1
|
Clifton BE, Alcolombri U, Uechi GI, Jackson CJ, Laurino P. The ultra-high affinity transport proteins of ubiquitous marine bacteria. Nature 2024; 634:721-728. [PMID: 39261732 PMCID: PMC11485210 DOI: 10.1038/s41586-024-07924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
SAR11 bacteria are the most abundant microorganisms in the surface ocean1 and have global biogeochemical importance2-4. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters5,6. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gen-Ichiro Uechi
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Zhu M, Dai X. Shaping of microbial phenotypes by trade-offs. Nat Commun 2024; 15:4238. [PMID: 38762599 PMCID: PMC11102524 DOI: 10.1038/s41467-024-48591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Growth rate maximization is an important fitness strategy for microbes. However, the wide distribution of slow-growing oligotrophic microbes in ecosystems suggests that rapid growth is often not favored across ecological environments. In many circumstances, there exist trade-offs between growth and other important traits (e.g., adaptability and survival) due to physiological and proteome constraints. Investments on alternative traits could compromise growth rate and microbes need to adopt bet-hedging strategies to improve fitness in fluctuating environments. Here we review the mechanistic role of trade-offs in controlling bacterial growth and further highlight its ecological implications in driving the emergences of many important ecological phenomena such as co-existence, population heterogeneity and oligotrophic/copiotrophic lifestyles.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
3
|
Ye H, Borusak S, Eberl C, Krasenbrink J, Weiss AS, Chen SC, Hanson BT, Hausmann B, Herbold CW, Pristner M, Zwirzitz B, Warth B, Pjevac P, Schleheck D, Stecher B, Loy A. Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut. Nat Commun 2023; 14:5533. [PMID: 37723166 PMCID: PMC10507020 DOI: 10.1038/s41467-023-41008-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
Taurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dependent on other bacteria for release of taurine from bile acids. Colonization of T. muris in gnotobiotic mice increased deconjugation of taurine-conjugated bile acids and transcriptional activity of a sulfur metabolism gene-encoding prophage in other commensals, and slightly decreased the abundance of Salmonella enterica, which showed reduced expression of galactonate catabolism genes. Re-analysis of metagenome data from a previous study further suggested that T. muris can contribute to protection against pathogens by the commensal mouse gut microbiota. Together, we show the realized physiological niche of a key murine gut sulfidogen and its interactions with selected gut microbiota members.
Collapse
Affiliation(s)
- Huimin Ye
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sabrina Borusak
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Claudia Eberl
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
| | - Julia Krasenbrink
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anna S Weiss
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
| | - Song-Can Chen
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Buck T Hanson
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Te Kura Pūtaiao Koiora, School of Biological Sciences, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, New Zealand
| | - Manuel Pristner
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Petra Pjevac
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - David Schleheck
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Ludwig Maximilian University Munich, Munich, Germany
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Lu Z, He S, Kashif M, Zhang Z, Mo S, Su G, Du L, Jiang C. Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis. BMC Genomics 2023; 24:550. [PMID: 37723472 PMCID: PMC10506230 DOI: 10.1186/s12864-023-09559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Phosphorus is one of the essential nutrients for plant growth. Phosphate-solubilizing microorganisms (PSMs) can alleviate available P deficiency and enhance plant growth in an eco-friendly way. Although ammonium toxicity is widespread, there is little understanding about the effect of ammonium stress on phosphorus solubilization (PS) of PSMs. RESULTS In this study, seven PSMs were isolated from mangrove sediments. The soluble phosphate concentration in culture supernatant of Bacillus aryabhattai NM1-A2 reached a maximum of 196.96 mg/L at 250 mM (NH4)2SO4. Whole-genome analysis showed that B. aryabhattai NM1-A2 contained various genes related to ammonium transporter (amt), ammonium assimilation (i.e., gdhA, gltB, and gltD), organic acid synthesis (i.e., ackA, fdhD, and idh), and phosphate transport (i.e., pstB and pstS). Transcriptome data showed that the expression levels of amt, gltB, gltD, ackA and idh were downregulated, while gdhA and fdhD were upregulated. The inhibition of ammonium transporter and glutamine synthetase/glutamate synthase (GS/GOGAT) pathway contributed to reducing energy loss. For ammonium assimilation under ammonium stress, accompanied by protons efflux, the glutamate dehydrogenase pathway was the main approach. More 2-oxoglutarate (2-OG) was induced to provide abundant carbon skeletons. The downregulation of formate dehydrogenase and high glycolytic rate resulted in the accumulation of formic acid and acetic acid, which played key roles in PS under ammonium stress. CONCLUSIONS The accumulation of 2-OG and the inhibition of GS/GOGAT pathway played a key role in ammonium detoxification. The secretion of protons, formic acid and acetic acid was related to PS. Our work provides new insights into the PS mechanism, which will provide theoretical guidance for the application of PSMs.
Collapse
Affiliation(s)
- Zhaomei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defect prevention, Guangxi Zhuang Autonomous Region Women and Children Health Care Hospital, Nanning, 530033, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Zufan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guijiao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
5
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
6
|
Noell SE, Brennan E, Washburn Q, Davis EW, Hellweger FL, Giovannoni SJ. Differences in the regulatory strategies of marine oligotrophs and copiotrophs reflect differences in motility. Environ Microbiol 2023. [PMID: 36826469 DOI: 10.1111/1462-2920.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [14 C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.
Collapse
Affiliation(s)
- Stephen E Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth Brennan
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Quinn Washburn
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Oregon, USA
| | | | | |
Collapse
|
7
|
Kiefl E, Esen OC, Miller SE, Kroll KL, Willis AD, Rappé MS, Pan T, Eren AM. Structure-informed microbial population genetics elucidate selective pressures that shape protein evolution. SCIENCE ADVANCES 2023; 9:eabq4632. [PMID: 36812328 DOI: 10.1126/sciadv.abq4632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved insights into the interplay between ecology and evolution. However, resolving adaptive, neutral, or purifying processes of evolution from intrapopulation genomic variation remains a challenge, partly due to the sole reliance on gene sequences to interpret variants. Here, we describe an approach to analyze genetic variation in the context of predicted protein structures and apply it to a marine microbial population within the SAR11 subclade 1a.3.V, which dominates low-latitude surface oceans. Our analyses reveal a tight association between genetic variation and protein structure. In a central gene in nitrogen metabolism, we observe decreased occurrence of nonsynonymous variants from ligand-binding sites as a function of nitrate concentrations, revealing genetic targets of distinct evolutionary pressures maintained by nutrient availability. Our work yields insights into the governing principles of evolution and enables structure-aware investigations of microbial population genetics.
Collapse
Affiliation(s)
- Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ozcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Samuel E Miller
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kourtney L Kroll
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Michael S Rappé
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96822, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| |
Collapse
|
8
|
Roda-Garcia JJ, Haro-Moreno JM, Rodriguez-Valera F, Almagro-Moreno S, López-Pérez M. Single-amplified genomes reveal most streamlined free-living marine bacteria. Environ Microbiol 2023. [PMID: 36755376 DOI: 10.1111/1462-2920.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free-living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome-assembled genomes. We co-assembled multiple previously available single-amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 and Prochlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair-related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co-occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free-living marine bacteria.
Collapse
Affiliation(s)
- Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida, USA
| | - Mario López-Pérez
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
9
|
Heins A, Harder J. Particle-associated bacteria in seawater dominate the colony-forming microbiome on ZoBell marine agar. FEMS Microbiol Ecol 2022; 99:fiac151. [PMID: 36513318 PMCID: PMC9798892 DOI: 10.1093/femsec/fiac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Planktonic particle-associated bacteria comprise particle-attached and motile free-living cells. These groups were obtained by settlement in Imhoff cones. Dilution plating on marine agar 2216 (ZoBell marine agar) and microscopic counts indicated a cultivability of 0.7% (0.4%-1.2%) of bacteria in coastal seawater collected at Helgoland Roads, North Sea. Particle-associated bacteria presented a minority population in seawater, but had a larger cultivability of 25% (0.9%-100%) for populations collected by settlement of particles and 5.7% (0.9%-24%) for populations collected by filtration. Partial 16S rRNA gene sequences indicated that 84% of the cultured taxa were either enriched in particle-associated microbiomes or only found in these microbiomes, including Sulfitobacter and other Rhodobacteraceae, Pseudoalteromonas, Psychromonas, Arcobacter and many Flavobacteriaceae. Illumina-based 16S rRNA V3V4 amplicon sequences of plate communities revealed that nearly all operational taxonomic units had a cultivated and described strain in close phylogenetic proximity. This suggested that decades of strain isolation from seawater on ZoBell marine agar had achieved a very good coverage of cultivable genera abundant in nature. The majority belonged to particle-associated bacteria, complementing observations that abundant free-living seawater bacteria often require cultivation conditions closer to their natural habitat like liquid cultivation in oligotrophic medium.
Collapse
Affiliation(s)
- Anneke Heins
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr.1, D-28359 Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr.1, D-28359 Bremen, Germany
| |
Collapse
|
10
|
Walworth NG, Saito MA, Lee MD, McIlvin MR, Moran DM, Kellogg RM, Fu FX, Hutchins DA, Webb EA. Why Environmental Biomarkers Work: Transcriptome-Proteome Correlations and Modeling of Multistressor Experiments in the Marine Bacterium Trichodesmium. J Proteome Res 2021; 21:77-89. [PMID: 34855411 DOI: 10.1021/acs.jproteome.1c00517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.
Collapse
Affiliation(s)
- Nathan G Walworth
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington 98104, United States.,Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Riss M Kellogg
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Fei-Xue Fu
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Abstract
In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, “Candidatus Pelagibacter” strain HTCC7211 and “Candidatus Pelagibacter ubique” strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize.
Collapse
|
12
|
Savoie ER, Lanclos VC, Henson MW, Cheng C, Getz EW, Barnes SJ, LaRowe DE, Rappé MS, Thrash JC. Ecophysiology of the Cosmopolitan OM252 Bacterioplankton ( Gammaproteobacteria). mSystems 2021; 6:e0027621. [PMID: 34184914 PMCID: PMC8269220 DOI: 10.1128/msystems.00276-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria. Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus ("Candidatus Halomarinus"), sister to Litoricola, comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 μm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some "Ca. Halomarinus" organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria, has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world's oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly "heterotrophic" taxa.
Collapse
Affiliation(s)
- Emily R. Savoie
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - V. Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael W. Henson
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Eric W. Getz
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Shelby J. Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael S. Rappé
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Kāneʻohe, Hawaii, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Zhang S, Amanze C, Sun C, Zou K, Fu S, Deng Y, Liu X, Liang Y. Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas. Heliyon 2021; 7:e07181. [PMID: 34159268 PMCID: PMC8203704 DOI: 10.1016/j.heliyon.2021.e07181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Xenobiotics are generally known as man-made refractory organic pollutants widely distributed in various environments. For exploring the bioremediation possibility of xenobiotics, two novel xenobiotics-degrading strains affiliated with Azonexaceae were isolated. We report here the phylogenetics, genome, and geo-distribution of a novel and ubiquitous Azonexaceae species that primarily joins in the cometabolic process of some xenobiotics in natural communities. Strains s22 and t15 could be proposed as a novel species within Dechloromonas based on genomic and multi-phylogenetic analysis. Pan-genome analysis showed that the 63 core genes in Dechloromonas include genes for dozens of metabolisms such as nitrogen fixation protein (nifU), nitrogen regulatory protein (glnK), dCTP deaminase, C4-dicarboxylate transporter, and fructose-bisphosphate aldolase. Strains s22 and t15 have the ability to metabolize nitrogen, including nitrogen fixation, NirS-dependent denitrification, and dissimilatory nitrate reduction. Moreover, the novel species possesses the EnvZ-OmpR two-component system for controlling osmotic stress and QseC-QseB system for quorum sensing to rapidly sense environmental changes. It is intriguing that this new species has a series of genes for the biodegradation of some xenobiotics such as azathioprine, 6-Mercaptopurine, trinitrotoluene, chloroalkane, and chloroalkene. Specifically, glutathione S-transferase (GST) and 4-oxalocrotonate tautomerase (praC) in this novel species play important roles in the detoxification metabolism of some xenobiotics like dioxin, trichloroethene, chloroacetyl chloride, benzo[a]pyrene, and aflatoxin B1. Using data from GenBank, DDBJ and EMBL databases, we also demonstrated that members of this novel species were found globally in plants (e.g. rice), guts (e.g. insect), pristine and contaminated regions. Given these data, Dechloromonas sp. strains s22 and t15 take part in the biodegradation of some xenobiotics through key enzymes.
Collapse
Affiliation(s)
- Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Chongran Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
- Corresponding author.
| |
Collapse
|
14
|
Expanding the Diversity of Bacterioplankton Isolates and Modeling Isolation Efficacy with Large-Scale Dilution-to-Extinction Cultivation. Appl Environ Microbiol 2020; 86:AEM.00943-20. [PMID: 32561583 PMCID: PMC7440811 DOI: 10.1128/aem.00943-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
Even before the coining of the term “great plate count anomaly” in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the “most wanted” bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success. Cultivated bacterioplankton representatives from diverse lineages and locations are essential for microbiology, but the large majority of taxa either remain uncultivated or lack isolates from diverse geographic locales. We paired large-scale dilution-to-extinction (DTE) cultivation with microbial community analysis and modeling to expand the phylogenetic and geographic diversity of cultivated bacterioplankton and to evaluate DTE cultivation success. Here, we report results from 17 DTE experiments totaling 7,820 individual incubations over 3 years, yielding 328 repeatably transferable isolates. Comparison of isolates to microbial community data for source waters indicated that we successfully isolated 5% of the observed bacterioplankton community throughout the study; 43% and 26% of our isolates matched operational taxonomic units and amplicon single-nucleotide variants, respectively, within the top 50 most abundant taxa. Isolates included those from previously uncultivated clades such as SAR11 LD12 and Actinobacteria acIV, as well as geographically novel members from other ecologically important groups like SAR11 subclade IIIa, SAR116, and others, providing isolates in eight putatively new genera and seven putatively new species. Using a newly developed DTE cultivation model, we evaluated taxon viability by comparing relative abundance with cultivation success. The model (i) revealed the minimum attempts required for successful isolation of taxa amenable to growth on our media and (ii) identified possible subpopulation viability variation in abundant taxa such as SAR11 that likely impacts cultivation success. By incorporating viability in experimental design, we can now statistically constrain the effort necessary for successful cultivation of specific taxa on a defined medium. IMPORTANCE Even before the coining of the term “great plate count anomaly” in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the “most wanted” bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success.
Collapse
|
15
|
Mohapatra M, Behera P, Kim JY, Rastogi G. Seasonal and spatial dynamics of bacterioplankton communities in a brackish water coastal lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:134729. [PMID: 31838414 DOI: 10.1016/j.scitotenv.2019.134729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Coastal ecosystems, one of the most productive ecosystems, are subjected to natural and anthropogenic stresses. Coastal bacterioplankton communities are highly dynamic due to spatiotemporal heterogeneity in the environmental parameters. We investigated the seasonal and spatial variation in bacterioplankton communities, their abundances and environmental drivers during one year period in Chilika, a brackish water coastal lagoon of India. High-throughput sequencing of 16S rRNA genes of bacterioplankton communities showed that they were dominated by heterotrophs namely α-Proteobacteria SAR11 and their sub-clades (SAR11_Ib, Chesapeake-Delaware_Bay, Candidatus_Pelagibacter, and SAR11_Surface_1), actinobacterial lineages (hgcI, CL500-29, and Candidatus_Aquiluna), β-Proteobacteria MWH-UniP1, β-Proteobacteria OM43, and verrucomicrobial clade Spartobacteria 'LD29'. Synechococcus was the dominant member within autotrophic cyanobacterial community. Response ratio derived from comparisons of taxon-specific absolute abundances and indicator analyses showed that SAR11_Surface_1 sub-clade occupied high-salinity environment especially during summer and winter and emerged as a strong indicator for mesohaline-polyhaline salinity regime. In contrast, Spartobacteria 'LD29', Actinobacteria hgcI, and CL500-29 preferred low-salinity freshwater environment and were strong indicators for oligohaline-mesohaline regimes. Spatiotemporal patterns were governed by 'distance-decay' and 'similarity-time' relationships. Bacterioplankton communities were mostly determined by salinity, dissolved oxygen, phosphate, and pH which resulted 'species sorting' leading to biogeographical patterns in the bacterioplankton communities. Modeling analysis revealed the characteristic shift in the indicator bacterioplankton taxa along with estuarine salinity gradient. This study has provided baseline information on the bacterioplankton communities and their environmental drivers within an anthropogenically impacted cyclone prone coastal lagoon which would be useful in assessing the impact of multiple stressors on this vulnerable ecosystem.
Collapse
Affiliation(s)
- Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha 752030, India; School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Pratiksha Behera
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha 752030, India
| | - Ji Yoon Kim
- Center for Climate Change Adaptation, National Institute of Environmental Studies, Tsukuba 305-8506, Japan
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha 752030, India.
| |
Collapse
|
16
|
He P, Duan H, Han W, Liu Y, Shao L, Lü F. Responses of Methanosarcina barkeri to acetate stress. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:289. [PMID: 31890017 PMCID: PMC6913021 DOI: 10.1186/s13068-019-1630-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Anaerobic digestion of easily degradable biowaste can lead to the accumulation of volatile fatty acids, which will cause environmental stress to the sensitive methanogens consequently. The metabolic characteristics of methanogens under acetate stress can affect the overall performance of mixed consortia. Nevertheless, there exist huge gaps in understanding the responses of the dominant methanogens to the stress, e.g., Methanosarcinaceae. Such methanogens are resistant to environmental deterioration and able to utilize multiple carbon sources. In this study, transcriptomic and proteomic analyses were conducted to explore the responses of Methanosarcina barkeri strain MS at different acetate concentrations of 10, 25, and 50 mM. RESULTS The trend of OD600 and the regulation of the specific genes in 50 mM acetate, indicated that high concentration of acetate promoted the acclimation of M. barkeri to acetate stress. Acetate stress hindered the regulation of quorum sensing and thereby eliminated the advantages of cell aggregation, which was beneficial to resist stress. Under acetate stress, M. barkeri allocated more resources to enhance the uptake of iron to maintain the integrities of electron-transport chains and other essential biological processes. Comparing with the initial stages of different acetate concentrations, most of the genes participating in acetoclastic methanogenesis did not show significantly different expressions except hdrB1C1, an electron-bifurcating heterodisulfide reductase participating in energy conversion and improving thermodynamic efficiency. Meanwhile, vnfDGHK and nifDHK participating in nitrogen fixation pathway were upregulated. CONCLUSION In this work, transcriptomic and proteomic analyses are combined to reveal the responses of M. barkeri to acetate stress in terms of central metabolic pathways, which provides basic clues for exploring the responses of other specific methanogens under high organics load. Moreover, the results can also be used to gain insights into the complex interactions and geochemical cycles among natural or engineered populations. Furthermore, these findings also provide the potential for designing effective and robust anaerobic digesters with high organic loads.
Collapse
Affiliation(s)
- Pinjing He
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092 China
| | - Haowen Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092 China
| | - Wenhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092 China
| | - Yang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092 China
| | - Liming Shao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092 China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092 China
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092 China
| |
Collapse
|
17
|
Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME JOURNAL 2019; 13:2938-2953. [PMID: 31384012 PMCID: PMC6863919 DOI: 10.1038/s41396-019-0482-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Bacterial symbionts are integral to the health and homeostasis of invertebrate hosts. Notably, members of the Rickettsiales genus Wolbachia influence several aspects of the fitness and evolution of their terrestrial hosts, but few analogous partnerships have been found in marine systems. We report here the genome, phylogenetics, and biogeography of a ubiquitous and novel Rickettsiales species that primarily associates with marine organisms. We previously showed that this bacterium was found in scleractinian corals, responds to nutrient exposure, and is associated with reduced host growth and increased mortality. This bacterium, like other Rickettsiales, has a reduced genome indicative of a parasitic lifestyle. Phylogenetic analysis places this Rickettsiales within a new genus we define as “Candidatus Aquarickettsia.” Using data from the Earth Microbiome Project and SRA databases, we also demonstrate that members of “Ca. Aquarickettsia” are found globally in dozens of invertebrate lineages. The coral-associated “Candidatus A. rohweri” is the first finished genome in this new clade. “Ca. A. rohweri” lacks genes to synthesize most sugars and amino acids but possesses several genes linked to pathogenicity including Tlc, an antiporter that exchanges host ATP for ADP, and a complete Type IV secretion system. Despite its inability to metabolize nitrogen, “Ca. A. rohweri” possesses the NtrY-NtrX two-component system involved in sensing and responding to extracellular nitrogen. Given these data, along with visualization of the parasite in host tissues, we hypothesize that “Ca. A. rohweri” reduces coral health by consuming host nutrients and energy, thus weakening and eventually killing host cells. Last, we hypothesize that nutrient enrichment, which is increasingly common on coral reefs, encourages unrestricted growth of “Ca. A. rohweri” in its host by providing abundant N-rich metabolites to be scavenged.
Collapse
|
18
|
A Parasitic Arsenic Cycle That Shuttles Energy from Phytoplankton to Heterotrophic Bacterioplankton. mBio 2019; 10:mBio.00246-19. [PMID: 30890605 PMCID: PMC6426599 DOI: 10.1128/mbio.00246-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many regions of the world oceans, phytoplankton face the problem of discriminating between phosphate, an essential nutrient, and arsenate, a toxic analogue. Many phytoplankton, including the most abundant phytoplankton group known, Prochlorococcus, detoxify arsenate (AsV) by reduction to arsenite (AsIII), followed by methylation and excretion of the methylated arsenic products. We synthesized [14C]dimethyl arsenate (DMA) and used it to show that cultured Pelagibacter strain HTCC7211 (SAR11) cells oxidize the methyl group carbons of DMA, producing 14CO2 and ATP. We measured [14C]DMA oxidation rates in the P-depleted surface waters of the Sargasso Sea, a subtropical ocean gyre. [14C]DMA was oxidized to 14CO2 by Sargasso Sea plankton communities at a rate that would cause turnover of the estimated DMA standing stock every 8.1 days. SAR11 strain HTCC7211, which was isolated from the Sargasso Sea, has a pair of arsenate resistance genes and was resistant to arsenate, showing no growth inhibition at As/P ratios of >65:1. Across the global oceans, there was a strong inverse relationship between the frequency of the arsenate reductase (LMWPc_ArsC) in Pelagibacter genomes and phosphate concentrations. We propose that the demethylation of methylated arsenic compounds by Pelagibacter and possibly other bacterioplankton, coupled with arsenate resistance, results in the transfer of energy from phytoplankton to bacteria. We dub this a parasitic cycle because the release of arsenate by Pelagibacter in principle creates a positive-feedback loop that forces phytoplankton to continually regenerate arsenate detoxification products, producing a flow of energy to P-limited ocean regions.IMPORTANCE In vast, warm regions of the oceans, phytoplankton face the problem of arsenic poisoning. Arsenate is toxic because it is chemically similar to phosphate, a scarce nutrient that phytoplankton cells need for growth. Many phytoplankton, including the commonest phytoplankton type in warm oceans, Prochlorococcus, detoxify arsenate by adding methyl groups. Here we show that the most abundant non-photosynthetic plankton in the oceans, SAR11 bacteria, remove the methyl groups, releasing poisonous forms of arsenic back into the water. We postulate that the methylation and demethylation of arsenic compounds creates a cycle in which the phytoplankton can never get ahead and must continually transfer energy to the SAR11 bacteria. We dub this a parasitic process and suggest that it might help explain why SAR11 bacteria are so successful, surpassing all other plankton in their numbers. Field experiments were done in the Sargasso Sea, a subtropical ocean gyre that is sometimes called an ocean desert because, throughout much of the year, there is not enough phosphorous in the water to support large blooms of phytoplankton. Ocean deserts are expanding as the oceans absorb heat and grow warmer.
Collapse
|
19
|
Trautwein K, Hensler M, Wiegmann K, Skorubskaya E, Wöhlbrand L, Wünsch D, Hinrichs C, Feenders C, Müller C, Schell K, Ruppersberg H, Vagts J, Koßmehl S, Steinbüchel A, Schmidt-Kopplin P, Wilkes H, Hillebrand H, Blasius B, Schomburg D, Rabus R. The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks. FEMS Microbiol Ecol 2018; 94:5074353. [PMID: 30124819 PMCID: PMC6122490 DOI: 10.1093/femsec/fiy154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/13/2018] [Indexed: 11/27/2022] Open
Abstract
Reduced nitrogen species are key nutrients for biological productivity in the oceans. Ammonium is often present in low and growth-limiting concentrations, albeit peaks occur during collapse of algal blooms or via input from deep sea upwelling and riverine inflow. Autotrophic phytoplankton exploit ammonium peaks by storing nitrogen intracellularly. In contrast, the strategy of heterotrophic bacterioplankton to acquire ammonium is less well understood. This study revealed the marine bacterium Phaeobacter inhibens DSM 17395, a Roseobacter group member, to have already depleted the external ammonium when only ∼⅓ of the ultimately attained biomass is formed. This was paralleled by a three-fold increase in cellular nitrogen levels and rapid buildup of various nitrogen-containing intracellular metabolites (and enzymes for their biosynthesis) and biopolymers (DNA, RNA and proteins). Moreover, nitrogen-rich cells secreted potential RTX proteins and the antibiotic tropodithietic acid, perhaps to competitively secure pulses of external ammonium and to protect themselves from predation. This complex response may ensure growing cells and their descendants exclusive provision with internal nitrogen stocks. This nutritional strategy appears prevalent also in other roseobacters from distant geographical provenances and could provide a new perspective on the distribution of reduced nitrogen in marine environments, i.e. temporary accumulation in bacterioplankton cells.
Collapse
Affiliation(s)
- Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Michael Hensler
- Bioinformatics and Biochemistry, Institute for Biochemistry and Biotechnology, Technische Universität Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Katharina Wiegmann
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Ekaterina Skorubskaya
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Daniel Wünsch
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Christoph Feenders
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Constanze Müller
- Analytical BioGeoChemistry, HelmholtzZentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kristina Schell
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Hanna Ruppersberg
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Jannes Vagts
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Sebastian Koßmehl
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Alexander Steinbüchel
- Institute for Molecular Microbiology and Biotechnology, WWU Münster, Corrensstr. 3, Münster 48149, Germany
| | - Philippe Schmidt-Kopplin
- Analytical BioGeoChemistry, HelmholtzZentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Heinz Wilkes
- Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Helmut Hillebrand
- Planktology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, Oldenburg 23129, Germany
| | - Bernd Blasius
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Dietmar Schomburg
- Bioinformatics and Biochemistry, Institute for Biochemistry and Biotechnology, Technische Universität Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| |
Collapse
|
20
|
Markussen T, Happel EM, Teikari JE, Huchaiah V, Alneberg J, Andersson AF, Sivonen K, Riemann L, Middelboe M, Kisand V. Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change. Environ Microbiol 2018; 20:3083-3099. [PMID: 30084235 DOI: 10.1111/1462-2920.14371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes in marine environments, yet how bacterial communities respond to environmental change is not well known. Metagenomes allow examination of genetic responses of the entire microbial community to environmental change. However, it is challenging to link metagenomes directly to biogeochemical process rates. Here, we investigate metagenomic responses in natural bacterioplankton communities to simulated environmental stressors in the Baltic Sea, including increased river water input, increased nutrient concentration, and reduced oxygen level. This allowed us to identify informative prokaryotic gene markers, responding to environmental perturbation. Our results demonstrate that metagenomic and metabolic changes in bacterial communities in response to environmental stressors are influenced both by the initial community composition and by the biogeochemical factors shaping the functional response. Furthermore, the different sources of dissolved organic matter (DOM) had the largest impact on metagenomic blueprint. Most prominently, changes in DOM loads influenced specific transporter types reflecting the substrate availability and DOC assimilation and consumption pathways. The results provide new knowledge for developing models of ecosystem structure and biogeochemical cycling in future climate change scenarios and advance our exploration of the potential use of marine microorganisms as markers for environmental conditions.
Collapse
Affiliation(s)
- Trine Markussen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Elisabeth M Happel
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jonna E Teikari
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Vimala Huchaiah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Johannes Alneberg
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Carini P, Dupont CL, Santoro AE. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol 2018; 20:2112-2124. [PMID: 29626379 DOI: 10.1111/1462-2920.14107] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Thaumarchaea are ubiquitous in marine habitats where they participate in carbon and nitrogen cycling. Although metatranscriptomes suggest thaumarchaea are active microbes in marine waters, we understand little about how thaumarchaeal gene expression patterns relate to substrate utilization and activity. Here, we report the global transcriptional response of the marine ammonia-oxidizing thaumarchaeon 'Candidatus Nitrosopelagicus brevis' str. CN25 to ammonia limitation using RNA-Seq. We further describe the genome and transcriptome of Ca. N. brevis str. U25, a new strain capable of urea utilization. Ammonia limitation in CN25 resulted in reduced expression of transcripts coding for ammonia oxidation proteins, and increased expression of a gene coding an Hsp20-like chaperone. Despite significantly different transcript abundances across treatments, two ammonia monooxygenase subunits (amoAB), a nitrite reductase (nirK) and both ammonium transporter genes were always among the most abundant transcripts, regardless of growth state. Ca. N. brevis str. U25 cells expressed a urea transporter 139-fold more than the urease catalytic subunit ureC. Gene coexpression networks derived from culture transcriptomes and 10 thaumarchaea-enriched metatranscriptomes revealed a high degree of correlated gene expression across disparate environmental conditions and identified a module of coexpressed genes, including amoABC and nirK, that we hypothesize to represent the core ammonia oxidation machinery.
Collapse
Affiliation(s)
- Paul Carini
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| | | | - Alyson E Santoro
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| |
Collapse
|
22
|
Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME JOURNAL 2018; 12:1846-1860. [PMID: 29599519 PMCID: PMC6018831 DOI: 10.1038/s41396-018-0092-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 11/08/2022]
Abstract
Evolutionary transitions between fresh and salt water happen infrequently among bacterioplankton. Within the ubiquitous and highly abundant heterotrophic Alphaproteobacteria order Pelagibacterales (SAR11), most members live in marine habitats, but the LD12 subclade has evolved as a unique freshwater lineage. LD12 cells occur as some of the most dominant freshwater bacterioplankton, yet this group has remained elusive to cultivation, hampering a more thorough understanding of its biology. Here, we report the first successful isolation of an LD12 representative, strain LSUCC0530, using high-throughput dilution-to-extinction cultivation methods, and its complete genome sequence. Growth experiments corroborate ecological data suggesting active populations of LD12 in brackish water up to salinities of ~5. LSUCC0530 has the smallest closed genome thus far reported for a SAR11 strain (1.16 Mbp). The genome affirms many previous metabolic predictions from cultivation-independent analyses, like a complete Embden–Meyerhof–Parnas glycolysis pathway, but also provides novel insights, such as the first isocitrate dehydrogenase in LD12, a likely homologous recombination of malate synthase from outside of the SAR11 clade, and analogous substitutions of ion transporters with others that occur throughout the rest of the SAR11 clade. Growth data support metagenomic recruitment results suggesting temperature-based ecotype diversification within LD12. Key gene losses for osmolyte uptake provide a succinct hypothesis for the evolutionary transition of LD12 from salt to freshwater. For strain LSUCC0530, we propose the provisional nomenclature Candidatus fonsibacter ubiquis.
Collapse
|
23
|
Pelve EA, Fontanez KM, DeLong EF. Bacterial Succession on Sinking Particles in the Ocean's Interior. Front Microbiol 2017; 8:2269. [PMID: 29225592 PMCID: PMC5706468 DOI: 10.3389/fmicb.2017.02269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Sinking particles formed in the photic zone and moving vertically through the water column are a main mechanism for nutrient transport to the deep ocean, and a key component of the biological carbon pump. The particles appear to be processed by a microbial community substantially different from the surrounding waters. Single cell genomics and metagenomics were employed to describe the succession of dominant bacterial groups during particle processing. Sinking particles were extracted from sediment traps at Station Aloha in the North Pacific Subtropical Gyre (NPSG) during two different trap deployments conducted in July and August 2012. The microbial communities in poisoned vs. live sediment traps differed significantly from one another, consistent with prior observations by Fontanez et al. (2015). Partial genomes from these communities were sequenced from cells belonging to the genus Arcobacter (commensalists potentially associated with protists such as Radiolaria), and Vibrio campbellii (a group previously reported to be associated with crustacea). These bacteria were found in the particle-associated communities at specific depths in both trap deployments, presumably due to their specific host-associations. Partial genomes were also sequenced from cells belonging to Idiomarina and Kangiella that were enriched in live traps over a broad depth range, that represented a motile copiotroph and a putatively non-motile algicidal saprophyte, respectively. Planktonic bacterial cells most likely caught in the wake of the particles belonging to Actinomarina and the SAR11 clade were also sequenced. Our results suggest that similar groups of eukaryote-associated bacteria are consistently found on sinking particles at different times, and that particle remineralization involves specific, reproducible bacterial succession events in oligotrophic ocean waters.
Collapse
Affiliation(s)
- Erik A Pelve
- Department of Cell and Molecular Biology-Molecular Evolution, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Kristina M Fontanez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edward F DeLong
- Daniel K. Inoue Center for Microbial Oceanograpy: Research and Education, Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
24
|
Clifford EL, Hansell DA, Varela MM, Nieto‐Cid M, Herndl GJ, Sintes E. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean. LIMNOLOGY AND OCEANOGRAPHY 2017; 62:2745-2758. [PMID: 29242669 PMCID: PMC5724677 DOI: 10.1002/lno.10603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 05/10/2023]
Abstract
Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g-1 C-biomass h-1) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g-1 C-biomass h-1 and 9.5 ± 2.1 μmol g-1 C-biomass h-1), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.
Collapse
Affiliation(s)
- Elisabeth L. Clifford
- Department of Limnology and Bio‐OceanographyCenter of Ecology, University of ViennaViennaAustria
| | | | - Marta M. Varela
- Centro Oceanográfico de A CoruñaIEO, Instituto Español de OceanografíaA CoruñaSpain
| | - Mar Nieto‐Cid
- CSIC, Instituto de Investigaciones Marinas de VigoVigoSpain
| | - Gerhard J. Herndl
- Department of Limnology and Bio‐OceanographyCenter of Ecology, University of ViennaViennaAustria
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht UniversityDen BurgThe Netherlands
| | - Eva Sintes
- Department of Limnology and Bio‐OceanographyCenter of Ecology, University of ViennaViennaAustria
| |
Collapse
|
25
|
Satinsky BM, Smith CB, Sharma S, Landa M, Medeiros PM, Coles VJ, Yager PL, Crump BC, Moran MA. Expression patterns of elemental cycling genes in the Amazon River Plume. ISME JOURNAL 2017; 11:1852-1864. [PMID: 28387773 DOI: 10.1038/ismej.2017.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/16/2017] [Indexed: 11/10/2022]
Abstract
Metatranscriptomics and metagenomics data sets benchmarked with internal standards were used to characterize the expression patterns for biogeochemically relevant bacterial and archaeal genes mediating carbon, nitrogen, phosphorus and sulfur uptake and metabolism through the salinity gradient of the Amazon River Plume. The genes were identified in 48 metatranscriptomic and metagenomic data sets summing to >500 million quality-controlled reads from six locations in the plume ecosystem. The ratio of transcripts per gene copy (a direct measure of expression made possible by internal standard additions) showed that the free-living bacteria and archaea exhibited only small changes in the expression levels of biogeochemically relevant genes through the salinity and nutrient zones of the plume. In contrast, the expression levels of genes in particle-associated cells varied over orders of magnitude among the stations, with the largest differences measured for genes mediating aspects of nitrogen cycling (nifH, amtB and amoA) and phosphorus acquisition (pstC, phoX and phoU). Taxa varied in their baseline gene expression levels and extent of regulation, and most of the spatial variation in the expression level could be attributed to changes in gene regulation after removing the effect of shifting taxonomic composition. We hypothesize that changes in microbial element cycling along the Amazon River Plume are largely driven by shifting activities of particle-associated cells, with most activities peaking in the mesohaline regions where N2 fixation rates are elevated.
Collapse
Affiliation(s)
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Marine Landa
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | | - Victoria J Coles
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
26
|
Taubert M, Grob C, Howat AM, Burns OJ, Pratscher J, Jehmlich N, von Bergen M, Richnow HH, Chen Y, Murrell JC. Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environ Microbiol 2017; 19:2246-2257. [PMID: 28244196 DOI: 10.1111/1462-2920.13709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/13/2017] [Accepted: 02/19/2017] [Indexed: 11/27/2022]
Abstract
Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine.
Collapse
Affiliation(s)
- Martin Taubert
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, Jena, 07743, Germany.,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Carolina Grob
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Alexandra M Howat
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Oliver J Burns
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jennifer Pratscher
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, Leipzig, 04103, Germany.,Department of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, Aalborg East, 9220, Denmark
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
27
|
Identification of dimethylamine monooxygenase in marine bacteria reveals a metabolic bottleneck in the methylated amine degradation pathway. ISME JOURNAL 2017; 11:1592-1601. [PMID: 28304370 PMCID: PMC5520151 DOI: 10.1038/ismej.2017.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/21/2023]
Abstract
Methylated amines (MAs) are ubiquitous in the marine environment and their subsequent flux into the atmosphere can result in the formation of aerosols and ultimately cloud condensation nuclei. Therefore, these compounds have a potentially important role in climate regulation. Using Ruegeria pomeroyi as a model, we identified the genes encoding dimethylamine (DMA) monooxygenase (dmmABC) and demonstrate that this enzyme degrades DMA to monomethylamine (MMA). Although only dmmABC are required for enzyme activity in recombinant Escherichia coli, we found that an additional gene, dmmD, was required for the growth of R. pomeroyi on MAs. The dmmDABC genes are absent from the genomes of multiple marine bacteria, including all representatives of the cosmopolitan SAR11 clade. Consequently, the abundance of dmmDABC in marine metagenomes was substantially lower than the genes required for other metabolic steps of the MA degradation pathway. Thus, there is a genetic and potential metabolic bottleneck in the marine MA degradation pathway. Our data provide an explanation for the observation that DMA-derived secondary organic aerosols (SOAs) are among the most abundant SOAs detected in fine marine particles over the North and Tropical Atlantic Ocean.
Collapse
|
28
|
Sun Y, Zhang Y, Hollibaugh JT, Luo H. Ecotype diversification of an abundant Roseobacter lineage. Environ Microbiol 2017; 19:1625-1638. [PMID: 28142225 DOI: 10.1111/1462-2920.13683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022]
Abstract
The Roseobacter DC5-80-3 cluster (also known as the RCA clade) is among the most abundant bacterial lineages in temperate and polar oceans. Previous studies revealed two phylotypes within this cluster that are distinctly distributed in the Antarctic and other ocean provinces. Here, we report a nearly complete genome co-assembly of three closely related single cells co-occurring in the Antarctic, and compare it to the available genomes of the other phylotype from ocean regions where iron is more accessible but phosphorus and nitrogen are less. The Antarctic phylotype exclusively contains an operon structure consisting of a dicitrate transporter fecBCDE and an upstream regulator likely for iron uptake, whereas the other phylotype consistently carry a high-affinity phosphate pst transporter and the phoB-phoR regulatory system, a high-affinity ammonium amtB transporter, urea and taurine utilization systems. Moreover, the Antarctic phylotype uses proteorhodopsin to acquire light, whereas the other uses bacteriochlorophyll-a and the sulfur-oxidizing sox cluster for energy acquisition. This is potentially an iron-saving strategy for the Antarctic phylotype because only the latter two pathways have iron-requiring cytochromes. Therefore, the two DC5-80-3 phylotypes, while diverging by only 1.1% in their 16S rRNA genes, have evolved systematic differences in metabolism to support their distinct ecologies.
Collapse
Affiliation(s)
- Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiang'an, Xiamen, 361101, China
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China.,Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
29
|
Abstract
SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×1028 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.
Collapse
|
30
|
Thompson LR, Williams GJ, Haroon MF, Shibl A, Larsen P, Shorenstein J, Knight R, Stingl U. Metagenomic covariation along densely sampled environmental gradients in the Red Sea. THE ISME JOURNAL 2017; 11:138-151. [PMID: 27420030 PMCID: PMC5315489 DOI: 10.1038/ismej.2016.99] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 12/13/2022]
Abstract
Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways-at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75-79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology.
Collapse
Affiliation(s)
- Luke R Thompson
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Gareth J Williams
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA, USA
- School of Ocean Sciences, Bangor University, Anglesey, UK
| | - Mohamed F Haroon
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ahmed Shibl
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA
- Department of Computer Science, University of California, San Diego, CA, USA
| | - Ulrich Stingl
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
31
|
Gifford SM, Becker JW, Sosa OA, Repeta DJ, DeLong EF. Quantitative Transcriptomics Reveals the Growth- and Nutrient-Dependent Response of a Streamlined Marine Methylotroph to Methanol and Naturally Occurring Dissolved Organic Matter. mBio 2016; 7:e01279-16. [PMID: 27879330 PMCID: PMC5120137 DOI: 10.1128/mbio.01279-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023] Open
Abstract
The members of the OM43 clade of Betaproteobacteria are abundant coastal methylotrophs with a range of carbon-utilizing capabilities. However, their underlying transcriptional and metabolic responses to shifting conditions or different carbon substrates remain poorly understood. We examined the transcriptional dynamics of OM43 isolate NB0046 subjected to various inorganic nutrient, vitamin, and carbon substrate regimes over different growth phases to (i) develop a quantitative model of its mRNA content; (ii) identify transcriptional markers of physiological activity, nutritional state, and carbon and energy utilization; and (iii) identify pathways involved in methanol or naturally occurring dissolved organic matter (DOM) metabolism. Quantitative transcriptomics, achieved through addition of internal RNA standards, allowed for analyses on a transcripts-per-cell scale. This streamlined bacterium exhibited substantial shifts in total mRNA content (ranging from 1,800 to 17 transcripts cell-1 in the exponential and deep stationary phases, respectively) and gene-specific transcript abundances (>1,000-fold increases in some cases), depending on the growth phase and nutrient conditions. Carbon metabolism genes exhibited substantial dynamics, including those for ribulose monophosphate, tricarboxylic acid (TCA), and proteorhodopsin, as well as methanol dehydrogenase (xoxF), which, while always the most abundant transcript, increased from 5 to 120 transcripts cell-1 when cultures were nutrient and vitamin amended. In the DOM treatment, upregulation of TCA cycle, methylcitrate cycle, vitamin, and organic phosphorus genes suggested a metabolic route for this complex mixture of carbon substrates. The genome-wide inventory of transcript abundances produced here provides insight into a streamlined marine bacterium's regulation of carbon metabolism and energy flow, providing benchmarks for evaluating the activity of OM43 populations in situ IMPORTANCE: Bacteria exert a substantial influence on marine organic matter flux, yet the carbon components targeted by specific bacterial groups, as well as how those groups' metabolic activities change under different conditions, are not well understood. Gene expression studies of model organisms can identify these responses under defined conditions, which can then be compared to environmental transcriptomes to elucidate in situ activities. This integration, however, is limited by the data's relative nature. Here, we report the fully quantitative transcriptome of a marine bacterium, providing a genome-wide survey of cellular transcript abundances and how they change with different states of growth, nutrient conditions, and carbon substrates. The results revealed the dynamic metabolic strategies this methylotroph has for processing both simple one-carbon compounds and the complex multicarbon substrates of naturally derived marine organic matter and provide baseline quantitative data for identifying their in situ activities and impact on the marine carbon cycle.
Collapse
Affiliation(s)
- Scott M Gifford
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jamie W Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Oscar A Sosa
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, Hawaii, USA
| | - Daniel J Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
32
|
Transcriptional Control in Marine Copiotrophic and Oligotrophic Bacteria with Streamlined Genomes. Appl Environ Microbiol 2016; 82:6010-8. [PMID: 27474718 DOI: 10.1128/aem.01299-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteria often respond to environmental stimuli using transcriptional control, but this may not be the case for marine bacteria such as "Candidatus Pelagibacter ubique," a cultivated representative of the SAR11 clade, the most abundant organism in the ocean. This bacterium has a small, streamlined genome and an unusually low number of transcriptional regulators, suggesting that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. Transcriptome sequencing during batch culture growth revealed that only 0.1% of protein-encoding genes appear to be under transcriptional control in Pelagibacter and in another oligotroph (SAR92) whereas >10% of genes were under transcriptional control in the copiotrophs Polaribacter sp. strain MED152 and Ruegeria pomeroyi When growth levels changed, transcript levels remained steady in Pelagibacter and SAR92 but shifted in MED152 and R. pomeroyi Transcript abundances per cell, determined using an internal RNA sequencing standard, were low (<1 transcript per cell) for all but a few of the most highly transcribed genes in all four taxa, and there was no correlation between transcript abundances per cell and shifts in the levels of transcription. These results suggest that low transcriptional control contributes to the success of Pelagibacter and possibly other oligotrophic microbes that dominate microbial communities in the oceans. IMPORTANCE Diverse heterotrophic bacteria drive biogeochemical cycling in the ocean. The most abundant types of marine bacteria are oligotrophs with small, streamlined genomes. The metabolic controls that regulate the response of oligotrophic bacteria to environmental conditions remain unclear. Our results reveal that transcriptional control is lower in marine oligotrophic bacteria than in marine copiotrophic bacteria. Although responses of bacteria to environmental conditions are commonly regulated at the level of transcription, metabolism in the most abundant bacteria in the ocean appears to be regulated by other mechanisms.
Collapse
|
33
|
Proteome Remodeling in Response to Sulfur Limitation in " Candidatus Pelagibacter ubique". mSystems 2016; 1:mSystems00068-16. [PMID: 27822545 PMCID: PMC5069961 DOI: 10.1128/msystems.00068-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
Abstract
The alphaproteobacterium "Candidatus Pelagibacter ubique" strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all "Ca. Pelagibacter ubique" genes downstream from the previously confirmed S-adenosyl methionine (SAM) riboswitches bhmT, mmuM, and metY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the heme c shuttle-encoding gene ccmC and two small genes of unknown function (SAR11_1163 and SAR11_1164). This bacterium's strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes, ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch. IMPORTANCE "Ca. Pelagibacter ubique" is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation.
Collapse
|
34
|
Growth rates and rRNA content of four marine bacteria in pure cultures and in the Delaware estuary. ISME JOURNAL 2015; 10:823-32. [PMID: 26394004 DOI: 10.1038/ismej.2015.156] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 02/01/2023]
Abstract
Interpretation of 16S ribosomal RNA (rRNA) to 16S rRNA gene ratios (rRNA:rDNA) is based on a limited number of studies with rapidly growing copiotrophic bacteria. The most abundant bacteria in the ocean are oligotrophs, which probably grow more slowly than those bacteria whose rRNA:rDNA versus growth rate relationships are known. To examine whether rRNA:rDNA varies differently in oligotrophic marine bacteria than in copiotrophic bacteria, we used quantitative PCR and reverse transcriptase quantitative PCR to measure rRNA:rDNA in two marine copiotrophs and in two marine oligotrophs, including Candidatus Pelagibacter ubique HTCC1062, a coastal isolate of SAR11, the most abundant bacterial clade in the ocean. The rRNA:rDNA ratios for the two copiotrophs were similar to those expected on the basis of an analysis of previously studied copiotrophic bacteria, while the ratios for the two oligotrophs were substantially lower than predicted even given their slow growth rates. The rRNA:rDNA ratios determined along a transect in the Delaware estuary suggested that SAR11 bacteria grow at rates close to the growth rate in culture, while rates of the two copiotrophs were far below those observed in laboratory cultures. Our results have implications for interpreting rRNA:rDNA from natural communities, understanding growth strategies and comparing regulatory mechanisms in copiotrophs and oligotrophs.
Collapse
|
35
|
Luo H, Thompson LR, Stingl U, Hughes AL. Selection Maintains Low Genomic GC Content in Marine SAR11 Lineages. Mol Biol Evol 2015; 32:2738-48. [DOI: 10.1093/molbev/msv149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Abstract
Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats.
Collapse
|
37
|
Beier S, Gálvez MJ, Molina V, Sarthou G, Quéroué F, Blain S, Obernosterer I. The transcriptional regulation of the glyoxylate cycle in SAR11 in response to iron fertilization in the Southern Ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:427-434. [PMID: 25625554 DOI: 10.1111/1758-2229.12267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/14/2014] [Indexed: 06/04/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a central metabolic pathway that is present in all aerobic organisms and initiates the respiration of organic material. The glyoxylate cycle is a variation of the TCA cycle, where organic material is recycled for subsequent assimilation into cell material instead of being released as carbon dioxide. Despite the importance for the fate of organic matter, the environmental factors that induce the glyoxylate cycle in microbial communities remain poorly understood. In this study, we assessed the expression of isocitrate lyase, the enzyme that induces the switch to the glyoxylate cycle, of the ubiquitous SAR11 clade in response to natural iron fertilization in the Southern Ocean. The cell-specific transcriptional regulation of the glyoxylate cycle, as determined by the ratio between copy numbers of isocitrate lyase gene transcripts and isocitrate genes, was consistently lower in iron fertilized than in high-nutrient, low chlorophyll waters (by 2.4- to 16.5-fold). SAR11 cell-specific isocitrate lyase gene transcription was negatively correlated to chlorophyll a, and bulk bacterial heterotrophic metabolism. We conclude that the glyoxylate cycle is a metabolic strategy for SAR11 that is highly sensitive to the degree of iron and carbon limitation in the marine environment.
Collapse
Affiliation(s)
- Sara Beier
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| | - María J Gálvez
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
- Graduate program in Oceanography, Department of Oceanography, University of Concepción, Chile
| | - Veronica Molina
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso, Chile
| | - Géraldine Sarthou
- LEMAR-UMR CNRS UBO IRD 6539, Technopole Brest Iroise, Place Nicolas Copernic, Plouzané, F29280, France
| | - Fabien Quéroué
- LEMAR-UMR CNRS UBO IRD 6539, Technopole Brest Iroise, Place Nicolas Copernic, Plouzané, F29280, France
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas 7001, Australia
- Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas 7001, Australia
| | - Stephane Blain
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| | - Ingrid Obernosterer
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| |
Collapse
|
38
|
French E, Bollmann A. Freshwater Ammonia-Oxidizing Archaea Retain amoA mRNA and 16S rRNA during Ammonia Starvation. Life (Basel) 2015; 5:1396-404. [PMID: 25997109 PMCID: PMC4500144 DOI: 10.3390/life5021396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/04/2022] Open
Abstract
In their natural habitats, microorganisms are often exposed to periods of starvation if their substrates for energy generation or other nutrients are limiting. Many microorganisms have developed strategies to adapt to fluctuating nutrients and long-term starvation. In the environment, ammonia oxidizers have to compete with many different organisms for ammonium and are often exposed to long periods of ammonium starvation. We investigated the effect of ammonium starvation on ammonia-oxidizing archaea (AOA) and bacteria (AOB) enriched from freshwater lake sediments. Both AOA and AOB were able to recover even after almost two months of starvation; however, the recovery time differed. AOA and AOB retained their 16S rRNA (ribosomes) throughout the complete starvation period. The AOA retained also a small portion of the mRNA of the ammonia monooxygenase subunit A (amoA) for the complete starvation period. However, after 10 days, no amoA mRNA was detected anymore in the AOB. These results indicate that AOA and AOB are able to survive longer periods of starvation, but might utilize different strategies.
Collapse
Affiliation(s)
- Elizabeth French
- Department of Microbiology, Miami University, 32 Pearson Hall, 700 East High Street, Oxford, OH 45056, USA.
| | - Annette Bollmann
- Department of Microbiology, Miami University, 32 Pearson Hall, 700 East High Street, Oxford, OH 45056, USA.
| |
Collapse
|
39
|
Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling. ISME JOURNAL 2014; 9:760-9. [PMID: 25148480 DOI: 10.1038/ismej.2014.149] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 11/08/2022]
Abstract
Bacteria of the marine Roseobacter clade are characterised by their ability to utilise a wide range of organic and inorganic compounds to support growth. Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are methylated amines (MA) and form part of the dissolved organic nitrogen pool, the second largest source of nitrogen after N2 gas, in the oceans. We investigated if the marine heterotrophic bacterium, Ruegeria pomeroyi DSS-3, could utilise TMA and TMAO as a supplementary energy source and whether this trait had any beneficial effect on growth. In R. pomeroyi, catabolism of TMA and TMAO resulted in the production of intracellular ATP which in turn helped to enhance growth rate and growth yield as well as enhancing cell survival during prolonged energy starvation. Furthermore, the simultaneous use of two different exogenous energy sources led to a greater enhancement of chemoorganoheterotrophic growth. The use of TMA and TMAO primarily as an energy source resulted in the remineralisation of nitrogen in the form of ammonium, which could cross feed into another bacterium. This study provides greater insight into the microbial metabolism of MAs in the marine environment and how it may affect both nutrient flow within marine surface waters and the flux of these climatically important compounds into the atmosphere.
Collapse
|
40
|
Implications of streamlining theory for microbial ecology. ISME JOURNAL 2014; 8:1553-65. [PMID: 24739623 DOI: 10.1038/ismej.2014.60] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022]
Abstract
Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.
Collapse
|