1
|
Heisler DB, Kudryashova E, Hitt R, Williams B, Dziejman M, Gunn J, Kudryashov DS. Antagonistic Effects of Actin-Specific Toxins on Salmonella Typhimurium Invasion into Mammalian Cells. Biomolecules 2024; 14:1428. [PMID: 39595604 PMCID: PMC11591686 DOI: 10.3390/biom14111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, Vibrio cholerae MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, Photorhabdus luminescens TccC3, and Salmonella's own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin-binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays and by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. These results suggest that bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria.
Collapse
Affiliation(s)
- David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Regan Hitt
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.H.); (J.G.)
| | - Blake Williams
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA;
| | - John Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.H.); (J.G.)
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| |
Collapse
|
2
|
Heisler DB, Kudryashova E, Hitt R, Williams B, Dziejman M, Gunn J, Kudryashov DS. Antagonistic effects of actin-specific toxins on Salmonella Typhimurium invasion into mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601609. [PMID: 39005411 PMCID: PMC11245040 DOI: 10.1101/2024.07.01.601609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Competition between bacterial species is a major factor shaping microbial communities. In this work, we explored the hypothesis that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by any of the four tested actin-specific toxins: Vibrio cholerae MARTX actin crosslinking and Rho GTPase inactivation domains (ACD and RID, respectively), TccC3 from Photorhabdus luminescens, and Salmonella's own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays confirmed by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. Together, the results suggest bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria.
Collapse
Affiliation(s)
- David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Regan Hitt
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Blake Williams
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Yang L, Yu P, Wang J, Zhao T, Zhao Y, Pan Y, Chen L. Genomic and Transcriptomic Analyses Reveal Multiple Strategies for Vibrio parahaemolyticus to Tolerate Sub-Lethal Concentrations of Three Antibiotics. Foods 2024; 13:1674. [PMID: 38890902 PMCID: PMC11171697 DOI: 10.3390/foods13111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of its antibiotic tolerance remain to be further deciphered. Here, we investigated the molecular basis of the antibiotic tolerance of V. parahaemolyticus isolates (n = 3) originated from shellfish and crustaceans using comparative genomic and transcriptomic analyses. The genome sequences of the V. parahaemolyticus isolates were determined (5.0-5.3 Mb), and they contained 4709-5610 predicted protein-encoding genes, of which 823-1099 genes were of unknown functions. Comparative genomic analyses revealed a number of mobile genetic elements (MGEs, n = 69), antibiotic resistance-related genes (n = 7-9), and heavy metal tolerance-related genes (n = 2-4). The V. parahaemolyticus isolates were resistant to sub-lethal concentrations (sub-LCs) of ampicillin (AMP, 512 μg/mL), kanamycin (KAN, 64 μg/mL), and streptomycin (STR, 16 μg/mL) (p < 0.05). Comparative transcriptomic analyses revealed that there were significantly altered metabolic pathways elicited by the sub-LCs of the antibiotics (p < 0.05), suggesting the existence of multiple strategies for antibiotic tolerance in V. parahaemolyticus. The results of this study enriched the V. parahaemolyticus genome database and should be useful for controlling the MDR pathogen worldwide.
Collapse
Affiliation(s)
- Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juanjuan Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taixia Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Yong Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
5
|
Role of mitochondria in regulating immune response during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:159-200. [PMID: 36858655 DOI: 10.1016/bs.ircmb.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitochondria are dynamic organelles of eukaryotes involved in energy production and fatty acid oxidation. Besides maintaining ATP production, calcium signaling, cellular apoptosis, and fatty acid synthesis, mitochondria are also known as the central hub of the immune system as it regulates the innate immune pathway during infection. Mitochondria mediated immune functions mainly involve regulation of reactive oxygen species production, inflammasome activation, cytokine secretion, and apoptosis of infected cells. Recent findings indicate that cellular mitochondria undergo constant biogenesis, fission, fusion and degradation, and these dynamics regulate cellular immuno-metabolism. Several intracellular pathogens target and modulate these normal functions of mitochondria to facilitate their own survival and growth. De-regulation of mitochondrial functions and dynamics favors bacterial infection and pathogens are able to protect themselves from mitochondria mediated immune responses. Here, we will discuss how mitochondria mediated anti-bacterial immune pathways help the host to evade pathogenic insult. In addition, examples of bacterial pathogens modulating mitochondrial metabolism and dynamics will also be elaborated. Study of these interactions between the mitochondria and bacterial pathogens during infection will lead to a better understanding of the mitochondrial metabolism pathways and dynamics important for the establishment of bacterial diseases. In conclusion, detailed studies on how mitochondria regulate the immune response during bacterial infection can open up new avenues to develop mitochondria centric anti-bacterial therapeutics.
Collapse
|
6
|
Genomic and Transcriptomic Analysis Reveal Multiple Strategies for the Cadmium Tolerance in Vibrio parahaemolyticus N10-18 Isolated from Aquatic Animal Ostrea gigas Thunberg. Foods 2022; 11:foods11233777. [PMID: 36496584 PMCID: PMC9741282 DOI: 10.3390/foods11233777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. parahaemolyticus in aquatic animals remain to be largely unveiled. Here, we overcome the limitation by characterizing an MDR V. parahaemolyticus N10-18 isolate with high cadmium (Cd) tolerance using genomic and transcriptomic techniques. The draft genome sequence (4,910,080 bp) of V. parahaemolyticus N10-18 recovered from Ostrea gigas Thunberg was determined, and 722 of 4653 predicted genes had unknown function. Comparative genomic analysis revealed mobile genetic elements (n = 11) and heavy metal and antibiotic-resistance genes (n = 38 and 7). The bacterium significantly changed cell membrane structure to resist the Cd2+ (50 μg/mL) stress (p < 0.05). Comparative transcriptomic analysis revealed seven significantly altered metabolic pathways elicited by the stress. The zinc/Cd/mercury/lead transportation and efflux and the zinc ATP-binding cassette (ABC) transportation were greatly enhanced; metal and iron ABC transportation and thiamine metabolism were also up-regulated; conversely, propanoate metabolism and ribose and maltose ABC transportation were inhibited (p < 0.05). The results of this study demonstrate multiple strategies for the Cd tolerance in V. parahaemolyticus.
Collapse
|
7
|
Kudryashova E, Ankita, Ulrichs H, Shekhar S, Kudryashov DS. Pointed-end processive elongation of actin filaments by Vibrio effectors VopF and VopL. SCIENCE ADVANCES 2022; 8:eadc9239. [PMID: 36399577 PMCID: PMC9674292 DOI: 10.1126/sciadv.adc9239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 07/20/2023]
Abstract
According to the cellular actin dynamics paradigm, filaments grow at their barbed ends and depolymerize predominantly from their pointed ends to form polar structures and do productive work. We show that actin can elongate at the pointed end when assisted by Vibrio VopF/L toxins, which act as processive polymerases. In cells, processively moving VopF/L speckles are inhibited by factors blocking the pointed but not barbed ends. Multispectral single-molecule imaging confirmed that VopF molecules associate with the pointed end, actively promoting its elongation even in the presence of profilin. Consequently, VopF/L can break the actin cytoskeleton's polarity by compromising actin-based cellular processes. Therefore, actin filament design allows processive growth at both ends, which suggests unforeseen possibilities for cellular actin organization, particularly in specialized cells and compartments.
Collapse
Affiliation(s)
- Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ankita
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Heidi Ulrichs
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Smith KP, Lee W, Tonelli M, Lee Y, Light SH, Cornilescu G, Chakravarthy S. Solution structure and dynamics of the mitochondrial-targeted GTPase-activating protein (GAP) VopE by an integrated NMR/SAXS approach. Protein Sci 2022; 31:e4282. [PMID: 35137487 PMCID: PMC9047041 DOI: 10.1002/pro.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
The bacterial pathogen Vibrio cholerae use a type III secretion system to inject effector proteins into a host cell. Recently, a putative Toxic GTPase Activating Protein (ToxGAP) called Vibrio outer protein E (VopE) was identified as a T3SS substrate and virulence factor that affected host mitochondrial dynamics and immune response. However, biophysical and structural characterization has been absent. Here, we describe solution NMR structure of the putative GTPase-activating protein (GAP) domain (73-204) of VopE. Using size exclusion chromatography coupled with small-angle x-ray scattering and residual dipolar coupling data, we restrained the MD process to efficiently determine the overall fold and improve the quality of the output calculated structures. Comparing the structure of VopE with other ToxGAP's revealed a similar overall fold with several features unique to VopE. Specifically, the "Bulge 1," α1 helix, and noteworthy "backside linker" elements on the N-terminus are dissimilar to the other ToxGAP's. By using NMR relaxation dispersion experiments, we demonstrate that these regions undergo motions on a > 6 s-1 timescale. Based on the disposition of these mobile regions relative to the putative catalytic arginine residue, we hypothesize that the protein may undergo structural changes to bind cognate GTPases.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental BiologyNorthwestern University ChicagoIllinoisUSA
- Xilio TherapeuticsWalthamMassachusettsUSA
| | - Woonghee Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yeongjoon Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Samuel H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Gabriel Cornilescu
- Advanced Technology Research Facility, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research, Inc., National Cancer Institute, National Institutes of HealthFrederickMarylandUSA
| | | |
Collapse
|
9
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
10
|
Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66-73. [PMID: 30711745 DOI: 10.1016/j.mib.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities. Characterizing novel functions associated with Vibrio-specific effectors is, therefore, essential for understanding how vibrios employ T3SS mechanisms to cause disease in a broad range of hosts and how T3SS island composition potentially defines species-specific disease.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Katharine F Tomberlin
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
11
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
12
|
Ferdous J, Sultana R, Rashid RB, Tasnimuzzaman M, Nordland A, Begum A, Jensen PKM. A Comparative Analysis of Vibrio cholerae Contamination in Point-of-Drinking and Source Water in a Low-Income Urban Community, Bangladesh. Front Microbiol 2018; 9:489. [PMID: 29616005 PMCID: PMC5867346 DOI: 10.3389/fmicb.2018.00489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae (V. cholerae) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from "point-of-drinking" and "source" in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds (P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14-42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds (p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85-29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19-18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Rebeca Sultana
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark.,International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.,Institute of Health Economics, University of Dhaka, Dhaka, Bangladesh
| | - Ridwan B Rashid
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Tasnimuzzaman
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Andreas Nordland
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Section for Global Health, Department of Public Health, Copenhagen Center for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Abstract
To survive, organisms require mechanisms that enable them to sense changes in the outside environment, introduce necessary responses, and resist unfavorable distortion. Consequently, through evolutionary adaptation, cells have become equipped with the apparatus required to monitor their fundamental intracellular processes and the mechanisms needed to try to offset malfunction without receiving any direct signals from the outside environment. It has been shown recently that eukaryotic cells are equipped with a special mechanism that monitors their fundamental cellular functions and that some pathogenic proteobacteria can override this monitoring mechanism to cause harm. The monitored cellular activities involved in the stressed intracellular response have been researched extensively in Caenorhabditis elegans, where discovery of an association between key mitochondrial activities and innate immune responses was named "cellular associated detoxification and defenses (cSADD)." This cellular surveillance pathway (cSADD) oversees core cellular activities such as mitochondrial respiration and protein transport into mitochondria, detects xenobiotics and invading pathogens, and activates the endocrine pathways controlling behavior, detoxification, and immunity. The cSADD pathway is probably associated with cellular responses to stress in human inflammatory diseases. In the critical care field, the pathogenesis of lethal inflammatory syndromes (e.g., respiratory distress syndromes and sepsis) involves the disturbance of mitochondrial respiration leading to cell death. Up-to-date knowledge about monitored cellular activities and cSADD, especially focusing on mitochondrial involvement, can probably help fill a knowledge gap regarding the pathogenesis of lethal inflammatory syndromes in the critical care field.
Collapse
|
14
|
de Souza Santos M, Salomon D, Orth K. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus. PLoS Pathog 2017. [PMID: 28640881 PMCID: PMC5481031 DOI: 10.1371/journal.ppat.1006438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Bankapalli LK, Mishra RC, Raychaudhuri S. VopE, a Vibrio cholerae Type III Effector, Attenuates the Activation of CWI-MAPK Pathway in Yeast Model System. Front Cell Infect Microbiol 2017; 7:82. [PMID: 28373966 PMCID: PMC5357651 DOI: 10.3389/fcimb.2017.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023] Open
Abstract
VopE, a mitochondrial targeting T3SS effector protein of Vibrio cholerae, perturbs innate immunity by modulating mitochondrial dynamics. In the current study, ectopic expression of VopE was found to be toxic in a yeast model system and toxicity was further aggravated in the presence of various stressors. Interestingly, a VopE variant lacking predicted mitochondrial targeting sequence (MTS) also exhibited partial lethality in the yeast system. With the aid of yeast genetic tools and different stressors, we have demonstrated that VopE and its derivative VopEΔMTS modulate cell wall integrity (CWI-MAPK) signaling pathway and have identified several critical residues contributing to the lethality of VopE. Furthermore, co-expression of two effectors VopEΔMTS and VopX, interfering with the CWI-MAPK cellular pathway can partially suppress the VopX mediated yeast growth inhibition. Taken together, these results suggest that VopE alters signaling through the CWI-MAPK pathway, and demonstrates the usefulness of yeast model system to gain additional insights on the functionality of VopE.
Collapse
Affiliation(s)
- Leela K Bankapalli
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Rahul C Mishra
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Saumya Raychaudhuri
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
16
|
Burke TA, Harker AJ, Dominguez R, Kovar DR. The bacterial virulence factors VopL and VopF nucleate actin from the pointed end. J Cell Biol 2017; 216:1267-1276. [PMID: 28363971 PMCID: PMC5412564 DOI: 10.1083/jcb.201608104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 11/22/2022] Open
Abstract
How the bacterial virulence factors VopL/F from Vibrio catalyze actin nucleation is unclear. Using multicolor TIRF microscopy imaging, Burke et al. find that VopL and VopF stimulate actin assembly via identical pointed-end nucleation mechanisms. VopL and VopF (VopL/F) are tandem WH2-domain actin assembly factors used by infectious Vibrio species to induce actin assembly in host cells. There is disagreement about the filament assembly mechanism of VopL/F, including whether they associate with the filament barbed or pointed end. Here, we used multicolor total internal reflection fluorescence microscopy to directly observe actin assembly with fluorescently labeled VopL/F. In actin monomer assembly reactions, VopL/F exclusively nucleate actin filament assemblies, remaining only briefly associated with the pointed end. VopL/F do not associate with the ends of preassembled filaments. In assembly reactions with saturating profilin, ∼85% of VopL/F molecules also promote nucleation from the pointed end, whereas a smaller fraction (<15%) associate for ∼25 s with the barbed end of preassembled filaments, inhibiting their elongation. We conclude that VopL/F function primarily as actin nucleation factors that remain briefly (∼100 s) associated with the pointed end.
Collapse
Affiliation(s)
- Thomas A Burke
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Alyssa J Harker
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637 .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
17
|
Oladokun MO, Okoh IA. Vibrio cholerae: A historical perspective and current trend. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Watanabe S, Borthakur D, Bressan A. Localization of Banana bunchy top virus and cellular compartments in gut and salivary gland tissues of the aphid vector Pentalonia nigronervosa. INSECT SCIENCE 2016; 23:591-602. [PMID: 25728903 DOI: 10.1111/1744-7917.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands of Pentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.
Collapse
Affiliation(s)
- Shizu Watanabe
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
| |
Collapse
|
19
|
Miller KA, Chaand M, Gregoire S, Yoshida T, Beck LA, Ivanov AI, Dziejman M. Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells. Cell Microbiol 2016; 18:1857-1870. [PMID: 27302486 DOI: 10.1111/cmi.12629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
Abstract
AM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2-BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell-cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM-19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mudit Chaand
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stacy Gregoire
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrei I Ivanov
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
20
|
Regulation by ToxR-Like Proteins Converges on vttRB Expression To Control Type 3 Secretion System-Dependent Caco2-BBE Cytotoxicity in Vibrio cholerae. J Bacteriol 2016; 198:1675-1682. [PMID: 27021561 DOI: 10.1128/jb.00130-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Genes carried on the type 3 secretion system (T3SS) pathogenicity island of Vibrio cholerae non-O1/non-O139 serogroup strain AM-19226 must be precisely regulated in order for bacteria to cause disease. Previously reported results showed that both T3SS function and the presence of bile are required to cause Caco2-BBE cell cytotoxicity during coculture with strain AM-19226. We therefore investigated additional parameters affecting in vitro cell death, including bacterial load and the role of three transmembrane transcriptional regulatory proteins, VttRA, VttRB, and ToxR. VttRA and VttRB are encoded on the horizontally acquired T3SS genomic island, whereas ToxR is encoded on the ancestral chromosome. While strains carrying deletions in any one of the three transcriptional regulatory genes are unable to cause eukaryotic cell death, the results of complementation studies point to a hierarchy of regulatory control that converges on vttRB expression. The data suggest both that ToxR and VttRA act upstream of VttRB and that modifying the level of either vttRA or vttRB expression can strongly influence T3SS gene expression. We therefore propose a model whereby T3SS activity and, hence, in vitro cytotoxicity are ultimately regulated by vttRB expression. IMPORTANCE In contrast to O1 and O139 serogroup V. cholerae strains that cause cholera using two main virulence factors (toxin-coregulated pilus [TCP] and cholera toxin [CT]), O39 serogroup strain AM-19226 uses a type 3 secretion system as its principal virulence mechanism. Although the regulatory network governing TCP and CT expression is well understood, the factors influencing T3SS-associated virulence are not. Using an in vitro mammalian cell model to investigate the role of three ToxR-like transmembrane transcriptional activators in causing T3SS-dependent cytotoxicity, we found that expression levels and a hierarchical organization were important for promoting T3SS gene expression. Furthermore, our results suggest that horizontally acquired, ToxR-like proteins act in concert with the ancestral ToxR protein to orchestrate T3SS-mediated pathogenicity.
Collapse
|
21
|
The WH2 Domain and Actin Nucleation: Necessary but Insufficient. Trends Biochem Sci 2016; 41:478-490. [PMID: 27068179 DOI: 10.1016/j.tibs.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 11/22/2022]
Abstract
Two types of sequences, proline-rich domains (PRDs) and the WASP-homology 2 (WH2) domain, are found in most actin filament nucleation and elongation factors discovered thus far. PRDs serve as a platform for protein-protein interactions, often mediating the binding of profilin-actin. The WH2 domain is an abundant actin monomer-binding motif comprising ∼17 amino acids. It frequently occurs in tandem repeats, and functions in nucleation by recruiting actin subunits to form the polymerization nucleus. It is found in Spire, Cordon Bleu (Cobl), Leiomodin (Lmod), Arp2/3 complex activators (WASP, WHAMM, WAVE, etc.), the bacterial nucleators VopL/VopF and Sca2, and some formins. Yet, it is argued here that the WH2 domain plays only an auxiliary role in nucleation, always synergizing with other domains or proteins for this activity.
Collapse
|
22
|
Identification of Critical Amino Acids Conferring Lethality in VopK, a Type III Effector Protein of Vibrio cholerae: Lessons from Yeast Model System. PLoS One 2015; 10:e0141038. [PMID: 26488395 PMCID: PMC4619451 DOI: 10.1371/journal.pone.0141038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
VopK, a type III effector protein, has been implicated in the pathogenesis of Vibrio cholerae strains belonging to diverse serogroups. Ectopic expression of this protein exhibits strong toxicity in yeast model system. In order to map critical residues in VopK, we scanned the primary sequence guided by available data on various toxins and effector proteins. Our in silico analysis of VopK indicated the presence of predicted MCF1-SHE (SHxxxE) serine peptidase domain at the C-terminus region of the protein. Substitution of each of the predicted catalytic triad residues namely Ser314, His353 and Glu357 with alanine resulted in recombinant VopK proteins varying in lethality as evaluated in yeast model system. We observed that replacement of glutamate357 to alanine causes complete loss in toxicity while substitutions of serine314 and histidine353 with alanine exhibited partial loss in toxicity without affecting the stability of variants. In addition, replacement of another conserved serine residue at position 354 (S354) within predicted S314H353E357 did not affect toxicity of VopK. In essence, combined in silico and site directed mutagenesis, we have identified critical amino acids contributing to the lethal activity of VopK in yeast model system.
Collapse
|
23
|
Bugalhão JN, Mota LJ, Franco IS. Bacterial nucleators: actin' on actin. Pathog Dis 2015; 73:ftv078. [PMID: 26416078 DOI: 10.1093/femspd/ftv078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
The actin cytoskeleton is a key target of numerous microbial pathogens, including protozoa, fungi, bacteria and viruses. In particular, bacterial pathogens produce and deliver virulence effector proteins that hijack actin dynamics to enable bacterial invasion of host cells, allow movement within the host cytosol, facilitate intercellular spread or block phagocytosis. Many of these effector proteins directly or indirectly target the major eukaryotic actin nucleator, the Arp2/3 complex, by either mimicking nucleation promoting factors or activating upstream small GTPases. In contrast, this review is focused on a recently identified class of effector proteins from Gram-negative bacteria that function as direct actin nucleators. These effector proteins mimic functional activities of formins, WH2-nucleators and Ena/VASP assembly promoting factors demonstrating that bacteria have coopted the complete set of eukaryotic actin assembly pathways. Structural and functional analyses of these nucleators have revealed several motifs and/or mechanistic activities that are shared with eukaryotic actin nucleators. However, functional effects of these proteins during infection extend beyond plain actin polymerization leading to interference with other host cell functions such as vesicle trafficking, cell cycle progression and cell death. Therefore, their use as model systems could not only help in the understanding of the mechanistic details of actin polymerization but also provide novel insights into the connection between actin dynamics and other cellular pathways.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Irina S Franco
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
24
|
Abstract
Vibrio cholerae is widely known to be the etiological agent of the life-threatening diarrheal disease cholera. Cholera remains a major scourge in many developing countries, infecting hundreds of thousands every year. Remarkably, V. cholerae is a natural inhabitant of brackish riverine, estuarine, and coastal waters, and only a subset of strains are known to be pathogenic to humans. Recent studies have begun to uncover a very complex network of relationships between V. cholerae and other sea dwellers, and the mechanisms associated with the occurrence of seasonal epidemics in regions where cholera is endemic are beginning to be elucidated. Many of the factors required for the organism's survival and persistence in its natural environment have been revealed, as well as the ubiquitous presence of horizontal gene transfer in the emergence of pathogenic strains of V. cholerae. In this article, we will focus on the environmental stage of pathogenic V. cholerae and the interactions of the microorganism with other inhabitants of aquatic environments. We will discuss the impact that its environmental reservoirs have on disease transmission and the distinction between reservoirs of V. cholerae and the vectors that establish cholera as a zoonosis.
Collapse
|
25
|
Type 3 Secretion System Island Encoded Proteins Required for Colonization by Non-O1/non-O139 Serogroup Vibrio cholerae. Infect Immun 2015; 83:2862-2869. [PMID: 25939511 DOI: 10.1128/iai.03020-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vibrio cholerae is a genetically diverse species, and pathogenic strains can encode different virulence factors that mediate colonization and secretory diarrhea. Although the toxin co-regulated pilus (TCP) is the primary colonization factor in epidemic causing V. cholerae strains, other strains do not encode TCP and instead promote colonization via the activity of a type three secretion system (T3SS). Using the infant mouse model and T3SS-positive O39 serogroup strain AM-19226, we sought to determine which of 12 previously identified, T3SS translocated proteins (Vops) are important for host colonization. We constructed in frame deletions in each of the 12 loci in strain AM-19226, and identified five Vop deletion strains, including ΔVopM, which were severely attenuated for colonization. Interestingly, a subset of deletion strains was also incompetent for effector protein transport. Our collective data therefore suggest that several translocated proteins may also function as components of the structural apparatus or translocation machinery, and indicate that while VopM is critical for establishing an infection, the combined activities of other effectors may also contribute to the ability of T3SS-positive strains to colonize host epithelial cell surfaces.
Collapse
|
26
|
Kodama T, Hiyoshi H, Okada R, Matsuda S, Gotoh K, Iida T. Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol 2015; 17:183-90. [PMID: 25495647 DOI: 10.1111/cmi.12408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus is a leading causative agent of seafood-borne gastroenteritis worldwide. Most clinical isolates from patients with diarrhoea possess two sets of genes for the type III secretion system (T3SS) on each chromosome (T3SS1 and T3SS2). T3SS is a protein secretion system that delivers effector proteins directly into eukaryotic cells. The injected effectors modify the normal cell functions by altering or disrupting the normal cell signalling pathways. Of the two sets of T3SS genes present in V. parahaemolyticus, T3SS2 is essential for enterotoxicity in several animal models. Recent studies have elucidated the biological activities of several T3SS2 effectors and their roles in virulence. This review focuses on the regulation of T3SS2 gene expression and T3SS2 effectors that specifically target the actin cytoskeleton.
Collapse
Affiliation(s)
- Toshio Kodama
- Pathogenic Microbes Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe 2014; 16:581-91. [PMID: 25450857 DOI: 10.1016/j.chom.2014.09.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/25/2014] [Accepted: 09/16/2014] [Indexed: 01/14/2023]
Abstract
The cellular surveillance-activated detoxification and defenses (cSADD) theory postulates the presence of host surveillance mechanisms that monitor the integrity of common cellular processes and components targeted by pathogen effectors. Being organelles essential for multiple cellular processes, including innate immune responses, mitochondria represent an attractive target for pathogens. We describe a Vibrio cholerae Type 3 secretion system effector VopE that localizes to mitochondria during infection and acts as a specific GTPase-activating protein to interfere with the function of mitochondrial Rho GTPases Miro1 and Miro2. Miro GTPases modulate mitochondrial dynamics and interfering with this functionality effectively blocks innate immune responses that presumably require mitochondria as signaling platforms. Our data indicate that interference with mitochondrial dynamics may be an unappreciated strategy that pathogens use to block host innate immune responses that would otherwise control these bacterial infections. VopE might represent a bacterial effector that targets the cSADD surveillance response.
Collapse
|
28
|
Franco IS, Shuman HA. A pathogen's journey in the host cell: Bridges between actin and traffic. BIOARCHITECTURE 2014; 2:38-42. [PMID: 22754628 PMCID: PMC3383720 DOI: 10.4161/bioa.20422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Manipulation of the actin cytoskeleton is a commonly used process by which bacterial pathogens and viruses are able to neutralize host defense mechanisms and subvert them in order to replicate in a hostile environment. Diverse bacteria display a wide array of mechanisms of regulation of microfilaments to enter, move within or exit the host cell. A less studied subject is how pathogens may co-opt the actin cytoskeleton to disturb vesicle trafficking pathways, namely phagolysosomal fusion, and avoid degradation. In fact, although actin plays a role in endosomal trafficking and phagosome maturation, the knowledge on the exact mechanisms and additional players is still scarce. Recently, we found that the Legionella pneumophila virulence factor VipA is an actin nucleator, associates with actin filaments and early endosomes during infection, and interferes in yeast organelle trafficking pathways, suggesting it may be linking actin dynamics to endosome biogenesis. Further studies on this protein, together with work on other bacterial effectors, may help shed light in the role of actin in endosomal maturation.
Collapse
|
29
|
Rasson AS, Bois JS, Pham DSL, Yoo H, Quinlan ME. Filament assembly by Spire: key residues and concerted actin binding. J Mol Biol 2014; 427:824-839. [PMID: 25234086 DOI: 10.1016/j.jmb.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/28/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
Abstract
The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.
Collapse
Affiliation(s)
- Amy S Rasson
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Justin S Bois
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Duy Stephen L Pham
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Haneul Yoo
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Paul D. Boyer Hall, 611 Charles E. Young Drive East, Box 951570, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
30
|
Remodeling of the intestinal brush border underlies adhesion and virulence of an enteric pathogen. mBio 2014; 5:mBio.01639-14. [PMID: 25139905 PMCID: PMC4147867 DOI: 10.1128/mbio.01639-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intestinal colonization by Vibrio parahaemolyticus—the most common cause of seafood-borne bacterial enteritis worldwide—induces extensive disruption of intestinal microvilli. In orogastrically infected infant rabbits, reorganization of the apical brush border membrane includes effacement of some microvilli and marked elongation of others. All diarrhea, inflammation, and intestinal pathology associated with V. parahaemolyticus infection are dependent upon one of its type 3 secretion systems (T3SS2); however, translocated effectors that directly mediate brush border restructuring and bacterial adhesion are not known. Here, we demonstrate that the effector VopV is essential for V. parahaemolyticus intestinal colonization and therefore its pathogenicity, that it induces effacement of brush border microvilli, and that this effacement is required for adhesion of V. parahaemolyticus to enterocytes. VopV contains multiple functionally independent and mechanistically distinct domains through which it disrupts microvilli. We show that interaction between VopV and filamin, as well as VopV’s previously noted interaction with actin, mediates enterocyte cytoskeletal reorganization. VopV’s multipronged approach to epithelial restructuring, coupled with its impact on colonization, suggests that remodeling of the epithelial brush border is a critical step in pathogenesis. Colonization of the small bowel by Vibrio parahaemolyticus, the most common bacterial agent of seafood-borne enteric disease, induces extensive structural changes in the intestinal epithelium. Here, we show that this diarrheal pathogen’s colonization and virulence depend upon VopV, a bacterial protein that is transferred into host epithelial cells. VopV induces marked rearrangement of the apical epithelial cell membrane, including elimination of microvilli, by two means: through interaction with actin and through a previously unrecognized interaction with the actin-cross-linking protein filamin. VopV-mediated “effacement” of microvilli enables V. parahaemolyticus to adhere to host cells, although VopV may not directly mediate adhesion. VopV’s effects on microvillus structure and bacterial adhesion likely account for its essential role in V. parahaemolyticus intestinal pathogenesis. Our findings suggest a new role for filamin in brush border maintenance and raise the possibility that microvillus effacement is a common strategy among enteric pathogens for enhancing adhesion to host cells.
Collapse
|
31
|
|
32
|
O'Boyle N, Boyd A. Manipulation of intestinal epithelial cell function by the cell contact-dependent type III secretion systems of Vibrio parahaemolyticus. Front Cell Infect Microbiol 2014; 3:114. [PMID: 24455490 PMCID: PMC3887276 DOI: 10.3389/fcimb.2013.00114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/23/2022] Open
Abstract
Vibrio parahaemolyticus elicits gastroenteritis by deploying Type III Secretion Systems (TTSS) to deliver effector proteins into epithelial cells of the human intestinal tract. The bacteria must adhere to the human cells to allow colonization and operation of the TTSS translocation apparatus bridging the bacterium and the host cell. This article first reviews recent advances in identifying the molecules responsible for intercellular adherence. V. parahaemolyticus possesses two TTSS, each of which delivers an exclusive set of effectors and mediates unique effects on the host cell. TTSS effectors primarily target and alter the activation status of host cell signaling proteins, thereby bringing about changes in the regulation of cellular behavior. TTSS1 is responsible for the cytotoxicity of V. parahaemolyticus, while TTSS2 is necessary for the enterotoxicity of the pathogen. Recent publications have elucidated the function of several TTSS effectors and their importance in the virulence of the bacterium. This review will explore the ability of the TTSS to manipulate activities of human intestinal cells and how this modification of cell function favors bacterial colonization and persistence of V. parahaemolyticus in the host.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
33
|
Dimeric WH2 domains in Vibrio VopF promote actin filament barbed-end uncapping and assisted elongation. Nat Struct Mol Biol 2013; 20:1069-76. [DOI: 10.1038/nsmb.2639] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/21/2013] [Indexed: 12/14/2022]
|
34
|
Alanine-scanning mutagenesis of WH2 domains of VopF reveals residues important for conferring lethality in a Saccharomyces cerevisiae model. Gene 2013; 525:116-23. [DOI: 10.1016/j.gene.2013.04.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 03/22/2013] [Accepted: 04/19/2013] [Indexed: 12/25/2022]
|
35
|
Morita M, Yamamoto S, Hiyoshi H, Kodama T, Okura M, Arakawa E, Alam M, Ohnishi M, Izumiya H, Watanabe H. Horizontal gene transfer of a genetic island encoding a type III secretion system distributed inVibrio cholerae. Microbiol Immunol 2013; 57:334-9. [DOI: 10.1111/1348-0421.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/04/2012] [Accepted: 02/03/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Masatomo Morita
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Shouji Yamamoto
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Hirotaka Hiyoshi
- Research Institute for Microbial Diseases; Osaka University; Osaka
| | - Toshio Kodama
- Research Institute for Microbial Diseases; Osaka University; Osaka
| | | | - Eiji Arakawa
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Munirul Alam
- International Center for Diarrhoeal Disease Research; Bangladesh; Dhaka; Bangladesh
| | - Makoto Ohnishi
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Hidemasa Izumiya
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Haruo Watanabe
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| |
Collapse
|
36
|
Islam A, Labbate M, Djordjevic SP, Alam M, Darling A, Melvold J, Holmes AJ, Johura FT, Cravioto A, Charles IG, Stokes HW. Indigenous Vibrio cholerae strains from a non-endemic region are pathogenic. Open Biol 2013; 3:120181. [PMID: 23407641 PMCID: PMC3603452 DOI: 10.1098/rsob.120181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the 200+ serogroups of Vibrio cholerae, only O1 or O139 strains are reported to cause cholera, and mostly in endemic regions. Cholera outbreaks elsewhere are considered to be via importation of pathogenic strains. Using established animal models, we show that diverse V. cholerae strains indigenous to a non-endemic environment (Sydney, Australia), including non-O1/O139 serogroup strains, are able to both colonize the intestine and result in fluid accumulation despite lacking virulence factors believed to be important. Most strains lacked the type three secretion system considered a mediator of diarrhoea in non-O1/O13 V. cholerae. Multi-locus sequence typing (MLST) showed that the Sydney isolates did not form a single clade and were distinct from O1/O139 toxigenic strains. There was no correlation between genetic relatedness and the profile of virulence-associated factors. Current analyses of diseases mediated by V. cholerae focus on endemic regions, with only those strains that possess particular virulence factors considered pathogenic. Our data suggest that factors other than those previously well described are of potential importance in influencing disease outbreaks.
Collapse
Affiliation(s)
- Atiqul Islam
- The Ithree Institute, University of Technology, Broadway, Sydney, New South Wales 2007, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ritchie JM, Rui H, Zhou X, Iida T, Kodoma T, Ito S, Davis BM, Bronson RT, Waldor MK. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog 2012; 8:e1002593. [PMID: 22438811 PMCID: PMC3305451 DOI: 10.1371/journal.ppat.1002593] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. The marine bacterium Vibrio parahaemolyticus is a leading cause worldwide of gastroenteritis linked to the consumption of contaminated seafood. Despite the prevalence of V. parahaemolyticus-induced gastroenteritis, there is limited understanding of how this pathogen causes disease in the intestine. In part, the paucity of knowledge results from the absence of an oral infection-based animal model of the human disease. We developed a simple oral infection-based infant rabbit model of V. parahaemolyticus-induced intestinal pathology and diarrhea. This experimental model enabled us to define several previously unknown but key features of the pathology elicited by this organism. We found that V. parahaemolyticus chiefly colonizes the distal small intestine and that the organism's second type III secretion system is essential for colonization. The epithelial surface of the distal small intestine is also the major site of V. parahaemolyticus-induced damage, which arises via a characteristic sequence of events culminating in the formation of V. parahaemolyticus-filled cavities in the epithelial surface. This experimental model will transform future studies aimed at deciphering the bacterial and host factors/processes that contribute to disease, as well as enable testing of new therapeutics to prevent and/or combat infection.
Collapse
Affiliation(s)
- Jennifer M. Ritchie
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| | - Haopeng Rui
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Xiaohui Zhou
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Tetsuya Iida
- Department of Bacterial Infections, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodoma
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Susuma Ito
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Roderick T. Bronson
- Department of Microbiology & Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| |
Collapse
|
38
|
Chen CK, Sawaya MR, Phillips ML, Reisler E, Quinlan ME. Multiple forms of Spire-actin complexes and their functional consequences. J Biol Chem 2012; 287:10684-10692. [PMID: 22334675 DOI: 10.1074/jbc.m111.317792] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spire is a WH2 domain-containing actin nucleator essential for establishing an actin mesh during oogenesis. In vitro, in addition to nucleating filaments, Spire can sever them and sequester actin monomers. Understanding how Spire is capable of these disparate functions and which are physiologically relevant is an important goal. To study severing, we examined the effect of Drosophila Spire on preformed filaments in bulk and single filament assays. We observed rapid depolymerization of actin filaments by Spire, which we conclude is largely due to its sequestration activity and enhanced by its weak severing activity. We also studied the solution and crystal structures of Spire-actin complexes. We find structural and functional differences between constructs containing four WH2 domains (Spir-ABCD) and two WH2 domains (Spir-CD) that may provide insight into the mechanisms of nucleation and sequestration. Intriguingly, we observed lateral interactions between actin monomers associated with Spir-ABCD, suggesting that the structures built by these four tandem WH2 domains are more complex than originally imagined. Finally, we propose that Spire-actin mixtures contain both nuclei and sequestration structures.
Collapse
Affiliation(s)
- Christine K Chen
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
39
|
Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 2011; 13:992-1001. [PMID: 21782964 PMCID: PMC3384537 DOI: 10.1016/j.micinf.2011.06.013] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Vibrio parahaemolyticus is a significant cause of gastroenteritis worldwide. Characterization of this pathogen has revealed a unique repertoire of virulence factors that allow for colonization of the human host and disease. The following describes the known pathogenicity determinants while establishing the need for continued research.
Collapse
Affiliation(s)
- Christopher A. Broberg
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| | - Thomas J. Calder
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| |
Collapse
|
40
|
Namgoong S, Boczkowska M, Glista MJ, Winkelman JD, Rebowski G, Kovar DR, Dominguez R. Mechanism of actin filament nucleation by Vibrio VopL and implications for tandem W domain nucleation. Nat Struct Mol Biol 2011; 18:1060-7. [PMID: 21873985 PMCID: PMC3173040 DOI: 10.1038/nsmb.2109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/30/2011] [Indexed: 11/09/2022]
Abstract
Pathogen proteins targeting the actin cytoskeleton often serve as model systems to understand their more complex eukaryotic analogs. We show that the strong actin filament nucleation activity of Vibrio parahaemolyticus VopL depends on its three W domains and on its dimerization through a unique VopL C-terminal domain (VCD). The VCD shows a previously unknown all-helical fold and interacts with the pointed end of the actin nucleus, contributing to the nucleation activity directly and through duplication of the W domain repeat. VopL promotes rapid cycles of filament nucleation and detachment but generally has no effect on elongation. Profilin inhibits VopL-induced nucleation by competing for actin binding to the W domains. Combined, the results suggest that VopL stabilizes a hexameric double-stranded pointed end nucleus. Analysis of hybrid constructs of VopL and the eukaryotic nucleator Spire suggest that Spire may also function as a dimer in cells.
Collapse
Affiliation(s)
- Suk Namgoong
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Mechanism of actin filament nucleation by the bacterial effector VopL. Nat Struct Mol Biol 2011; 18:1068-74. [PMID: 21873984 PMCID: PMC3168117 DOI: 10.1038/nsmb.2110] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/30/2011] [Indexed: 12/21/2022]
Abstract
Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected by bacteria into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich Homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own, and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, which is stabilized by a terminal coiled-coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data lead to a model where VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.
Collapse
|
42
|
Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio 2011; 2:e00106-11. [PMID: 21673189 PMCID: PMC3111608 DOI: 10.1128/mbio.00106-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cholera is a severe diarrheal disease typically caused by O1 serogroup strains of Vibrio cholerae. The pathogenicity of all pandemic V. cholerae O1 strains relies on two critical virulence factors: cholera toxin, a potent enterotoxin, and toxin coregulated pilus (TCP), an intestinal colonization factor. However, certain non-O1, non-O139 V. cholerae strains, such as AM-19226, do not produce cholera toxin or TCP, yet they still cause severe diarrhea. The molecular basis for the pathogenicity of non-O1, non-O139 V. cholerae has not been extensively characterized, but many of these strains encode related type III secretion systems (TTSSs). Here, we used infant rabbits to assess the contribution of the TTSS to non-O1, non-O139 V. cholerae pathogenicity. We found that all animals infected with wild-type AM-19226 developed severe diarrhea even more rapidly than rabbits infected with V. cholerae O1. Unlike V. cholerae O1 strains, which do not damage the intestinal epithelium in rabbits or humans, AM-19226 caused marked disruptions of the epithelial surface in the rabbit small intestine. TTSS proved to be essential for AM-19226 virulence in infant rabbits; an AM-19226 derivative deficient for TTSS did not elicit diarrhea, colonize the intestine, or induce pathological changes in the intestine. Deletion of either one of the two previously identified or two newly identified AM-19226 TTSS effectors reduced but did not eliminate AM-19226 pathogenicity, suggesting that at least four effectors contribute to this strain’s virulence. In aggregate, our results suggest that the TTSS-dependent virulence in non-O1, non-O139 V. cholerae represents a new type of diarrheagenic mechanism. Cholera, which is caused by Vibrio cholerae, is an important cause of diarrheal disease in many developing countries. The mechanisms of virulence of nonpandemic strains that can cause a diarrheal illness are poorly understood. AM-19226, like several other pathogenic, nonpandemic V. cholerae strains, carries genes that encode a type III secretion system (TTSS), but not cholera toxin (CT) or toxin coregulated pilus (TCP). In this study, we used infant rabbits to study AM-19226 virulence. Infant rabbits orally inoculated with this strain rapidly developed a fatal diarrheal disease, which was accompanied by marked disruptions of the intestinal epithelium. This strain’s TTSS proved essential for its pathogenicity, and there was no diarrhea, intestinal pathology, or colonization in rabbits infected with a TTSS mutant. The effector proteins translocated by the TTSS all appear to contribute to AM-19226 virulence. Thus, our study provides insight into in vivo mechanisms by which a novel TTSS contributes to diarrheal disease caused by nonpandemic strains of V. cholerae.
Collapse
|