1
|
Macamo A, Liu D, Färber M, Borman F, van den Oord J, Winnepenninckx V, Klufah F, Chteinberg E, Zur Hausen A. Exploring the effects of Merkel cell polyomavirus T antigens expression in REH and MCC13 cells by methylome and transcriptome profiling. J Med Virol 2024; 96:e29938. [PMID: 39344364 DOI: 10.1002/jmv.29938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer with a tripled incidence in the US and Europe over the past decade. Around 80% of MCC is linked to Merkel cell polyomavirus, but the cell of origin remains unknown. We stably introduced Merkel cell polyomavirus (MCPyV)-sT) and LT antigens to MCC13 and REH cell lines, analyzing DNA methylation and gene transcriptional regulation. Gene ontology analysis assessed MCPyV effects, and integrative analysis correlated gene expression and methylation. Expression patterns were compared with 15 previously sequenced primary MCCs. We found that MCPyV-LT induces DNA methylation changes in both cell lines, while MCPyV-sT only affected REH cells. Greater gene expression changes are observed in MCC13 cells, with upregulated genes associated with cellular components and downregulated genes related to biological processes. Integrative analysis of differentially expressed genes (DEG) and differentially methylated regions (DMR) of REH cell lines revealed that no genes were commonly methylated and differentially expressed. The study compared DEGs and DMG in MCC13 and REH cells to overlapping genes in MCPyV-positive cell lines (MKL1, MKL2, and WaGa), identifying hypomethylated genes in the gene body and hypermethylated genes at TSS1500. GO analysis of the two cell lines showed that MCPyV-TAs can downregulate genes in MHC-I pathways; this downregulation offers a target that can be used to create novel and efficient MCC immunotherapy approaches. Finally, it was confirmed that MCPyV-LT controls gene expression in MCC tissues using an integrative investigation of DNA methylation and gene expression.
Collapse
Affiliation(s)
- Amanda Macamo
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Dan Liu
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Martina Färber
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Joost van den Oord
- Department of Pathology and Laboratory Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Faisal Klufah
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Baha University, Albaha, Saudi Arabia
| | | | - Axel Zur Hausen
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
2
|
Ohnezeit D, Huang J, Westerkamp U, Brinschwitz V, Schmidt C, Günther T, Czech-Sioli M, Weißelberg S, Schlemeyer T, Nakel J, Mai J, Schreiner S, Schneider C, Friedel CC, Schwanke H, Brinkmann MM, Grundhoff A, Fischer N. Merkel cell polyomavirus small tumor antigen contributes to immune evasion by interfering with type I interferon signaling. PLoS Pathog 2024; 20:e1012426. [PMID: 39110744 PMCID: PMC11333005 DOI: 10.1371/journal.ppat.1012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/19/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the causative agent of the majority of Merkel cell carcinomas (MCC). The virus has limited coding capacity, with its early viral proteins, large T (LT) and small T (sT), being multifunctional and contributing to infection and transformation. A fundamental difference in early viral gene expression between infection and MCPyV-driven tumorigenesis is the expression of a truncated LT (LTtr) in the tumor. In contrast, sT is expressed in both conditions and contributes significantly to oncogenesis. Here, we identified novel functions of early viral proteins by performing genome-wide transcriptome and chromatin studies in primary human fibroblasts. Due to current limitations in infection and tumorigenesis models, we mimic these conditions by ectopically expressing sT, LT or LTtr, individually or in combination, at different time points. In addition to its known function in cell cycle and inflammation modulation, we reveal a fundamentally new function of sT. We show that sT regulates the type I interferon (IFN) response downstream of the type I interferon receptor (IFNAR) by interfering with the interferon-stimulated gene factor 3 (ISGF3)-induced interferon-stimulated gene (ISG) response. Expression of sT leads to a reduction in the expression of interferon regulatory factor 9 (IRF9) which is a central component of the ISGF3 complex. We further show that this function of sT is conserved in BKPyV. We provide a first mechanistic understanding of which early viral proteins trigger and control the type I IFN response, which may influence MCPyV infection, persistence and, during MCC progression, regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Denise Ohnezeit
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Westerkamp
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Brinschwitz
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schmidt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samira Weißelberg
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tabea Schlemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | - Sabrina Schreiner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | | | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
4
|
Reyes A, Ortiz G, Duarte LF, Fernández C, Hernández-Armengol R, Palacios PA, Prado Y, Andrade CA, Rodriguez-Guilarte L, Kalergis AM, Simon F, Carreño LJ, Riedel CA, Cáceres M, González PA. Contribution of viral and bacterial infections to senescence and immunosenescence. Front Cell Infect Microbiol 2023; 13:1229098. [PMID: 37753486 PMCID: PMC10518457 DOI: 10.3389/fcimb.2023.1229098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Rosario Hernández-Armengol
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yolanda Prado
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Wan L, Toland S, Robinson-McCarthy LR, Lee N, Schaich MA, Hengel SR, Li X, Bernstein KA, Van Houten B, Chang Y, Moore PS. Unlicensed origin DNA melting by MCV and SV40 polyomavirus LT proteins is independent of ATP-dependent helicase activity. Proc Natl Acad Sci U S A 2023; 120:e2308010120. [PMID: 37459531 PMCID: PMC10372695 DOI: 10.1073/pnas.2308010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.
Collapse
Affiliation(s)
- Li Wan
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Sabrina Toland
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | | | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Matthew A. Schaich
- Genome Stability Program, Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15232
| | - Sarah R. Hengel
- Department of Pharmacology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15232
| | - Xiaochen Li
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
- School of Medicine, Tsinghua University, Beijing100084, China
| | - Kara A. Bernstein
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Bennett Van Houten
- Genome Stability Program, Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15232
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Patrick S. Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| |
Collapse
|
6
|
Cui Z, Zhou L, Zhao S, Li W, Li J, Chen J, Zhang Y, Xia P. The Host E3-Ubiquitin Ligase TRIM28 Impedes Viral Protein GP4 Ubiquitination and Promotes PRRSV Replication. Int J Mol Sci 2023; 24:10965. [PMID: 37446143 DOI: 10.3390/ijms241310965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a highly pathogenic porcine virus that brings tremendous economic losses to the global swine industry. PRRSVs have evolved multiple elegant strategies to manipulate the host proteins and circumvent against the antiviral responses to establish infection. Therefore, the identification of virus-host interactions is critical for understanding the pathogenesis of PRRSVs. Tripartite motif protein 28 (TRIM28) is a transcriptional co-repressor involved in the regulation of viral and cellular transcriptional programs; however, its precise role in regulating PRRSV infection remains unknown. In this study, we found that the mRNA and protein levels of TRIM28 were up-regulated in PRRSV-infected porcine alveolar macrophages (PAMs) and MARC-145 cells. Ectopic TRIM28 expression dramatically increased viral yields, whereas the siRNA-mediated knockdown of TRIM28 significantly inhibited PRRSV replication. Furthermore, we used a co-immunoprecipitation (co-IP) assay to demonstrate that TRIM28 interacted with envelope glycoprotein 4 (GP4) among PRRSV viral proteins. Intriguingly, TRIM28 inhibited the degradation of PRRSV GP4 by impeding its ubiquitination. Taken together, our work provides evidence that the host E3-ubiquitin ligase TRIM28 suppresses GP4 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM28, as a potential target in the development of anti-viral drugs against PRRSV.
Collapse
Affiliation(s)
- Zhiying Cui
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jiahui Li
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
7
|
Storozynsky QT, Han X, Komant S, Agopsowicz KC, Potts KG, Gamper AM, Godbout R, Evans DH, Hitt MM. Radiation-Induced Cellular Senescence Reduces Susceptibility of Glioblastoma Cells to Oncolytic Vaccinia Virus. Cancers (Basel) 2023; 15:3341. [PMID: 37444452 DOI: 10.3390/cancers15133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain cancer refractory to the current standard of care, prompting an extensive search for novel strategies to improve outcomes. One approach under investigation is oncolytic virus (OV) therapy in combination with radiotherapy. In addition to the direct cytocidal effects of radiotherapy, radiation induces cellular senescence in GBM cells. Senescent cells cease proliferation but remain viable and are implicated in promoting tumor progression. The interaction of viruses with senescent cells is nuanced; some viruses exploit the senescent state to their benefit, while others are hampered, indicating senescence-associated antiviral activity. It is unknown how radiation-induced cellular senescence may impact the oncolytic properties of OVs based on the vaccinia virus (VACV) that are used in combination with radiotherapy. To better understand this, we induced cellular senescence by treating GBM cells with radiation, and then evaluated the growth kinetics, infectivity, and cytotoxicity of an oncolytic VACV, ∆F4LΔJ2R, as well as wild-type VACV in irradiated senescence-enriched and non-irradiated human GBM cell lines. Our results show that both viruses display attenuated oncolytic activities in irradiated senescence-enriched GBM cell populations compared to non-irradiated controls. These findings indicate that radiation-induced cellular senescence is associated with antiviral activity and highlight important considerations for the combination of VACV-based oncolytic therapies with senescence-inducing agents such as radiotherapy.
Collapse
Affiliation(s)
- Quinn T Storozynsky
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xuefei Han
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Shae Komant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kate C Agopsowicz
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Kyle G Potts
- Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Cellular Therapy and Immune Oncology (ACTION) Initiative, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
- Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - David H Evans
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mary M Hitt
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
8
|
Merkel Cell Polyomavirus Large T Antigen Induces Cellular Senescence for Host Growth Arrest and Viral Genome Persistence through Its Unique Domain. Cells 2023; 12:cells12030380. [PMID: 36766726 PMCID: PMC9913222 DOI: 10.3390/cells12030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Senescent cells accumulate in the host during the aging process and are associated with age-related pathogeneses, including cancer. Although persistent senescence seems to contribute to many aspects of cellular pathways and homeostasis, the role of senescence in virus-induced human cancer is not well understood. Merkel cell carcinoma (MCC) is an aggressive skin cancer induced by a life-long human infection of Merkel cell polyomavirus (MCPyV). Here, we show that MCPyV large T (LT) antigen expression in human skin fibroblasts causes a novel nucleolar stress response, followed by p21-dependent senescence and senescence-associated secretory phenotypes (SASPs), which are required for MCPyV genome maintenance. Senolytic and navitoclax treatments result in decreased senescence and MCPyV genome levels, suggesting a potential therapeutic for MCC prevention. Our results uncover the mechanism of a host stress response regulating human polyomavirus genome maintenance in viral persistency, which may lead to targeted intervention for MCC.
Collapse
|
9
|
Merkel Cell Polyomavirus: Infection, Genome, Transcripts and Its Role in Development of Merkel Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15020444. [PMID: 36672392 PMCID: PMC9857234 DOI: 10.3390/cancers15020444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
The best characterized polyomavirus family member, i.e., simian virus 40 (SV40), can cause different tumors in hamsters and can transform murine and human cells in vitro. Hence, the SV40 contamination of millions of polio vaccine doses administered from 1955-1963 raised fears that this may cause increased tumor incidence in the vaccinated population. This is, however, not the case. Indeed, up to now, the only polyomavirus family member known to be the most important cause of a specific human tumor entity is Merkel cell polyomavirus (MCPyV) in Merkel cell carcinoma (MCC). MCC is a highly deadly form of skin cancer for which the cellular origin is still uncertain, and which appears as two clinically very similar but molecularly highly different variants. While approximately 80% of cases are found to be associated with MCPyV the remaining MCCs carry a high mutational load. Here, we present an overview of the multitude of molecular functions described for the MCPyV encoded oncoproteins and non-coding RNAs, present the available MCC mouse models and discuss the increasing evidence that both, virus-negative and -positive MCC constitute epithelial tumors.
Collapse
|
10
|
Song Q, Hou Y, Zhang Y, Liu J, Wang Y, Fu J, Zhang C, Cao M, Cui Y, Zhang X, Wang X, Zhang J, Liu C, Zhang Y, Wang P. Integrated multi-omics approach revealed cellular senescence landscape. Nucleic Acids Res 2022; 50:10947-10963. [PMID: 36243980 PMCID: PMC9638896 DOI: 10.1093/nar/gkac885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/27/2022] [Accepted: 10/01/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular senescence is a complex multifactorial biological phenomenon that plays essential roles in aging, and aging-related diseases. During this process, the senescent cells undergo gene expression altering and chromatin structure remodeling. However, studies on the epigenetic landscape of senescence using integrated multi-omics approaches are limited. In this research, we performed ATAC-seq, RNA-seq and ChIP-seq on different senescent types to reveal the landscape of senescence and identify the prime regulatory elements. We also obtained 34 key genes and deduced that NAT1, PBX1 and RRM2, which interacted with each other, could be the potential markers of aging and aging-related diseases. In summary, our work provides the landscape to study accessibility dynamics and transcriptional regulations in cellular senescence. The application of this technique in different types of senescence allows us to identify the regulatory elements responsible for the substantial regulation of transcription, providing the insights into molecular mechanisms of senescence.
Collapse
Affiliation(s)
- Qiao Song
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yuli Hou
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yiyin Zhang
- Shanghai Jiayin Biotechnology, Shanghai 200092, PR China
| | - Jing Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yaqi Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingxuan Fu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Chi Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Min Cao
- Department of Clinical Laboratory, Beijing Huairou Hospital, Beijing 101400, PR China
| | - Yuting Cui
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaomin Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaoling Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingjing Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Congcong Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yingzhen Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Peichang Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| |
Collapse
|
11
|
Loke ASW, Lambert PF, Spurgeon ME. Current In Vitro and In Vivo Models to Study MCPyV-Associated MCC. Viruses 2022; 14:2204. [PMID: 36298759 PMCID: PMC9607385 DOI: 10.3390/v14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.
Collapse
Affiliation(s)
| | | | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
12
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
13
|
Merkel cell carcinoma and immune evasion: Merkel cell polyomavirus small T-antigen induced surface changes can be reverted by therapeutic intervention. J Invest Dermatol 2022; 142:3071-3081.e13. [DOI: 10.1016/j.jid.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
|
14
|
Krump NA, Wang R, Liu W, Yang JF, Ma T, You J. Merkel Cell Polyomavirus Infection Induces an Antiviral Innate Immune Response in Human Dermal Fibroblasts. J Virol 2021; 95:e0221120. [PMID: 33883226 PMCID: PMC8437356 DOI: 10.1128/jvi.02211-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) infects most of the human population asymptomatically, but in rare cases it leads to a highly aggressive skin cancer called Merkel cell carcinoma (MCC). MCC incidence is much higher in aging and immunocompromised populations. The epidemiology of MCC suggests that dysbiosis between the host immune response and the MCPyV infectious cycle could contribute to the development of MCPyV-associated MCC. Insufficient restriction of MCPyV by normal cellular processes, for example, could promote the incidental oncogenic MCPyV integration events and/or entry into the original cell of MCC. Progress toward understanding MCPyV biology has been hindered by its narrow cellular tropism. Our discovery that primary human dermal fibroblasts (HDFs) support MCPyV infection has made it possible to closely model cellular responses to different stages of the infectious cycle. The present study reveals that the onset of MCPyV replication and early gene expression induces an inflammatory cytokine and interferon-stimulated gene (ISG) response. The cGAS-STING pathway, in coordination with NF-κB, mediates induction of this innate immune gene expression program. Further, silencing of cGAS or NF-κB pathway factors led to elevated MCPyV replication. We also discovered that the PYHIN protein IFI16 localizes to MCPyV replication centers but does not contribute to the induction of ISGs. Instead, IFI16 upregulates inflammatory cytokines in response to MCPyV infection by an alternative mechanism. The work described herein establishes a foundation for exploring how changes to the skin microenvironment induced by aging or immunodeficiency might alter the fate of MCPyV and its host cell to encourage carcinogenesis. IMPORTANCE MCC has a high rate of mortality and an increasing incidence. Immune-checkpoint therapies have improved the prognosis of patients with metastatic MCC. Still, a significant proportion of the patients fail to respond to immune-checkpoint therapies or have a medical need for iatrogenic immune-suppression. A greater understanding of MCPyV biology could inform targeted therapies for MCPyV-associated MCC. Moreover, cellular events preceding MCC oncogenesis remain largely unknown. The present study aims to explore how MCPyV interfaces with innate immunity during its infectious cycle. We describe how MCPyV replication and/or transcription elicit an innate immune response via cGAS-STING, NF-κB, and IFI16. We also explore the effects of this response on MCPyV replication. Our findings illustrate how healthy cellular conditions may allow low-level infection that evades immune destruction until highly active replication is restricted by host responses. Conversely, pathological conditions could result in unbridled MCPyV replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
- Nathan A. Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tongcui Ma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Seoane R, Vidal S, Bouzaher YH, El Motiam A, Rivas C. The Interaction of Viruses with the Cellular Senescence Response. BIOLOGY 2020; 9:E455. [PMID: 33317104 PMCID: PMC7764305 DOI: 10.3390/biology9120455] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is viewed as a mechanism to prevent malignant transformation, but when it is chronic, as occurs in age-related diseases, it may have adverse effects on cancer. Therefore, targeting senescent cells is a novel therapeutic strategy against senescence-associated diseases. In addition to its role in cancer protection, cellular senescence is also considered a mechanism to control virus replication. Both interferon treatment and some viral infections can trigger cellular senescence as a way to restrict virus replication. However, activation of the cellular senescence program is linked to the alteration of different pathways, which can be exploited by some viruses to improve their replication. It is, therefore, important to understand the potential impact of senolytic agents on viral propagation. Here we focus on the relationship between virus and cellular senescence and the reported effects of senolytic compounds on virus replication.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain
| |
Collapse
|
16
|
DeCaprio JA. Molecular Pathogenesis of Merkel Cell Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:69-91. [PMID: 33228463 DOI: 10.1146/annurev-pathmechdis-012419-032817] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with two distinct etiologies. Clonal integration of Merkel cell polyomavirus DNA into the tumor genome with persistent expression of viral T antigens causes at least 60% of all MCC. UV damage leading to highly mutated genomes causes a nonviral form of MCC. Despite these distinct etiologies, both forms of MCC are similar in presentation, prognosis, and response to therapy. At least three oncogenic transcriptional programs feature prominently in both forms of MCC driven by the virus or by mutation. Both forms of MCC have a high proliferative growth rate with increased levels of cell cycle-dependent genes due to inactivation of the tumor suppressors RB and p53, a strong MYC signature due to MYCL activation by the virus or gene amplification, and an attenuated neuroendocrine differentiation program driven by the ATOH1 transcription factor.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Humphreys D, ElGhazaly M, Frisan T. Senescence and Host-Pathogen Interactions. Cells 2020; 9:cells9071747. [PMID: 32708331 PMCID: PMC7409240 DOI: 10.3390/cells9071747] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Damage to our genomes triggers cellular senescence characterised by stable cell cycle arrest and a pro-inflammatory secretome that prevents the unrestricted growth of cells with pathological potential. In this way, senescence can be considered a powerful innate defence against cancer and viral infection. However, damage accumulated during ageing increases the number of senescent cells and this contributes to the chronic inflammation and deregulation of the immune function, which increases susceptibility to infectious disease in ageing organisms. Bacterial and viral pathogens are masters of exploiting weak points to establish infection and cause devastating diseases. This review considers the emerging importance of senescence in the host-pathogen interaction: we discuss the pathogen exploitation of ageing cells and senescence as a novel hijack target of bacterial pathogens that deploys senescence-inducing toxins to promote infection. The persistent induction of senescence by pathogens, mediated directly through virulence determinants or indirectly through inflammation and chronic infection, also contributes to age-related pathologies such as cancer. This review highlights the dichotomous role of senescence in infection: an innate defence that is exploited by pathogens to cause disease.
Collapse
Affiliation(s)
- Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
- Correspondence: (D.H.); (T.F.)
| | - Mohamed ElGhazaly
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Teresa Frisan
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.H.); (T.F.)
| |
Collapse
|