotype O45 porcine enteropathogenic Escherichia coli and PEB3 in Campylobacter jejuni. Using a defined acfC deletion mutant, we studied the specific role of AcfC in V. cholerae O1 El Tor environmental survival, colonisation and virulence in two infection model systems (Galleria mellonella and infant rabbits). Our results indicate that AcfC might be a periplasmic sulfate-binding protein that affects chemotaxis towards mucin and bacterial infectivity in the infant rabbit model of cholera. Overall, our findings suggest that AcfC contributes to the chemotactic response of WT V. cholerae and plays an important role in defining the overall distribution of the organism within the intestine.
Collapse
Affiliation(s)
- Esmeralda Valiente
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Cadi Davies
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Dominic C Mills
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, USA
| | - Maria Getino
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Jennifer M Ritchie
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| |
Collapse
|
34
|
Fu Y, Ho BT, Mekalanos JJ. Tracking Vibrio cholerae Cell-Cell Interactions during Infection Reveals Bacterial Population Dynamics within Intestinal Microenvironments. Cell Host Microbe 2018; 23:274-281.e2. [PMID: 29398650 PMCID: PMC6031135 DOI: 10.1016/j.chom.2017.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 01/20/2023]
Abstract
Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although many V. cholerae virulence factors have been studied, the role of interbacterial interactions within the host gut and their influence on colonization are poorly understood. Here, we utilized the conjugative properties of a Vibrio-specific plasmid to serve as a quantifiable genetic marker for direct contact among V. cholerae cells in the infant rabbit model for cholera. In conjunction, we also quantified contact-dependent type 6 secretion system (T6SS)-mediated killing of co-infecting V. cholerae strains. Tracking these interbacterial interactions revealed that most contact-dependent cell-cell interactions among V. cholerae occur in specific intestinal microenvironments, notably the distal small intestine and cecum, and that the T6SS confers a competitive advantage within the middle small intestine. These results support a model for V. cholerae gut colonization, which includes microenvironments where critical microbial-host and bacterial-bacterial interactions occur to facilitate colonization by this pathogen.
Collapse
Affiliation(s)
- Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Abstract
Transposon sequencing, or Tn-seq, combines transposon mutagenesis and massively parallel sequencing to allow for rapid and high-throughput identification of genes that play roles in fitness within environments of interest. The bacterial pathogen Vibrio cholerae is an excellent candidate for Tn-seq screens due to the availability of a plasmid-based in vivo transposition system and the relative ease with which the cholera disease state can be modeled in animals. This chapter will describe a method for performing Tn-seq screens on V. cholerae in the infant rabbit model of cholera.
Collapse
|
36
|
Silva-Valenzuela CA, Lazinski DW, Kahne SC, Nguyen Y, Molina-Quiroz RC, Camilli A. Growth arrest and a persister state enable resistance to osmotic shock and facilitate dissemination of Vibrio cholerae. THE ISME JOURNAL 2017; 11:2718-2728. [PMID: 28742070 PMCID: PMC5702728 DOI: 10.1038/ismej.2017.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Vibrio cholerae is a water-borne bacterial pathogen and causative agent of cholera. Although V. cholerae is a halophile, it can survive in fresh water, and this has a major role in cholera epidemics through consumption of contaminated water and subsequent fecal-oral spread. After dissemination from humans back into fresh water, V. cholerae encounters limited nutrient availability and an abrupt drop in conductivity but little is known about how V. cholerae adapts to, and survives in this environment. In this work, by abolishing or altering the expression of V. cholerae genes in a high-throughput manner, we observed that many osmotic shock tolerant mutants exhibited slowed or arrested growth, and/or generated a higher proportion of persister cells. In addition, we show that growth-arrested V. cholerae, including a persister subpopulation, are generated during infection of the intestinal tract and together allow for the successful dissemination to fresh water. Our results suggest that growth-arrested and persister subpopulations enable survival of V. cholerae upon shedding to the aquatic environment.
Collapse
Affiliation(s)
- Cecilia A Silva-Valenzuela
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Shoshanna C Kahne
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Y Nguyen
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Roberto C Molina-Quiroz
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| |
Collapse
|
37
|
Skrable K, Bilal S, Sharma R, Robertson S, Ashenafi Y, Nasrin S, Alam NH, Levine AC. The Effects of Malnutrition and Diarrhea Type on the Accuracy of Clinical Signs of Dehydration in Children under Five: A Prospective Cohort Study in Bangladesh. Am J Trop Med Hyg 2017; 97:1345-1354. [PMID: 29140238 DOI: 10.4269/ajtmh.17-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kelly Skrable
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Saadiyah Bilal
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Rashmi Sharma
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Sarah Robertson
- Brown University School of Public Health, Providence, Rhode Island
| | | | - Sabiha Nasrin
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Nur H Alam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Adam C Levine
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
38
|
Abstract
Vibrio cholerae is the etiological agent of cholera, an acute intestinal infection in humans characterized by voluminous watery diarrhea. Cholera is spread through ingestion of contaminated food or water, primarily in developing countries that lack the proper infrastructure for proper water and sewage treatment. Vibrio cholerae is an aquatic bacterium that inhabits coastal and estuarine areas, and it is known to have several environmental reservoirs, including fish. Our laboratory has recently described the use of the zebrafish as a new animal model for the study of V. cholerae intestinal colonization, pathogenesis, and transmission. As early as 6 h after exposure to V. cholerae, zebrafish develop diarrhea. Prior work in our laboratory has shown that this is not due to the action of cholera toxin. We hypothesize that accessory toxins produced by V. cholerae are the cause of diarrhea in infected zebrafish. In order to assess the effects of accessory toxins in the zebrafish, it was necessary to develop a method of quantifying diarrheal volume as a measure of pathogenesis. Here, we have adapted cell density, protein, and mucin assays, along with enumeration of V. cholerae in the zebrafish intestinal tract and in the infection water, to achieve this goal. Combined, these assays should help us determine which toxins have the greatest diarrheagenic effect in fish and, consequently, which toxins may play a role in environmental transmission.IMPORTANCE Identification of the accessory toxins that cause diarrhea in zebrafish can help us understand more about the role of fish in the wild as aquatic reservoirs for V. cholerae It is plausible that accessory toxins can act to prolong colonization and subsequent shedding of V. cholerae back into the environment, thus perpetuating and facilitating transmission during an outbreak. It is also possible that accessory toxins help to maintain low levels of intestinal colonization in fish, giving V. cholerae an advantage when environmental conditions are not optimal for survival in the water. Studies such as this one are critical because fish could be an overlooked source of cholera transmission in the environment.
Collapse
|
39
|
Reddy S, Turaga G, Abdelhamed H, Banes MM, Wills RW, Lawrence ML. Listeria monocytogenes PdeE, a phosphodiesterase that contributes to virulence and has hydrolytic activity against cyclic mononucleotides and cyclic dinucleotides. Microb Pathog 2017; 110:399-408. [PMID: 28711509 DOI: 10.1016/j.micpath.2017.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/27/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
We have identified and partially characterized a putative HD domain hydrolase, LMOf2365_2464, which is highly expressed during listerial intracellular replication. LMOf2365_2464 is annotated as a putative HD domain-containing hydrolase. The ability of an isogenic mutant strain, F2365Δ2464, to adhere, invade and replicate in intestinal epithelial cells (Caco-2) was significantly lower than parent strain F2365. Colonization of mouse liver and spleen by L. monocytogenes F2365 was significantly higher than it was for the mutant. The recombinant protein showed phosphodiesterase activity in the presence of divalent metal ions, indicating its role in nucleotide metabolism. It has activity against several cyclic nucleotides and cyclic dinucleotides, but its strongest activity is against cyclic di-AMP and cyclic AMP. Based on this enzymatic activity, we designated LMOf2365_2464 phosphodiesterase E (PdeE).
Collapse
Affiliation(s)
- Swetha Reddy
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Gokul Turaga
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Michelle M Banes
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Robert W Wills
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
40
|
Galleria mellonella is low cost and suitable surrogate host for studying virulence of human pathogenic Vibrio cholerae. Gene 2017; 628:1-7. [PMID: 28698162 DOI: 10.1016/j.gene.2017.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023]
Abstract
Vibrio cholerae causes a severe diarrheal disease affecting millions of people worldwide, particularly in low income countries. V. cholerae successfully persist in aquatic environment and its pathogenic strains results in sever enteric disease in humans. This dual life style contributes towards its better survival and persistence inside host gut and in the environment. Alternative animal replacement models are of great value in studying host-pathogen interaction and for quick screening of various pathogenic strains. One such model is Galleria mellonella, a wax moth which has a complex innate immune system and here we investigate its suitability as a model for clinical human isolates of O1 El TOR, Ogawa serotype belonging to two genetically distinct subclades found in Pakistan (PSC-1 and PSC-2). We demonstrate that the PSC-2 strain D59 frequently isolated from inland areas, was more virulent than PSC-1 strain K7 mainly isolated from coastal areas (p=0.0001). In addition, we compared the relative biofilm capability of the representative strains as indicators of their survival and persistence in the environment and K7 showed enhanced biofilm forming capabilities (p=0.004). Finally we present the annotated genomes of the strains D59 and K7, and compared them with the reference strain N16961.
Collapse
|
41
|
Vibrio cholerae Colonization of Soft-Shelled Turtles. Appl Environ Microbiol 2017; 83:AEM.00713-17. [PMID: 28600312 DOI: 10.1128/aem.00713-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023] Open
Abstract
Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms.IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts.
Collapse
|
42
|
Vanhove AS, Hang S, Vijayakumar V, Wong ACN, Asara JM, Watnick PI. Vibrio cholerae ensures function of host proteins required for virulence through consumption of luminal methionine sulfoxide. PLoS Pathog 2017; 13:e1006428. [PMID: 28586382 PMCID: PMC5473594 DOI: 10.1371/journal.ppat.1006428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/16/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Vibrio cholerae is a diarrheal pathogen that induces accumulation of lipid droplets in enterocytes, leading to lethal infection of the model host Drosophila melanogaster. Through untargeted lipidomics, we provide evidence that this process is the product of a host phospholipid degradation cascade that induces lipid droplet coalescence in enterocytes. This infection-induced cascade is inhibited by mutation of the V. cholerae glycine cleavage system due to intestinal accumulation of methionine sulfoxide (MetO), and both dietary supplementation with MetO and enterocyte knock-down of host methionine sulfoxide reductase A (MsrA) yield increased resistance to infection. MsrA converts both free and protein-associated MetO to methionine. These findings support a model in which dietary MetO competitively inhibits repair of host proteins by MsrA. Bacterial virulence strategies depend on functional host proteins. We propose a novel virulence paradigm in which an intestinal pathogen ensures the repair of host proteins essential for pathogenesis through consumption of dietary MetO.
Collapse
Affiliation(s)
- Audrey S. Vanhove
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - Saiyu Hang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - Vidhya Vijayakumar
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - Adam CN Wong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Boston MA, United States of America
- Department of Medicine, Harvard Medical School, Boston MA, United States of America
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA United States of America
- * E-mail:
| |
Collapse
|
43
|
The Live Attenuated Cholera Vaccine CVD 103-HgR Primes Responses to the Toxin-Coregulated Pilus Antigen TcpA in Subjects Challenged with Wild-Type Vibrio cholerae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00470-16. [PMID: 27847368 DOI: 10.1128/cvi.00470-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
One potential advantage of live attenuated bacterial vaccines is the ability to stimulate responses to antigens which are only expressed during the course of infection. To determine whether the live attenuated cholera vaccine CVD 103-HgR (Vaxchora) results in antibody responses to the in vivo-induced toxin-coregulated pilus antigen TcpA, we measured IgA and IgG responses to Vibrio cholerae O1 El Tor TcpA in a subset of participants in a recently reported experimental challenge study. Participants were challenged with V. cholerae O1 El Tor Inaba N16961 either 10 days or 90 days after receiving the vaccine or a placebo. Neither vaccination nor experimental infection with V. cholerae alone resulted in a robust TcpA IgG or IgA response, but each did elicit a strong response to cholera toxin. However, compared to placebo recipients, vaccinees had a marked increase in IgG TcpA antibodies following the 90-day challenge, suggesting that vaccination with CVD 103-HgR resulted in priming for a subsequent response to TcpA. No such difference between vaccine and placebo recipients was observed for volunteers challenged 10 days after vaccination, indicating that this was insufficient time for vaccine-induced priming of the TcpA response. The priming of the response to TcpA and potentially other antigens expressed in vivo by attenuated V. cholerae may have relevance to the maintenance of immunity in areas where cholera is endemic.
Collapse
|
44
|
Wong ACN, Vanhove AS, Watnick PI. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster. Dis Model Mech 2016; 9:271-81. [PMID: 26935105 PMCID: PMC4833331 DOI: 10.1242/dmm.023408] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host-microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection.
Collapse
Affiliation(s)
- Adam C N Wong
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Audrey S Vanhove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
45
|
Effects of tcpB Mutations on Biogenesis and Function of the Toxin-Coregulated Pilus, the Type IVb Pilus of Vibrio cholerae. J Bacteriol 2016; 198:2818-28. [PMID: 27481929 DOI: 10.1128/jb.00309-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/23/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Vibrio cholerae is the etiological agent of the acute intestinal disorder cholera. The toxin-coregulated pilus (TCP), a type IVb pilus, is an essential virulence factor of V. cholerae Recent work has shown that TcpB is a large minor pilin encoded within the tcp operon. TcpB contributes to efficient pilus formation and is essential for all TCP functions. Here, we have initiated a detailed targeted mutagenesis approach to further characterize this salient TCP component. We have identified (thus far) 20 residues of TcpB which affect either the steady-state level of TcpB or alter one or more TCP functions. This study provides a solid framework for further understanding of the complex role of TcpB and will be of use upon determination of the crystal structure of TcpB or related minor pilin orthologs of type IVb pilus systems. IMPORTANCE Type IV pili, such as the toxin-coregulated pilus (TCP) in V. cholerae, are bacterial appendages that often act as essential virulence factors. Minor pilins, like TcpB, of these pili systems often play integral roles in pilus assembly and function. In this study, we have generated mutations in tcpB to determine residues of importance for TCP stability and function. Combined with a predicted tertiary structure, characterization of these mutants allows us to better understand critical residues in TcpB and the role they may play in the mechanisms underlying minor pilin functions.
Collapse
|
46
|
Single Nucleotide Polymorphisms in Regulator-Encoding Genes Have an Additive Effect on Virulence Gene Expression in a Vibrio cholerae Clinical Isolate. mSphere 2016; 1:mSphere00253-16. [PMID: 27668288 PMCID: PMC5031793 DOI: 10.1128/msphere.00253-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 11/21/2022] Open
Abstract
Cholera, an infectious disease of the small intestine caused by the aquatic bacterium Vibrio cholerae, often results in vomiting and acute watery diarrhea. If left untreated or if the response is too slow, the symptoms can quickly lead to extreme dehydration and ultimately death of the patient. Recent anecdotal evidence of cholera patients suffering from increasingly severe symptoms and of disease progression at a much higher rate than previously observed has emerged. As recent cholera outbreaks caused by increasingly virulent strains have resulted in higher mortality rates, the need to investigate the mechanism(s) allowing this observed increased virulence is apparent. The significance of our research is in identifying the mechanism for increased virulence capabilities, which will allow the development of a model that will greatly enhance our understanding of cholera disease and V. cholerae pathogenesis, leading to broader biomedical impacts, as cholera serves as a model for other enteric diarrheal diseases. Vibrio cholerae is the etiological agent of the infectious disease cholera, which is characterized by vomiting and severe watery diarrhea. Recently, V. cholerae clinical isolates have demonstrated increased virulence capabilities, causing more severe symptoms with a much higher rate of disease progression than previously observed. We have identified single nucleotide polymorphisms (SNPs) in four virulence-regulatory genes (hapR, hns, luxO, and vieA) of a hypervirulent V. cholerae clinical isolate, MQ1795. Herein, all SNPs and SNP combinations of interest were introduced into the prototypical El Tor reference strain N16961, and the effects on the production of numerous virulence-related factors, including cholera toxin (CT), the toxin-coregulated pilus (TCP), and ToxT, were analyzed. Our data show that triple-SNP (hapR hns luxO and hns luxO vieA) and quadruple-SNP combinations produced the greatest increases in CT, TCP, and ToxT production. The hns and hns luxO SNP combinations were sufficient for increased TCP and ToxT production. Notably, the hns luxO vieA triple-SNP combination strain produced TCP and ToxT levels similar to those of MQ1795. Certain SNP combinations (hapR and hapR vieA) had the opposite effect on CT, TCP, and ToxT expression. Interestingly, the hns vieA double-SNP combination strain increased TCP production while decreasing CT production. Our findings suggest that SNPs identified in the four regulatory genes, in various combinations, are associated with increased virulence capabilities observed in V. cholerae clinical isolates. These studies provide insight into the evolution of highly virulent strains. IMPORTANCE Cholera, an infectious disease of the small intestine caused by the aquatic bacterium Vibrio cholerae, often results in vomiting and acute watery diarrhea. If left untreated or if the response is too slow, the symptoms can quickly lead to extreme dehydration and ultimately death of the patient. Recent anecdotal evidence of cholera patients suffering from increasingly severe symptoms and of disease progression at a much higher rate than previously observed has emerged. As recent cholera outbreaks caused by increasingly virulent strains have resulted in higher mortality rates, the need to investigate the mechanism(s) allowing this observed increased virulence is apparent. The significance of our research is in identifying the mechanism for increased virulence capabilities, which will allow the development of a model that will greatly enhance our understanding of cholera disease and V. cholerae pathogenesis, leading to broader biomedical impacts, as cholera serves as a model for other enteric diarrheal diseases.
Collapse
|
47
|
Chourashi R, Mondal M, Sinha R, Debnath A, Das S, Koley H, Chatterjee NS. Role of a sensor histidine kinase ChiS of Vibrio cholerae in pathogenesis. Int J Med Microbiol 2016; 306:657-665. [PMID: 27670078 DOI: 10.1016/j.ijmm.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 11/29/2022] Open
Abstract
Vibrio cholera survival in an aquatic environment depends on chitin utilization pathway that requires two factors, chitin binding protein and chitinases. The chitinases and the chitin utilization pathway are regulated by a two-component sensor histidine kinase ChiS in V. cholerae. In recent studies these two factors are also shown to be involved in V. cholerae pathogenesis. However, the role played by their upstream regulator ChiS in pathogenesis is yet to be known. In this study, we investigated the activation of ChiS in presence of mucin and its functional role in pathogenesis. We found ChiS is activated in mucin supplemented media. The isogenic chiS mutant (ChiS-) showed less growth compared to the wild type strain (ChiS+) in the presence of mucin supplemented media. The ChiS- strain also showed highly retarded motility as well as mucin layer penetration in vitro. Our result also showed that ChiS was important for adherence and survival in HT-29 cell. These observations indicate that ChiS is activated in presence of intestinal mucin and subsequently switch on the chitin utilization pathway. In animal models, our results also supported the in vitro observation. We found reduced fluid accumulation and colonization during infection with ChiS- strain. We also found ChiS- mutant with reduced expression of ctxA, toxT and tcpA. The cumulative effect of these events made V. cholerae ChiS- strain hypovirulent. Hence, we propose that ChiS plays a vital role in V. cholerae pathogenesis.
Collapse
Affiliation(s)
- Rhishita Chourashi
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Moumita Mondal
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Anusuya Debnath
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Suman Das
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India.
| |
Collapse
|
48
|
Du X, Wang N, Ren F, Tang H, Jiao X, Huang J. cj0371: A Novel Virulence-Associated Gene of Campylobacter jejuni. Front Microbiol 2016; 7:1094. [PMID: 27471500 PMCID: PMC4944492 DOI: 10.3389/fmicb.2016.01094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis, and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis, and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity.
Collapse
Affiliation(s)
- Xueqing Du
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Nan Wang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Fangzhe Ren
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Hong Tang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| |
Collapse
|
49
|
Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model. Sci Rep 2016; 6:28737. [PMID: 27357336 PMCID: PMC4928045 DOI: 10.1038/srep28737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. Here we used an infant rabbit to study C. jejuni infection, which enables us to define several previously unknown but key features of the organism. C. jejuni is capable of systemic invasion in the rabbit, and developed a diarrhea symptom that mimicked that observed in many human campylobacteriosis. The large intestine was the most consistently colonized site and produced intestinal inflammation, where specific cytokines were induced. Genes preferentially expressed during C. jejuni infection were screened, and acs, cj1385, cj0259 seem to be responsible for C. jejuni invasion. Our results demonstrates that the infant rabbit can be used as an alternative experimental model for the study of diarrheagenic Campylobacter species and will be useful in exploring the pathogenesis of other related pathogens.
Collapse
|
50
|
Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes. mSphere 2016; 1:mSphere00098-16. [PMID: 27303743 PMCID: PMC4888887 DOI: 10.1128/msphere.00098-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
Phenotypic diversity between laboratory-domesticated bacterial strains is a common problem and often results in the failed reproduction of published data. However, researchers rarely compare such strains to elucidate the underlying mutation(s). In this study, we tested one of the best-studied V. cholerae isolates, O1 El Tor strain C6706 (a patient isolate from Peru), with respect to two main phenotypes: natural competence for transformation and type VI secretion. We recently demonstrated that the two phenotypes are coregulated and specifically induced upon the growth of pandemic V. cholerae O1 El Tor strains on chitinous surfaces. We provide evidence that of seven C6706 strains collected from different laboratories, four were impaired in the tested phenotypes due to a mutation in a QS gene. Collectively, our data indicate that the circulation of such a mutated wild-type strain of C6706 might have had important consequences for QS-related data. Vibrio cholerae, the causative agent of cholera, is a model organism for studying virulence regulation, biofilm formation, horizontal gene transfer, and the cell-to-cell communication known as quorum sensing (QS). As in any research field, discrepancies between data from diverse laboratories are sometimes observed for V. cholerae. Such discrepancies are often caused by the use of diverse patient or environmental isolates. In this study, we investigated the inability of a few laboratories to reproduce high levels of natural transformation, a mode of horizontal gene transfer that is specifically induced on chitinous surfaces. This irreproducibility was mostly related to one specific isolate of V. cholerae: the O1 El Tor C6706 strain. C6706 was previously described as QS proficient, an important prerequisite for the induction of natural competence for transformation. To elucidate the underlying problem, we collected seven isolates of the same C6706 strain from different research laboratories in North America and Europe and compared their phenotypes. Importantly, we observed a split response with respect to QS-related gene expression, including chitin-induced natural competence and type VI secretion (T6S). While approximately half of the strains behaved as reported for several other O1 El Tor pandemic isolates that are commonly studied in the laboratory, the other half were significantly impaired in QS-related expression patterns. This impairment was caused by a mutation in a QS-related gene (luxO). We conclude that the circulation of such QS-impaired wild-type strains is responsible for masking several important phenotypes of V. cholerae, including natural competence for transformation and T6S. IMPORTANCE Phenotypic diversity between laboratory-domesticated bacterial strains is a common problem and often results in the failed reproduction of published data. However, researchers rarely compare such strains to elucidate the underlying mutation(s). In this study, we tested one of the best-studied V. cholerae isolates, O1 El Tor strain C6706 (a patient isolate from Peru), with respect to two main phenotypes: natural competence for transformation and type VI secretion. We recently demonstrated that the two phenotypes are coregulated and specifically induced upon the growth of pandemic V. cholerae O1 El Tor strains on chitinous surfaces. We provide evidence that of seven C6706 strains collected from different laboratories, four were impaired in the tested phenotypes due to a mutation in a QS gene. Collectively, our data indicate that the circulation of such a mutated wild-type strain of C6706 might have had important consequences for QS-related data.
Collapse
|