1
|
Takayesu A, Mahoney BJ, Goring AK, Jessup T, Ogorzalek Loo RR, Loo JA, Clubb RT. Insight into the autoproteolysis mechanism of the RsgI9 anti-σ factor from Clostridium thermocellum. Proteins 2024; 92:946-958. [PMID: 38597224 PMCID: PMC11222046 DOI: 10.1002/prot.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/β/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.
Collapse
Affiliation(s)
- Allen Takayesu
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Brendan J. Mahoney
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Tobie Jessup
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Šuchová K, Fathallah W, Puchart V. Characterization of a novel GH30 non-specific endoxylanase AcXyn30B from Acetivibrio clariflavus. Appl Microbiol Biotechnol 2024; 108:312. [PMID: 38683242 PMCID: PMC11058611 DOI: 10.1007/s00253-024-13155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The xylanolytic enzymes Clocl_1795 and Clocl_2746 from glycoside hydrolase (GH) family 30 are highly abundant in the hemicellulolytic system of Acetivibrio clariflavus (Hungateiclostridium, Clostridium clariflavum). Clocl_1795 has been shown to be a xylobiohydrolase AcXbh30A releasing xylobiose from the non-reducing end of xylan and xylooligosaccharides. In this work, biochemical characterization of Clocl_2746 is presented. The protein, designated AcXyn30B, shows low sequence similarity to other GH30 members and phylogenetic analysis revealed that AcXyn30B and related proteins form a separate clade that is proposed to be a new subfamily GH30_12. AcXyn30B exhibits similar specific activity on glucuronoxylan, arabinoxylan, and aryl glycosides of linear xylooligosaccharides suggesting that it is a non-specific xylanase. From polymeric substrates, it releases the fragments of degrees of polymerization (DP) 2-6. Hydrolysis of different xylooligosaccharides indicates that AcXyn30B requires at least four occupied catalytic subsites for effective cleavage. The ability of the enzyme to hydrolyze a wide range of substrates is interesting for biotechnological applications. In addition to subfamilies GH30_7, GH30_8, and GH30_10, the newly proposed subfamily GH30_12 further widens the spectrum of GH30 subfamilies containing xylanolytic enzymes. KEY POINTS: Bacterial GH30 endoxylanase from A. clariflavus (AcXyn30B) has been characterized AcXyn30B is non-specific xylanase hydrolyzing various xylans and xylooligosaccharides Phylogenetic analysis placed AcXyn30B in a new GH30_12 subfamily.
Collapse
Affiliation(s)
- Katarína Šuchová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Walid Fathallah
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
- Faculty of Science, Beni-Suef University, Beni-Suef, 625 11, Egypt
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
3
|
Yang C, Zhang H, Zhao X, Liu P, Wang L, Wang W. A functional metagenomics study of soil carbon and nitrogen degradation networks and limiting factors on the Tibetan plateau. Front Microbiol 2023; 14:1170806. [PMID: 37228377 PMCID: PMC10203874 DOI: 10.3389/fmicb.2023.1170806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The Three-River Source Nature Reserve is located in the core area of the Qinghai-Tibetan Plateau, with the alpine swamp, meadow and steppe as the main ecosystem types. However, the microbial communities in these alpine ecosystems, and their carbon and nitrogen degrading metabolic networks and limiting factors remain unclear. Methods We sequenced the diversity of bacteria and fungi in alpine swamps, meadows, steppes, and their degraded and artificially restored ecosystems and analyzed soil environmental conditions. Results The results indicated that moisture content had a greater influence on soil microbial community structure compared to degradation and restoration. Proteobacteria dominated in high moisture alpine swamps and alpine meadows, while Actinobacteria dominated in low moisture alpine steppes and artificial grasslands. A metabolic network analysis of carbon and nitrogen degradation and transformation using metagenomic sequencing revealed that plateau microorganisms lacked comprehensive and efficient enzyme systems to degrade organic carbon, nitrogen, and other biological macromolecules, so that the short-term degradation of alpine vegetation had no effect on the basic composition of soil microbial community. Correlation analysis found that nitrogen fixation was strong in meadows with high moisture content, and their key nitrogen-fixing enzymes were significantly related to Sphingomonas. Denitrification metabolism was enhanced in water-deficient habitats, and the key enzyme, nitrous oxide reductase, was significantly related to Phycicoccus and accelerated the loss of nitrogen. Furthermore, Bacillus contained a large number of amylases (GH13 and GH15) and proteases (S8, S11, S26, and M24) which may promote the efficient degradation of organic carbon and nitrogen in artificially restored grasslands. Discussion This study illustrated the irrecoverability of meadow degradation and offered fundamental information for altering microbial communities to restore alpine ecosystems.
Collapse
Affiliation(s)
- Chong Yang
- School of Geographical Sciences, Qinghai Normal University, Xining, China
- School of Life Sciences, Qinghai Normal University, Xining, China
| | - Hong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinquan Zhao
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China
| | - Pan Liu
- School of Geographical Sciences, Qinghai Normal University, Xining, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining, China
| |
Collapse
|
4
|
Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis. Essays Biochem 2023; 67:629-638. [PMID: 36866571 DOI: 10.1042/ebc20220167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
The wide diversity among the carbohydrate-active enzymes (CAZymes) reflects the equally broad versatility in terms of composition and chemicals bonds found in the plant cell wall polymers on which they are active. This diversity is also expressed through the various strategies developed to circumvent the recalcitrance of these substrates to biological degradation. Glycoside hydrolases (GHs) are the most abundant of the CAZymes and are expressed as isolated catalytic modules or in association with carbohydrate-binding module (CBM), acting in synergism within complex arrays of enzymes. This multimodularity can be even more complex. The cellulosome presents a scaffold protein immobilized to the outer membrane of some microorganisms on which enzymes are grafted to prevent their dispersion and increase catalytic synergism. In polysaccharide utilization loci (PUL), GHs are also distributed across the membranes of some bacteria to co-ordinate the deconstruction of polysaccharides and the internalization of metabolizable carbohydrates. Although the study and characterization of these enzymatic activities need to take into account the entirety of this complex organization-in particular because of the dynamics involved in it-technical problems limit the present study to isolated enzymes. However, these enzymatic complexes also have a spatiotemporal organization, whose still neglected aspect must be considered. In the present review, the different levels of multimodularity that can occur in GHs will be reviewed, from its simplest forms to the most complex. In addition, attempts to characterize or study the effect on catalytic activity of the spatial organization within GHs will be addressed.
Collapse
|
5
|
Moraïs S, Stern J, Artzi L, Fontes CMGA, Bayer EA, Mizrahi I. Carbohydrate Depolymerization by Intricate Cellulosomal Systems. Methods Mol Biol 2023; 2657:53-77. [PMID: 37149522 DOI: 10.1007/978-1-0716-3151-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology was established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer-cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
Collapse
Affiliation(s)
- Sarah Moraïs
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Edward A Bayer
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
6
|
St John FJ, Crooks C, Kim Y, Tan K, Joachimiak A. The first crystal structure of a xylobiose-bound xylobiohydrolase with high functional specificity from the bacterial glycoside hydrolase 30 subfamily 10. FEBS Lett 2022; 596:2449-2464. [PMID: 35876256 DOI: 10.1002/1873-3468.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Xylobiose is a prebiotic sugar that has applications in functional foods. This report describes the first X-ray crystallographic structure models of apo and xylobiose bound forms of a xylobiohydrolase (XBH) from Acetivibrio clariflavus. This xylan active enzyme, a member of the recently described glycoside hydrolase family 30 (GH30) subfamily 10 phylogenetic clade has been shown to strictly release xylobiose as its primary hydrolysis product. Inspection of the apo-structure reveals a glycone region X2 binding slot. When X2 binds, the nonreducing xylose in the -2 subsite is highly coordinated with numerous hydrogen bond contacts while contacts in the -1 subsite mostly reflect interactions typical for GH30 and enzymes in clan A of the carbohydrate-active enzymes database (CAZy). This structure provides an explanation for the high functional specificity of this new bacterial GH30 XBH subfamily.
Collapse
Affiliation(s)
- Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
de Sandozequi A, Salazar-Cortés JJ, Tapia-Vázquez I, Martínez-Anaya C. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis. Protein Sci 2022; 31:e4315. [PMID: 35481628 PMCID: PMC9045087 DOI: 10.1002/pro.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Expansins are a group of proteins from diverse organisms from bacteria to plants. Although expansins show structural conservation, their biological roles seem to differ among kingdoms. In plants, these proteins remodel the cell wall during plant growth and other processes. Contrarily, determination of bacterial expansin activity has proven difficult, although genetic evidence of bacterial mutants indicates that expansins participate in bacteria-plant interactions. Nevertheless, a large proportion of expansin genes are found in the genomes of free-living bacteria, suggesting roles that are independent of the interaction with living plants. Here, we analyzed all available sequences of prokaryotic expansins for correlations between surface electric charge, extra protein modules, and sequence motifs for association with the bacteria exterior after export. Additionally, information on the fate of protein after translocation across the membrane also points to bacterial cell association of expansins through six different mechanisms, such as attachment of a lipid molecule for membrane anchoring in diderm species or covalent linking to the peptidoglycan layer in monoderms such as the Bacilliales. Our results have implications for expansin function in the context of bacteria-plant interactions and also for free-living species in which expansins might affect cell-cell or cell-substrate interaction properties and indicate the need to re-examine the roles currently considered for these proteins.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan José Salazar-Cortés
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Irán Tapia-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
Synergy of Cellulase Systems between Acetivibrio thermocellus and Thermoclostridium stercorarium in Consolidated-Bioprocessing for Cellulosic Ethanol. Microorganisms 2022; 10:microorganisms10030502. [PMID: 35336078 PMCID: PMC8951355 DOI: 10.3390/microorganisms10030502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Anaerobes harbor some of the most efficient biological machinery for cellulose degradation, especially thermophilic bacteria, such as Acetivibrio thermocellus and Thermoclostridium stercorarium, which play a fundamental role in transferring lignocellulose into ethanol through consolidated bioprocessing (CBP). In this study, we compared activities of two cellulase systems under varying kinds of hemicellulose and cellulose. A. thermocellus was identified to contribute specifically to cellulose hydrolysis, whereas T. stercorarium contributes to hemicellulose hydrolysis. The two systems were assayed in various combinations to assess their synergistic effects using cellulose and corn stover as the substrates. Their maximum synergy degrees on cellulose and corn stover were, respectively, 1.26 and 1.87 at the ratio of 3:2. Furthermore, co-culture of these anaerobes on the mixture of cellulose and xylan increased ethanol concentration from 21.0 to 40.4 mM with a high cellulose/xylan-to-ethanol conversion rate of up to 20.7%, while the conversion rates of T. stercorarium and A. thermocellus monocultures were 19.3% and 15.2%. The reason is that A. thermocellus had the ability to rapidly degrade cellulose while T. stercorarium co-utilized both pentose and hexose, the metabolites of cellulose degradation, to produce ethanol. The synergistic effect of cellulase systems and metabolic pathways in A. thermocellus and T. stercorarium provides a novel strategy for the design, selection, and optimization of ethanol production from cellulosic biomass through CBP.
Collapse
|
9
|
Wu D, Wei Z, Mohamed TA, Zheng G, Qu F, Wang F, Zhao Y, Song C. Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. CHEMOSPHERE 2022; 286:131635. [PMID: 34346339 DOI: 10.1016/j.chemosphere.2021.131635] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 05/26/2023]
Abstract
Composting is a biodegradation and transformation process that converts lignocellulosic biomass into value-added products, such as humic substances (HSs). However, the recalcitrant nature of lignocellulose hinders the utilization of cellulose and hemicellulose, decreasing the bioconversion efficiency of lignocellulose. Pretreatment is an essential step to disrupt the structure of lignocellulosic biomass. Many pretreatment methods for composting may cause microbial inactivation and death. Thus, the pretreatment methods suitable for composting can promote the degradation and transformation of lignocellulosic biomass. Therefore, this review summarizes the pretreatment methods suitable for composting. Microbial consortium pretreatment, Fenton pretreatment and surfactant-assisted pretreatment for composting may improve the bioconversion process. Microbial consortium pretreatment is a cost-effective pretreatment method to enhance HSs yields during composting. On the other hand, the efficiency of enzyme production during composting is very important for the degradation of lignocellulose, whose action mechanism is unknown. Therefore, this review describes the mechanism of action of lignocellulase, the predominant microbes producing lignocellulase and their related genes. Finally, optimizing pretreatment conditions and increasing enzymatic hydrolysis to improve the quality of composts by controlling suitable microenvironmental factors and core target microbial activities as a research focus in the bioconversion of lignocellulose during composting in the future.
Collapse
Affiliation(s)
- Di Wu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Taha Ahmed Mohamed
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Guangren Zheng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Fengting Qu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Feng Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| |
Collapse
|
10
|
Crooks C, Bechle NJ, St John FJ. A New Subfamily of Glycoside Hydrolase Family 30 with Strict Xylobiohydrolase Function. Front Mol Biosci 2021; 8:714238. [PMID: 34557520 PMCID: PMC8453022 DOI: 10.3389/fmolb.2021.714238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The Acetivibrio clariflavus (basonym: Clostridium clariflavum) glycoside hydrolase family 30 cellulosomal protein encoded by the Clocl_1795 gene was highly represented during growth on cellulosic substrates. In this report, the recombinantly expressed protein has been characterized and shown to be a non-reducing terminal (NRT)-specific xylobiohydrolase (AcXbh30A). Biochemical function, optimal biophysical parameters, and phylogeny were investigated. The findings indicate that AcXbh30A strictly cleaves xylobiose from the NRT up until an α-1,2-linked glucuronic acid (GA)-decorated xylose if the number of xyloses is even or otherwise a single xylose will remain resulting in a penultimate GA-substituted xylose. Unlike recently reported xylobiohydrolases, AcXbh30A has no other detectable hydrolysis products under our optimized reaction conditions. Sequence analysis indicates that AcXbh30A represents a new GH30 subfamily. This new xylobiohydrolase may be useful for commercial production of industrial quantities of xylobiose.
Collapse
Affiliation(s)
- Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Nathan J Bechle
- Engineering Mechanics and Remote Sensing Laboratory, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| |
Collapse
|
11
|
Abstract
Glycoside hydrolase family 9 (GH9) endoglucanases are important enzymes for cellulose degradation. However, their activity on cellulose is diverse. Here, we cloned and expressed one GH9 enzyme (CalkGH9T) from Clostridium alkalicellulosi in Escherichia coli. CalkGH9T has a modular structure, containing one GH9 catalytic module, two family 3 carbohydrate binding modules, and one type I dockerin domain. CalkGH9T exhibited maximal activity at pH 7.0–8.0 and 55 °C and was resistant to urea and NaCl. It efficiently hydrolyzed carboxymethyl cellulose (CMC) but poorly degraded regenerated amorphous cellulose (RAC). Despite strongly binding to Avicel, CalkGH9T lacked the ability to hydrolyze this substrate. The hydrolysis of CMC by CalkGH9T produced a series of cello-oligomers, with cellotetraose being preferentially released. Similar proportions of soluble and insoluble reducing ends generated by hydrolysis of RAC indicated non-processive activity. Our study extends our knowledge of the molecular mechanism of cellulose hydrolysis by GH9 family endoglucanases with industrial relevance.
Collapse
|
12
|
Zhuang H, Lee PH, Wu Z, Jing H, Guan J, Tang X, Tan GYA, Leu SY. Genomic driven factors enhance biocatalyst-related cellulolysis potential in anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 333:125148. [PMID: 33878497 DOI: 10.1016/j.biortech.2021.125148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.
Collapse
Affiliation(s)
- Huichuan Zhuang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Po-Heng Lee
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Zhuoying Wu
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Houde Jing
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiaojing Tang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Shao-Yuan Leu
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Wang Q, Al Makishah NH, Li Q, Li Y, Liu W, Sun X, Wen Z, Yang S. Developing Clostridia as Cell Factories for Short- and Medium-Chain Ester Production. Front Bioeng Biotechnol 2021; 9:661694. [PMID: 34164382 PMCID: PMC8215697 DOI: 10.3389/fbioe.2021.661694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
Short- and medium-chain volatile esters with flavors and fruity fragrances, such as ethyl acetate, butyl acetate, and butyl butyrate, are usually value-added in brewing, food, and pharmacy. The esters can be naturally produced by some microorganisms. As ester-forming reactions are increasingly deeply understood, it is possible to produce esters in non-natural but more potential hosts. Clostridia are a group of important industrial microorganisms since they can produce a variety of volatile organic acids and alcohols with high titers, especially butanol and butyric acid through the CoA-dependent carbon chain elongation pathway. This implies sufficient supplies of acyl-CoA, organic acids, and alcohols in cells, which are precursors for ester production. Besides, some Clostridia could utilize lignocellulosic biomass, industrial off-gas, or crude glycerol to produce other branched or straight-chain alcohols and acids. Therefore, Clostridia offer great potential to be engineered to produce short- and medium-chain volatile esters. In the review, the efforts to produce esters from Clostridia via in vitro lipase-mediated catalysis and in vivo alcohol acyltransferase (AAT)-mediated reaction are comprehensively revisited. Besides, the advantageous characteristics of several Clostridia and clostridial consortia for bio-ester production and the driving force of synthetic biology to clostridial chassis development are also discussed. It is believed that synthetic biotechnology should enable the future development of more effective Clostridia for ester production.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Naief H Al Makishah
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
15
|
Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli DK, Puri M. Enzyme systems of thermophilic anaerobic bacteria for lignocellulosic biomass conversion. Int J Biol Macromol 2020; 168:572-590. [PMID: 33309672 DOI: 10.1016/j.ijbiomac.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; Medical Biotechnology, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
| |
Collapse
|
16
|
A novel bacterial GH30 xylobiohydrolase from Hungateiclostridium clariflavum. Appl Microbiol Biotechnol 2020; 105:185-195. [PMID: 33215261 DOI: 10.1007/s00253-020-11023-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
Typical bacterial GH30 xylanases are glucuronoxylanases requiring 4-O-methylglucuronic acid (MeGlcA) substitution of a xylan main chain for their action. They do not exhibit a significant activity on neutral xylooligosaccharides, arabinoxylan (AraX), or rhodymenan (Rho). In this work, the biochemical characterization of the bacterial Clocl_1795 xylanase from Hungateiclostridium (Clostridium) clariflavum DSM 19732 (HcXyn30A) is presented. Amino acid sequence analysis of HcXyn30A revealed that the enzyme does not contain amino acids known to be responsible for MeGlcA coordination in the -2b subsite of glucuronoxylanases. This suggested that the catalytic properties of HcXyn30A may differ from those of glucuronoxylanases. HcXyn30A shows similar specific activity on glucuronoxylan (GX) and Rho, while the specific activity on AraX is about 1000 times lower. HcXyn30A releases Xyl2 as the main product from the non-reducing end of different polymeric and oligomeric substrates. Catalytic properties of HcXyn30A resemble the properties of the fungal GH30 xylobiohydrolase from Acremonium alcalophilum, AaXyn30A. HcXyn30A is the first representative of a prokaryotic xylobiohydrolase. Its unique specificity broadens the catalytic diversity of bacterial GH30 xylanases. KEY POINTS: • Bacterial GH30 xylobiohydrolase from H. clariflavum (HcXyn30A) has been characterized. • HcXyn30A releases xylobiose from the non-reducing end of different substrates. • HcXyn30A is the first representative of bacterial xylobiohydrolase.
Collapse
|
17
|
Levi Hevroni B, Moraïs S, Ben-David Y, Morag E, Bayer EA. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum. mBio 2020; 11:e00443-20. [PMID: 32234813 PMCID: PMC7157769 DOI: 10.1128/mbio.00443-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Clostridium saccharoperbutylacetonicum is a mesophilic, anaerobic, butanol-producing bacterium, originally isolated from soil. It was recently reported that C. saccharoperbutylacetonicum possesses multiple cellulosomal elements and would potentially form the smallest cellulosome known in nature. Its genome contains only eight dockerin-bearing enzymes, and its unique scaffoldin bears two cohesins (Cohs), three X2 modules, and two carbohydrate-binding modules (CBMs). In this study, all of the cellulosome-related modules were cloned, expressed, and purified. The recombinant cohesins, dockerins, and CBMs were tested for binding activity using enzyme-linked immunosorbent assay (ELISA)-based techniques. All the enzymes were tested for their comparative enzymatic activity on seven different cellulosic and hemicellulosic substrates, thus revealing four cellulases, a xylanase, a mannanase, a xyloglucanase, and a lichenase. All dockerin-containing enzymes interacted similarly with the second cohesin (Coh2) module, whereas Coh1 was more restricted in its interaction pattern. In addition, the polysaccharide-binding properties of the CBMs within the scaffoldin were examined by two complementary assays, affinity electrophoresis and affinity pulldown. The scaffoldin of C. saccharoperbutylacetonicum exhibited high affinity for cellulosic and hemicellulosic substrates, specifically to microcrystalline cellulose and xyloglucan. Evidence that supports substrate-dependent in vivo secretion of cellulosomes is presented. The results of our analyses contribute to a better understanding of simple cellulosome systems by identifying the key players in this minimalistic system and the binding pattern of its cohesin-dockerin interaction. The knowledge gained by our study will assist further exploration of similar minimalistic cellulosomes and will contribute to the significance of specific sets of defined cellulosomal enzymes in the degradation of cellulosic biomass.IMPORTANCE Cellulosome-producing bacteria are considered among the most important bacteria in both mesophilic and thermophilic environments, owing to their capacity to deconstruct recalcitrant plant-derived polysaccharides (and notably cellulose) into soluble saccharides for subsequent processing. In many ecosystems, the cellulosome-producing bacteria are particularly effective "first responders." The massive amounts of sugars produced are potentially amenable in industrial settings to further fermentation by appropriate microbes to biofuels, notably ethanol and butanol. Among the solvent-producing bacteria, Clostridium saccharoperbutylacetonicum has the smallest cellulosome system known thus far. The importance of investigating the building blocks of such a small, multifunctional nanomachine is crucial to understanding the fundamental activities of this efficient enzymatic complex.
Collapse
Affiliation(s)
- Bosmat Levi Hevroni
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonit Ben-David
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. CHEMOSPHERE 2019; 231:588-606. [PMID: 31154237 DOI: 10.1016/j.chemosphere.2019.05.142] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 05/15/2023]
Abstract
Tremendous explosion of population has led to about 200% increment of total energy consumptions in last twenty-five years. Apart from conventional fossil fuel as limited energy source, alternative non-conventional sources are being explored worldwide to cater the energy requirement. Lignocellulosic biomass conversion for biofuel production is an important alternative energy source due to its abundance in nature and creating less harmful impacts on the environment in comparison to the coal or petroleum-based sources. However, lignocellulose biopolymer, the building block of plants, is a recalcitrant substance and difficult to break into desirable products. Commonly used chemical and physical methods for pretreating the substrate are having several limitations. Whereas, utilizing microbial potential to hydrolyse the biomass is an interesting area of research. Because of the complexity of substrate, several enzymes are required that can act synergistically to hydrolyse the biopolymer producing components like bioethanol or other energy substances. Exploring a range of microorganisms, like bacteria, fungi, yeast etc. that utilizes lignocelluloses for their energy through enzymatic breaking down the biomass, is one of the options. Scientists are working upon designing organisms through genetic engineering tools to integrate desired enzymes into a single organism (like bacterial cell). Studies on designer cellulosomes and bacteria consortia development relating consolidated bioprocessing are exciting to overcome the issue of appropriate lignocellulose digestions. This review encompasses up to date information on recent developments for effective microbial degradation processes of lignocelluloses for improved utilization to produce biofuel (bioethanol in particular) from the most plentiful substances of our planet.
Collapse
Affiliation(s)
- Rajesh Kumar Prasad
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India; Assam University, Silchar, 788011, Assam, India
| | | | | | | | - Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | | | | | | | - Dharmendra Kumar Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), HerrenhäuserStr. 2, 30419, Hannover, Germany
| |
Collapse
|
19
|
Hu B, Zhu M. Reconstitution of cellulosome: Research progress and its application in biorefinery. Biotechnol Appl Biochem 2019; 66:720-730. [DOI: 10.1002/bab.1804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/03/2019] [Indexed: 09/01/2023]
Affiliation(s)
- Bin‐Bin Hu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- Yunnan Academy of Tobacco Agricultural Sciences Kunming People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
| | - Ming‐Jun Zhu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
- College of Life and Geographic Sciences Kashi University Kashi People's Republic of China
- The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region Kashi University Kashi People's Republic of China
| |
Collapse
|
20
|
Zealand AM, Mei R, Roskilly AP, Liu W, Graham DW. Molecular microbial ecology of stable versus failing rice straw anaerobic digesters. Microb Biotechnol 2019; 12:879-891. [PMID: 31233284 PMCID: PMC6681398 DOI: 10.1111/1751-7915.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/01/2022] Open
Abstract
Waste rice straw (RS) is generated in massive quantities around the world and is often burned, creating greenhouse gas and air quality problems. Anaerobic digestion (AD) may be a better option for RS management, but RS is presumed to be comparatively refractory under anaerobic conditions without pre-treatment or co-substrates. However, this presumption assumes frequent reactor feeding regimes but less frequent feeding may be better for RS due to slow hydrolysis rates. Here, we assess how feeding frequency (FF) and organic loading rate (OLR) impacts microbial communities and biogas production in RS AD reactors. Using 16S rDNA amplicon sequencing and bioinformatics, microbial communities from five bench-scale bioreactors were characterized. At low OLR (1.0 g VS l-1 day-1 ), infrequently fed units (once every 21 days) had higher specific biogas yields than more frequent feeding (five in 7 days), although microbial community diversities were statistically similar (P > 0.05; ANOVA with Tukey comparison). In contrast, an increase in OLR to 2.0 g VS l-1 day-1 significantly changed Archaeal and fermenting Eubacterial sub-communities and the least frequency fed reactors failed. 'Stable' reactors were dominated by Methanobacterium, Methanosarcina and diverse Bacteroidetes, whereas 'failed' reactors saw shifts towards Clostridia and Christensenellaceae among fermenters and reduced methanogen abundances. Overall, OLR impacted RS AD microbial communities more than FF. However, combining infrequent feeding and lower OLRs may be better for RS AD because of higher specific yields.
Collapse
Affiliation(s)
- Andrew M. Zealand
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ran Mei
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐Champaign205 North Mathews AveUrbanaIL61801USA
| | - Anthony P. Roskilly
- Sir Joseph Swan Centre for Energy ResearchNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - WenTso Liu
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐Champaign205 North Mathews AveUrbanaIL61801USA
| | - David W. Graham
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| |
Collapse
|
21
|
Wang Y, Leng L, Islam MK, Liu F, Lin CSK, Leu SY. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization. Int J Mol Sci 2019; 20:ijms20133354. [PMID: 31288425 PMCID: PMC6651384 DOI: 10.3390/ijms20133354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022] Open
Abstract
Cellulosomes are an extracellular supramolecular multienzyme complex that can efficiently degrade cellulose and hemicelluloses in plant cell walls. The structural and unique subunit arrangement of cellulosomes can promote its adhesion to the insoluble substrates, thus providing individual microbial cells with a direct competence in the utilization of cellulosic biomass. Significant progress has been achieved in revealing the structures and functions of cellulosomes, but a knowledge gap still exists in understanding the interaction between cellulosome and lignocellulosic substrate for those derived from biorefinery pretreatment of agricultural crops. The cellulosomic saccharification of lignocellulose is affected by various substrate-related physical and chemical factors, including native (untreated) wood lignin content, the extent of lignin and xylan removal by pretreatment, lignin structure, substrate size, and of course substrate pore surface area or substrate accessibility to cellulose. Herein, we summarize the cellulosome structure, substrate-related factors, and regulatory mechanisms in the host cells. We discuss the latest advances in specific strategies of cellulosome-induced hydrolysis, which can function in the reaction kinetics and the overall progress of biorefineries based on lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Ying Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ling Leng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Md Khairul Islam
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fanghua Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
22
|
Herrera LM, Braña V, Franco Fraguas L, Castro-Sowinski S. Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiol Res 2019; 223-225:13-21. [PMID: 31178046 DOI: 10.1016/j.micres.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Flavobacterium sp. AUG42 is a cellulase-producing bacterium isolated from the Antarctic oligochaete Grania sp. (Annelida). In this work, we report that AUG42 produces a glycoside hydrolase cocktail with CMCase, PASCase and cellobiase activities (optimum pHs and temperatures ranging from 5.5 to 6.5 and 40 to 50 °C, respectively). The time-course analyses of the bacterial growth and cellulase production showed that the cocktail has maximal activity at the stationary phase when growing at 16 °C with filter paper as a cellulosic carbon source, among the tested substrates. The analyses of the CAZome and the identification of secreted proteins by shotgun Mass Spectrometry analysis showed that five glycoside hydrolyses are present in the bacterial secretome, which probably cooperate in the degradation of the cellulosic substrates. Two of these glycoside hydrolyses may harbor putative carbohydrate binding modules, both with a cleft-like active site. The cellulolytic cocktail was assayed in saccharification experiments using carboxymethylcellulose as a substrate and results showed the release of glucose (a fermentable sugar) and other reducing-sugars, after 24 h incubation. The ecological relevance of producing cellulases in the Antarctic environment, as well as their potential use in the bio-refinery industry, are discussed.
Collapse
Affiliation(s)
- Lorena M Herrera
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República (UdelaR), Iguá 4225, 11400, Montevideo, Uruguay
| | - Victoria Braña
- Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Laura Franco Fraguas
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República (UdelaR), Iguá 4225, 11400, Montevideo, Uruguay; Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
23
|
Grinberg IR, Yaniv O, de Ora LO, Muñoz-Gutiérrez I, Hershko A, Livnah O, Bayer EA, Borovok I, Frolow F, Lamed R, Voronov-Goldman M. Distinctive ligand-binding specificities of tandem PA14 biomass-sensory elements from Clostridium thermocellum and Clostridium clariflavum. Proteins 2019; 87:917-930. [PMID: 31162722 PMCID: PMC6852018 DOI: 10.1002/prot.25753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 11/25/2022]
Abstract
Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi‐enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI) factors that have cognate membrane‐associated anti‐σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure‐function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14‐superfamily motifs. The X‐ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4‐dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3‐dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation‐related genes. Structural similarity between clostridial PA14 dyads to PA14‐containing proteins in yeast helped identify another crucial signature element: the calcium‐binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A) is dominant in directing the binding to the ligand in both bacteria. The two X‐ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules.
Collapse
Affiliation(s)
- Inna Rozman Grinberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oren Yaniv
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Lizett Ortiz de Ora
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Department of Chemistry, University of California, Irvine, California
| | - Iván Muñoz-Gutiérrez
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.,Outreach Research Training and Minority Science Programs, School of Biological Sciences, University of California, Irvine, California
| | - Almog Hershko
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Oded Livnah
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Milana Voronov-Goldman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Zhivin-Nissan O, Dassa B, Morag E, Kupervaser M, Levin Y, Bayer EA. Unraveling essential cellulosomal components of the ( Pseudo) Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:115. [PMID: 31086567 PMCID: PMC6507058 DOI: 10.1186/s13068-019-1447-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/20/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo)Bacteroides cellulosolvens is a cellulolytic bacterium that produces the most extensive and intricate cellulosomal system known in nature. Recently, the elaborate architecture of the B. cellulosolvens cellulosomal system was revealed from analysis of its genome sequence, and the first evidence regarding the interactions between its structural and enzymatic components were detected in vitro. Yet, the understanding of the cellulolytic potential of the bacterium in carbohydrate deconstruction is inextricably linked to its high-molecular-weight protein complexes, which are secreted from the bacterium. RESULTS The current proteome-wide work reveals patterns of protein expression of the various cellulosomal components, and explores the signature of differential expression upon growth of the bacterium on two major carbon sources-cellobiose and microcrystalline cellulose. Mass spectrometry analysis of the bacterial secretome revealed the expression of 24 scaffoldin structural units and 166 dockerin-bearing components (mainly enzymes), in addition to free enzymatic subunits. The dockerin-bearing components comprise cell-free and cell-bound cellulosomes for more efficient carbohydrate degradation. Various glycoside hydrolase (GH) family members were represented among 102 carbohydrate-degrading enzymes, including the omnipresent, most abundant GH48 exoglucanase. Specific cellulosomal components were found in different molecular-weight fractions associated with cell growth on different carbon sources. Overall, microcrystalline cellulose-derived cellulosomes showed markedly higher expression levels of the structural and enzymatic components, and exhibited the highest degradation activity on five different cellulosic and/or hemicellulosic carbohydrates. The cellulosomal activity of B. cellulosolvens showed high degradation rates that are very promising in biotechnological terms and were compatible with the activity levels exhibited by Clostridium thermocellum purified cellulosomes. CONCLUSIONS The current research demonstrates the involvement of key cellulosomal factors that participate in the mechanism of carbohydrate degradation by B. cellulosolvens. The powerful ability of the bacterium to exhibit different degradation strategies on various carbon sources was revealed. The novel reservoir of cellulolytic components of the cellulosomal degradation machineries may serve as a pool for designing new cellulolytic cocktails for biotechnological purposes.
Collapse
Affiliation(s)
- Olga Zhivin-Nissan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Pore SD, Engineer A, Dagar SS, Dhakephalkar PK. Meta-omics based analyses of microbiome involved in biomethanation of rice straw in a thermophilic anaerobic bioreactor under optimized conditions. BIORESOURCE TECHNOLOGY 2019; 279:25-33. [PMID: 30710817 DOI: 10.1016/j.biortech.2019.01.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Biomethanation of rice straw was performed at 55 °C without thermochemical pretreatment using cattle dung supplemented with Methanothermobacter thermautotrophicus strains. Methane yield of 323 ml g-1 VS obtained under optimized conditions such as particle size (1 mm), carbon to nitrogen ratio (15:1), substrate to inoculum ratio (1:1), organic loading rate (7.5% w/v) and hydraulic retention time (20 days), was one of the highest ever reported from rice straw. Metagenome analysis revealed several putative novel taxa among resident microbes. The genomes of Clostridium, Hungateiclostridium, Alkaliphilus, Anaerocolumna, Olsenella, Paenibacillus, Pseudoclostridium, Tepidanaerobacter and Turicibacter were recovered as metagenome assisted genomes. Clostridium spp. and M. thermautotrophicus were the dominant hydrolytic and methanogenic microbes, respectively. Syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis was found to be the major pathway for methane production. Efficient thermophilic biomethanation of rice straw without thermochemical pretreatment using cattle dung supplemented with M. thermautotrophicus is reported for the first time.
Collapse
Affiliation(s)
- Soham D Pore
- Bioenergy Group, MACS Agharkar Research Institute, Pune 411004, Maharashtra, India; Savitribai Phule Pune University, Pune 411007, India
| | - Anupama Engineer
- Bioenergy Group, MACS Agharkar Research Institute, Pune 411004, Maharashtra, India
| | - Sumit Singh Dagar
- Bioenergy Group, MACS Agharkar Research Institute, Pune 411004, Maharashtra, India; Savitribai Phule Pune University, Pune 411007, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, MACS Agharkar Research Institute, Pune 411004, Maharashtra, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
26
|
Kahn A, Moraïs S, Galanopoulou AP, Chung D, Sarai NS, Hengge N, Hatzinikolaou DG, Himmel ME, Bomble YJ, Bayer EA. Creation of a functional hyperthermostable designer cellulosome. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:44. [PMID: 30858881 PMCID: PMC6394049 DOI: 10.1186/s13068-019-1386-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/20/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Renewable energy has become a field of high interest over the past decade, and production of biofuels from cellulosic substrates has a particularly high potential as an alternative source of energy. Industrial deconstruction of biomass, however, is an onerous, exothermic process, the cost of which could be decreased significantly by use of hyperthermophilic enzymes. An efficient way of breaking down cellulosic substrates can also be achieved by highly efficient enzymatic complexes called cellulosomes. The modular architecture of these multi-enzyme complexes results in substrate targeting and proximity-based synergy among the resident enzymes. However, cellulosomes have not been observed in hyperthermophilic bacteria. RESULTS Here, we report the design and function of a novel hyperthermostable "designer cellulosome" system, which is stable and active at 75 °C. Enzymes from Caldicellulosiruptor bescii, a highly cellulolytic hyperthermophilic anaerobic bacterium, were selected and successfully converted to the cellulosomal mode by grafting onto them divergent dockerin modules that can be inserted in a precise manner into a thermostable chimaeric scaffoldin by virtue of their matching cohesins. Three pairs of cohesins and dockerins, selected from thermophilic microbes, were examined for their stability at extreme temperatures and were determined stable at 75 °C for at least 72 h. The resultant hyperthermostable cellulosome complex exhibited the highest levels of enzymatic activity on microcrystalline cellulose at 75 °C, compared to those of previously reported designer cellulosome systems and the native cellulosome from Clostridium thermocellum. CONCLUSION The functional hyperthermophilic platform fulfills the appropriate physico-chemical properties required for exothermic processes. This system can thus be adapted for other types of thermostable enzyme systems and could serve as a basis for a variety of cellulolytic and non-cellulolytic industrial objectives at high temperatures.
Collapse
Affiliation(s)
- Amaranta Kahn
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000 Beer-Sheva, Israel
| | - Anastasia P. Galanopoulou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- Present Address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Neal Hengge
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Dimitris G. Hatzinikolaou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
27
|
Kim CC, Healey GR, Kelly WJ, Patchett ML, Jordens Z, Tannock GW, Sims IM, Bell TJ, Hedderley D, Henrissat B, Rosendale DI. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. ISME JOURNAL 2019; 13:1437-1456. [PMID: 30728469 PMCID: PMC6776006 DOI: 10.1038/s41396-019-0363-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.
Collapse
Affiliation(s)
- Caroline C Kim
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand. .,Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.
| | - Genelle R Healey
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.,Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | | | - Mark L Patchett
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Zoe Jordens
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, Microbiome Otago, University of Otago, Dunedin, 9016, New Zealand
| | - Ian M Sims
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Tracey J Bell
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, F-13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Douglas I Rosendale
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.
| |
Collapse
|
28
|
Xin F, Dong W, Zhang W, Ma J, Jiang M. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing. Trends Biotechnol 2019; 37:167-180. [DOI: 10.1016/j.tibtech.2018.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
29
|
Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass. Appl Biochem Biotechnol 2018; 187:994-1010. [DOI: 10.1007/s12010-018-2864-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
|
30
|
Aikawa S, Baramee S, Sermsathanaswadi J, Thianheng P, Tachaapaikoon C, Shikata A, Waeonukul R, Pason P, Ratanakhanokchai K, Kosugi A. Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium. Syst Appl Microbiol 2018; 41:261-269. [DOI: 10.1016/j.syapm.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
|
31
|
Li R, Feng Y, Liu S, Qi K, Cui Q, Liu YJ. Inducing effects of cellulosic hydrolysate components of lignocellulose on cellulosome synthesis in Clostridium thermocellum. Microb Biotechnol 2018; 11:905-916. [PMID: 29943510 PMCID: PMC6116742 DOI: 10.1111/1751-7915.13293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023] Open
Abstract
Cellulosome is a highly efficient supramolecular machine for lignocellulose degradation, and its substrate‐coupled regulation requires soluble transmembrane signals. However, the inducers for cellulosome synthesis and the inducing effect have not been clarified quantitatively. Values of cellulosome production capacity (CPC) and estimated specific activity (eSA) were calculated based on the primary scaffoldin ScaA to define the stimulating effects on the cellulosome synthesis in terms of quantity and quality respectively. The estimated cellulosome production of Clostridium thermocellum on glucose was at a low housekeeping level. Both Avicel and cellobiose increased CPCs of the cells instead of the eSAs of the cellulosome. The CPC of Avicel‐grown cells was over 20‐fold of that of glucose‐grown cells, while both Avicel‐ and glucose‐derived cellulosomes showed similar eSA. The CPC of cellobiose‐grown cells was also over three times higher than glucose‐grown cells, but the eSA of cellobiose‐derived cellulosome was 16% lower than that of the glucose‐derived cellulosome. Our results indicated that cello‐oligosaccharides played the key roles in inducing the synthesis of the cellulosome, but non‐cellulosic polysaccharides showed no inducing effects.
Collapse
Affiliation(s)
- Renmin Li
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shiyue Liu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Qi
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ya-Jun Liu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
32
|
Colocalization and Disposition of Cellulosomes in Clostridium clariflavum as Revealed by Correlative Superresolution Imaging. mBio 2018; 9:mBio.00012-18. [PMID: 29437917 PMCID: PMC5801460 DOI: 10.1128/mbio.00012-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellulosomes are multienzyme complexes produced by anaerobic, cellulolytic bacteria for highly efficient breakdown of plant cell wall polysaccharides. Clostridium clariflavum is an anaerobic, thermophilic bacterium that produces the largest assembled cellulosome complex in nature to date, comprising three types of scaffoldins: a primary scaffoldin, ScaA; an adaptor scaffoldin, ScaB; and a cell surface anchoring scaffoldin, ScaC. This complex can contain 160 polysaccharide-degrading enzymes. In previous studies, we proposed potential types of cellulosome assemblies in C. clariflavum and demonstrated that these complexes are released into the extracellular medium. In the present study, we explored the disposition of the highly structured, four-tiered cell-anchored cellulosome complex of this bacterium. Four separate, integral cellulosome components were subjected to immunolabeling: ScaA, ScaB, ScaC, and the cellulosome’s most prominent enzyme, GH48. Imaging of the cells by correlating scanning electron microscopy and three-dimensional (3D) superresolution fluorescence microscopy revealed that some of the protuberance-like structures on the cell surface represent cellulosomes and that the components are highly colocalized and organized by a defined hierarchy on the cell surface. The display of the cellulosome on the cell surface was found to differ between cells grown on soluble or insoluble substrates. Cell growth on microcrystalline cellulose and wheat straw exhibited dramatic enhancement in the amount of cellulosomes displayed on the bacterial cell surface. Conversion of plant biomass into soluble sugars is of high interest for production of fermentable industrial materials, such as biofuels. Biofuels are a very attractive alternative to fossil fuels, both for recycling of agricultural wastes and as a source of sustainable energy. Cellulosomes are among the most efficient enzymatic degraders of biomass known to date, due to the incorporation of a multiplicity of enzymes into a potent, multifunctional nanomachine. The intimate association with the bacterial cell surface is inherent in its efficient action on lignocellulosic substrates, although this property has not been properly addressed experimentally. The dramatic increase in cellulosome performance on recalcitrant feedstocks is critical for the design of cost-effective processes for efficient biomass degradation.
Collapse
|
33
|
Wong MT, Wang W, Couturier M, Razeq FM, Lombard V, Lapebie P, Edwards EA, Terrapon N, Henrissat B, Master ER. Comparative Metagenomics of Cellulose- and Poplar Hydrolysate-Degrading Microcosms from Gut Microflora of the Canadian Beaver ( Castor canadensis) and North American Moose ( Alces americanus) after Long-Term Enrichment. Front Microbiol 2017; 8:2504. [PMID: 29326667 PMCID: PMC5742341 DOI: 10.3389/fmicb.2017.02504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
To identify carbohydrate-active enzymes (CAZymes) that might be particularly relevant for wood fiber processing, we performed a comparative metagenomic analysis of digestive systems from Canadian beaver (Castor canadensis) and North American moose (Alces americanus) following 3 years of enrichment on either microcrystalline cellulose or poplar hydrolysate. In total, 9,386 genes encoding CAZymes and carbohydrate-binding modules (CBMs) were identified, with up to half predicted to originate from Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria phyla, and up to 17% from unknown phyla. Both PCA and hierarchical cluster analysis distinguished the annotated glycoside hydrolase (GH) distributions identified herein, from those previously reported for grass-feeding mammals and herbivorous foragers. The CAZyme profile of moose rumen enrichments also differed from a recently reported moose rumen metagenome, most notably by the absence of GH13-appended dockerins. Consistent with substrate-driven convergence, CAZyme profiles from both poplar hydrolysate-fed cultures differed from cellulose-fed cultures, most notably by increased numbers of unique sequences belonging to families GH3, GH5, GH43, GH53, and CE1. Moreover, pairwise comparisons of moose rumen enrichments further revealed higher counts of GH127 and CE15 families in cultures fed with poplar hydrolysate. To expand our scope to lesser known carbohydrate-active proteins, we identified and compared multi-domain proteins comprising both a CBM and domain of unknown function (DUF) as well as proteins with unknown function within the 416 predicted polysaccharide utilization loci (PULs). Interestingly, DUF362, identified in iron-sulfur proteins, was consistently appended to CBM9; on the other hand, proteins with unknown function from PULs shared little identity unless from identical PULs. Overall, this study sheds new light on the lignocellulose degrading capabilities of microbes originating from digestive systems of mammals known for fiber-rich diets, and highlights the value of enrichment to select new CAZymes from metagenome sequences for future biochemical characterization.
Collapse
Affiliation(s)
- Mabel T Wong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Weijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Marie Couturier
- Centre de Recherches sur les Macromolécules Végétales - Université Grenoble Alpes, Grenoble, France.,Centre National de la Recherche Scientifique, Centre de Recherches sur les Macromolécules Végétales, Grenoble, France
| | - Fakhria M Razeq
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France.,UMR 7257, Centre National de la Recherche Scientifique, Marseille, France
| | - Pascal Lapebie
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- UMR 7257, Centre National de la Recherche Scientifique, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
34
|
Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme. Microorganisms 2017; 5:microorganisms5040074. [PMID: 29156585 PMCID: PMC5748583 DOI: 10.3390/microorganisms5040074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
The bacterial cellulosome is an extracellular, multi-enzyme machinery, which efficiently depolymerizes plant biomass by degrading plant cell wall polysaccharides. Several cellulolytic bacteria have evolved various elaborate modular architectures of active cellulosomes. We present here a genome-wide analysis of a dozen mesophilic clostridia species, including both well-studied and yet-undescribed cellulosome-producing bacteria. We first report here, the presence of cellulosomal elements, thus expanding our knowledge regarding the prevalence of the cellulosomal paradigm in nature. We explored the genomic organization of key cellulosome components by comparing the cellulosomal gene clusters in each bacterial species, and the conserved sequence features of the specific cellulosomal modules (cohesins and dockerins), on the background of their phylogenetic relationship. Additionally, we performed comparative analyses of the species-specific repertoire of carbohydrate-degrading enzymes for each of the clostridial species, and classified each cellulosomal enzyme into a specific CAZy family, thus indicating their putative enzymatic activity (e.g., cellulases, hemicellulases, and pectinases). Our work provides, for this large group of bacteria, a broad overview of the blueprints of their multi-component cellulosomal complexes. The high similarity of their scaffoldin clusters and dockerin-based recognition residues suggests a common ancestor, and/or extensive horizontal gene transfer, and potential cross-species recognition. In addition, the sporadic spatial organization of the numerous dockerin-containing genes in several of the genomes, suggests the importance of the cellulosome paradigm in the given bacterial species. The information gained in this work may be utilized directly or developed further by genetically engineering and optimizing designer cellulosome systems for enhanced biotechnological biomass deconstruction and biofuel production.
Collapse
|
35
|
Yoav S, Barak Y, Shamshoum M, Borovok I, Lamed R, Dassa B, Hadar Y, Morag E, Bayer EA. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium ( Ruminiclostridium) thermocellum DSM 1313? BIOTECHNOLOGY FOR BIOFUELS 2017; 10:222. [PMID: 28932263 PMCID: PMC5604425 DOI: 10.1186/s13068-017-0909-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/07/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium (Ruminiclostridium) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. RESULTS Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. CONCLUSION The results reported here highlight the finding that cellulosomes derived from cells grown on glucose and microcrystalline cellulose are more efficient in their action on cellulosic substrates than other cellulosome preparations. These results should be considered in the future development of C. thermocellum-based cellulolytic cocktails, designer cellulosomes, or engineering of improved strains for deconstruction of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shahar Yoav
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
- Designer Energy Ltd, 2 Bergman Street, Rehovot, Israel
| | - Yoav Barak
- Bio-Nano Unit, Chemical Research Support, The Weizmann Institute of Science, 761000 Rehovot, Israel
| | - Melina Shamshoum
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Bareket Dassa
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
36
|
Zhivin O, Dassa B, Moraïs S, Utturkar SM, Brown SD, Henrissat B, Lamed R, Bayer EA. Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:211. [PMID: 28912832 PMCID: PMC5590126 DOI: 10.1186/s13068-017-0898-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/29/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo) Bacteroides cellulosolvens is an anaerobic, mesophilic, cellulolytic, cellulosome-producing clostridial bacterium capable of utilizing cellulose and cellobiose as carbon sources. Recently, we sequenced the B. cellulosolvens genome, and subsequent comprehensive bioinformatic analysis, herein reported, revealed an unprecedented number of cellulosome-related components, including 78 cohesin modules scattered among 31 scaffoldins and more than 200 dockerin-bearing ORFs. In terms of numbers, the B. cellulosolvens cellulosome system represents the most intricate, compositionally diverse cellulosome system yet known in nature. RESULTS The organization of the B. cellulosolvens cellulosome is unique compared to previously described cellulosome systems. In contrast to all other known cellulosomes, the cohesin types are reversed for all scaffoldins i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. Many of the type II dockerin-bearing ORFs include X60 modules, which are known to stabilize type II cohesin-dockerin interactions. In the present work, we focused on revealing the architectural arrangement of cellulosome structure in this bacterium by examining numerous interactions between the various cohesin and dockerin modules. In total, we cloned and expressed 43 representative cohesins and 27 dockerins. The results revealed various possible architectures of cell-anchored and cell-free cellulosomes, which serve to assemble distinctive cellulosome types via three distinct cohesin-dockerin specificities: type I, type II, and a novel-type designated R (distinct from type III interactions, predominant in ruminococcal cellulosomes). CONCLUSIONS The results of this study provide novel insight into the architecture and function of the most intricate and extensive cellulosomal system known today, thereby extending significantly our overall knowledge base of cellulosome systems and their components. The robust cellulosome system of B. cellulosolvens, with its unique binding specificities and reversal of cohesin-dockerin types, has served to amend our view of the cellulosome paradigm. Revealing new cellulosomal interactions and arrangements is critical for designing high-efficiency artificial cellulosomes for conversion of plant-derived cellulosic biomass towards improved production of biofuels.
Collapse
Affiliation(s)
- Olga Zhivin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagar M. Utturkar
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
| | - Steven D. Brown
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
- Biosciences Division, Energy and Environment Directorate, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University and CNRS, Marseille, France
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
37
|
Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol 2017; 44:151-160. [DOI: 10.1016/j.sbi.2017.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
|
38
|
Kathera C, Dulla EL, Chinahadri VP, Ramesh TSM, Basavaraju S, Jasti P. Proteomic characterization and bio-informatic analysis of differentially expressed E. coli Nissle 1917 proteins with response to cocoti wine stress. 3 Biotech 2017; 7:151. [PMID: 28597165 DOI: 10.1007/s13205-017-0787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/21/2017] [Indexed: 10/19/2022] Open
Abstract
The present study emphases the comparative proteomic analysis of Escherichia coli Nissle 1917 under cocoti palm wine stress and identified differentially expressed proteins. Protein samples were analyzed by 2-D, MALDI-TOF combined with MS access. In 2-D electrophoresis, eight differentially expressed proteins were identified: five up-regulated, two down-regulated and one newly expressed protein. Protein spots were digested with trypsin for MALDI-TOF-MS analysis; protein sequences were obtained from MASCOT search. Sequences were aligned with template using Swiss Model server. Phyre-2 was used to predict homology modeling, RasMol was used to analyze the modeling structures, PSVS server was utilized to validate the protein structure by Ramachandran's plot analysis, physical and chemical properties were analyzed using ProtParam server, Phylogenetic tree was constructed by Mega4. UniProt search helps to find protein functional information of differentially expressed proteins, involved in catalytic activities, regulation mechanisms, DNA damage stimulus, anti-termination and termination process, protein binding, electron transport mechanism, and cell signaling process functions. A detailed exploration of the proteins under cocoti palm wine stress have provided the composition, structure and functions of the expressed proteins for further investigation.
Collapse
|
39
|
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 2017; 15:83-95. [PMID: 27941816 DOI: 10.1038/nrmicro.2016.164] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
40
|
Badalato N, Guillot A, Sabarly V, Dubois M, Pourette N, Pontoire B, Robert P, Bridier A, Monnet V, Sousa DZ, Durand S, Mazéas L, Buléon A, Bouchez T, Mortha G, Bize A. Whole Proteome Analyses on Ruminiclostridium cellulolyticum Show a Modulation of the Cellulolysis Machinery in Response to Cellulosic Materials with Subtle Differences in Chemical and Structural Properties. PLoS One 2017; 12:e0170524. [PMID: 28114419 PMCID: PMC5256962 DOI: 10.1371/journal.pone.0170524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/05/2017] [Indexed: 11/25/2022] Open
Abstract
Lignocellulosic materials from municipal solid waste emerge as attractive resources for anaerobic digestion biorefinery. To increase the knowledge required for establishing efficient bioprocesses, dynamics of batch fermentation by the cellulolytic bacterium Ruminiclostridium cellulolyticum were compared using three cellulosic materials, paper handkerchief, cotton discs and Whatman filter paper. Fermentation of paper handkerchief occurred the fastest and resulted in a specific metabolic profile: it resulted in the lowest acetate-to-lactate and acetate-to-ethanol ratios. By shotgun proteomic analyses of paper handkerchief and Whatman paper incubations, 151 proteins with significantly different levels were detected, including 20 of the 65 cellulosomal components, 8 non-cellulosomal CAZymes and 44 distinct extracytoplasmic proteins. Consistent with the specific metabolic profile observed, many enzymes from the central carbon catabolic pathways had higher levels in paper handkerchief incubations. Among the quantified CAZymes and cellulosomal components, 10 endoglucanases mainly from the GH9 families and 7 other cellulosomal subunits had lower levels in paper handkerchief incubations. An in-depth characterization of the materials used showed that the lower levels of endoglucanases in paper handkerchief incubations could hypothetically result from its lower crystallinity index (50%) and degree of polymerization (970). By contrast, the higher hemicellulose rate in paper handkerchief (13.87%) did not result in the enhanced expression of enzyme with xylanase as primary activity, including enzymes from the “xyl-doc” cluster. It suggests the absence, in this material, of molecular structures that specifically lead to xylanase induction. The integrated approach developed in this work shows that subtle differences among cellulosic materials regarding chemical and structural characteristics have significant effects on expressed bacterial functions, in particular the cellulolysis machinery, resulting in different metabolic patterns and degradation dynamics.
Collapse
Affiliation(s)
| | - Alain Guillot
- UMR 1319 MICALIS, PAPPSO, INRA, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | - Diana Z. Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | - Gérard Mortha
- LGP2, UMR CNRS 5518, Grenoble INP-Pagora, Saint Martin d'Hères, France
| | | |
Collapse
|
41
|
Stern J, Artzi L, Moraïs S, Fontes CMGA, Bayer EA. Carbohydrate Depolymerization by Intricate Cellulosomal Systems. Methods Mol Biol 2017; 1588:93-116. [PMID: 28417363 DOI: 10.1007/978-1-4939-6899-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology has been established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
Collapse
Affiliation(s)
- Johanna Stern
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Lior Artzi
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Sarah Moraïs
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Edward A Bayer
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel.
| |
Collapse
|
42
|
Nash MA, Smith SP, Fontes CM, Bayer EA. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Curr Opin Struct Biol 2016; 40:89-96. [PMID: 27579515 DOI: 10.1016/j.sbi.2016.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Cohesins and dockerins are complementary interacting protein modules that form stable and highly specific receptor-ligand complexes. They play a crucial role in the assembly of cellulose-degrading multi-enzyme complexes called cellulosomes and have potential applicability in several technology areas, including biomass conversion processes. Here, we describe several exceptional properties of cohesin-dockerin complexes, including their tenacious biochemical affinity, remarkably high mechanostability and a dual-binding mode of recognition that is contrary to the conventional lock-and-key model of receptor-ligand interactions. We focus on structural aspects of the dual mode of cohesin-dockerin binding, highlighting recent single-molecule analysis techniques for its explicit characterization.
Collapse
Affiliation(s)
- Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany; Department of Chemistry, University of Basel, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH-Zürich), 4058 Basel, Switzerland.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Carlos Mga Fontes
- CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
43
|
Davidi L, Moraïs S, Artzi L, Knop D, Hadar Y, Arfi Y, Bayer EA. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proc Natl Acad Sci U S A 2016; 113:10854-9. [PMID: 27621442 PMCID: PMC5047212 DOI: 10.1073/pnas.1608012113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient breakdown of lignocellulose polymers into simple molecules is a key technological bottleneck limiting the production of plant-derived biofuels and chemicals. In nature, plant biomass degradation is achieved by the action of a wide range of microbial enzymes. In aerobic microorganisms, these enzymes are secreted as discrete elements in contrast to certain anaerobic bacteria, where they are assembled into large multienzyme complexes termed cellulosomes. These complexes allow for very efficient hydrolysis of cellulose and hemicellulose due to the spatial proximity of synergistically acting enzymes and to the limited diffusion of the enzymes and their products. Recently, designer cellulosomes have been developed to incorporate foreign enzymatic activities in cellulosomes so as to enhance lignocellulose hydrolysis further. In this study, we complemented a cellulosome active on cellulose and hemicellulose by addition of an enzyme active on lignin. To do so, we designed a dockerin-fused variant of a recently characterized laccase from the aerobic bacterium Thermobifida fusca The resultant chimera exhibited activity levels similar to the wild-type enzyme and properly integrated into the designer cellulosome. The resulting complex yielded a twofold increase in the amount of reducing sugars released from wheat straw compared with the same system lacking the laccase. The unorthodox use of aerobic enzymes in designer cellulosome machinery effects simultaneous degradation of the three major components of the plant cell wall (cellulose, hemicellulose, and lignin), paving the way for more efficient lignocellulose conversion into soluble sugars en route to alternative fuels production.
Collapse
Affiliation(s)
- Lital Davidi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Doriv Knop
- Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yitzhak Hadar
- Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yonathan Arfi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
44
|
Moraïs S, Cockburn DW, Ben-David Y, Koropatkin NM, Martens EC, Duncan SH, Flint HJ, Mizrahi I, Bayer EA. Lysozyme activity of theRuminococcus champanellensiscellulosome. Environ Microbiol 2016; 18:5112-5122. [DOI: 10.1111/1462-2920.13501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah Moraïs
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| | - Darrell W. Cockburn
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Yonit Ben-David
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Eric C. Martens
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Sylvia H. Duncan
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen; Aberdeen UK
| | - Harry J. Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen; Aberdeen UK
| | - Itzhak Mizrahi
- The Department of Life Sciences & the National Institute for Biotechnology in the Negev; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Edward A. Bayer
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
45
|
Martinez-Anaya C. Understanding the structure and function of bacterial expansins: a prerequisite towards practical applications for the bioenergy and agricultural industries. Microb Biotechnol 2016; 9:727-736. [PMID: 27365165 PMCID: PMC5072189 DOI: 10.1111/1751-7915.12377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Since the publication of a landmark article on the structure of EXLX1 from Bacillus subtilis in 2011, our knowledge of bacterial expansins has steadily increased and our view and understanding of these enigmatic proteins has advanced with relation to their structure, phylogenetic relationships and substrate interaction, although the molecular basis for their mechanism of action remains to be determined. Lignocellulosic material represents a source of fermentable sugars for the production of biofuels, and cell‐wall degrading activities are essential to efficiently release such sugars from their polymeric structures. Because expansins from fungi and bacteria seem to be required to properly colonize or cause disease to plant tissues, and because they share some characteristics with their plant counterparts for loosening the cell wall they have been seen as a promising tool to overcome the recalcitrance of these materials. However, microbial expansins activity is at best, very low compared with plant expansins activity. This revision analyses recent work on bacterial expansins structure, function and biological role, emphasizing our need to focus on their mechanism of action as a means to design better strategies for their use, in both in the energy and agricultural industries.
Collapse
Affiliation(s)
- Claudia Martinez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, 62210, Morelos, México.
| |
Collapse
|
46
|
Gunnoo M, Cazade PA, Galera-Prat A, Nash MA, Czjzek M, Cieplak M, Alvarez B, Aguilar M, Karpol A, Gaub H, Carrión-Vázquez M, Bayer EA, Thompson D. Nanoscale Engineering of Designer Cellulosomes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5619-47. [PMID: 26748482 DOI: 10.1002/adma.201503948] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/01/2015] [Indexed: 05/27/2023]
Abstract
Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.
Collapse
Affiliation(s)
- Melissabye Gunnoo
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Pierre-André Cazade
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Albert Galera-Prat
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC, Université Paris 06, and Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique, de Roscoff, CS 90074, F-29688, Roscoff cedex, Bretagne, France
| | - Marek Cieplak
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Beatriz Alvarez
- Biopolis S.L., Parc Científic de la Universitat de Valencia, Edificio 2, C/Catedrático Agustín Escardino 9, 46980, Paterna (Valencia), Spain
| | - Marina Aguilar
- Abengoa, S.A., Palmas Altas, Calle Energía Solar nº 1, 41014, Seville, Spain
| | - Alon Karpol
- Designer Energy Ltd., 2 Bergman St., Tamar Science Park, Rehovot, 7670504, Israel
| | - Hermann Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Damien Thompson
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| |
Collapse
|
47
|
Willson BJ, Kovács K, Wilding-Steele T, Markus R, Winzer K, Minton NP. Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:109. [PMID: 27222664 PMCID: PMC4877998 DOI: 10.1186/s13068-016-0526-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The use of fossil fuels is no longer tenable. Not only are they a finite resource, their use is damaging the environment through pollution and global warming. Alternative, environmentally friendly, renewable sources of chemicals and fuels are required. To date, the focus has been on using lignocellulose as a feedstock for microbial fermentation. However, its recalcitrance to deconstruction is making the development of economic processes extremely challenging. One solution is the generation of an organism suitable for use in consolidated bioprocessing (CBP), i.e. one able to both hydrolyse lignocellulose and ferment the released sugars, and this represents an important goal for synthetic biology. We aim to use synthetic biology to develop the solventogenic bacterium C. acetobutylicum as a CBP organism through the introduction of a cellulosome, a complex of cellulolytic enzymes bound to a scaffold protein called a scaffoldin. In previous work, we were able to demonstrate the in vivo production of a C. thermocellum-derived minicellulosome by recombinant strains of C. acetobutylicum, and aim to develop on this success, addressing potential issues with the previous strategy. RESULTS The genes for the cellulosomal enzymes Cel9G, Cel48F, and Xyn10A from C. cellulolyticum were integrated into the C. acetobutylicum genome using Allele-Coupled Exchange (ACE) technology, along with a miniscaffoldin derived from C. cellulolyticum CipC. The possibility of anchoring the recombinant cellulosome to the cell surface using the native sortase system was assessed, and the cellulolytic properties of the recombinant strains were assayed via plate growth, batch fermentation and sugar release assays. CONCLUSIONS We have been able to demonstrate the synthesis and in vivo assembly of a four-component minicellulosome by recombinant C. acetobutylicum strains. Furthermore, we have been able to anchor a minicellulosome to the C. acetobutylicum cell wall by the use of the native sortase system. The recombinant strains display an improved growth phenotype on xylan and an increase in released reducing sugar from several substrates including untreated powdered wheat straw. This constitutes an important milestone towards the development of a truly cellulolytic strain suitable for CBP.
Collapse
Affiliation(s)
- Benjamin J. Willson
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Tom Wilding-Steele
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Robert Markus
- />SLIM Imaging Unit, Faculty of Medicine and Health Sciences, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Klaus Winzer
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Nigel P. Minton
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
48
|
Artzi L, Morag E, Shamshoum M, Bayer EA. Cellulosomal expansin: functionality and incorporation into the complex. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:61. [PMID: 26973715 PMCID: PMC4788839 DOI: 10.1186/s13068-016-0474-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/02/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Expansins are relatively small proteins that lack enzymatic activity and are found in plants and microorganisms. The function of these proteins is to disrupt the plant cell walls by interfering with the non-covalent interchain bonding of the polysaccharides. Expansins were found to be important for plant growth, but they are also expressed by various bacteria known to have interactions with plants. Clostridium clariflavum is a plant cell wall-degrading bacterium with a highly elaborate cellulosomal system. Among its numerous dockerin-containing genes, two expansin-like proteins, Clocl_1862 and Clocl_1298 (termed herein CclEXL1 and CclEXL2) were identified, and CclEXL1 was found to be expressed as part of the cellulosome system. This is the first time that an expansin-like protein is identified in a cellulosome complex, which implicates its possible role in biomass deconstruction. RESULTS In the present article, we analyzed the functionality of CclEXL1. Its dockerin was characterized and shown to bind selectively to type-I cohesins of C. clariflavum, with preferential binding to the cohesin of ScaG, and additionally to a type-I cohesin of C. cellulolyticum. We demonstrated experimentally that the expansin-like protein binds preferentially to microcrystalline cellulose, but it also binds to acid-swollen cellulose, xylan, and wheat straw. CclEXL1 exhibited a pronounced loosening effect on filter paper, which resulted in substantial decrease in tensile stress. The C. clariflavum expansin-like protein thus enhances significantly enzymatic hydrolysis of cellulose, both by C. clariflavum cellulosomes and two major cellulosomal cellulases from this bacterium: GH48 (exoglucanase) and GH9 (endoglucanase). Finally, we demonstrated CclEXL1-mediated enhancement of microcrystalline cellulose degradation by different cellulosome fractions and the two enzymes. CONCLUSIONS The results of this study confirm that the C. clariflavum expansin-like protein is part of the elaborate cellulosome system of this bacterium with capabilities of cellulose creeping. The data suggest that pretreatment of cellulosic materials with CclEXL1 can bring about substantial improvement of hydrolysis by cellulases.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Melina Shamshoum
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Molecular Biosciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
49
|
Chen C, Cui Z, Song X, Liu YJ, Cui Q, Feng Y. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation. Appl Microbiol Biotechnol 2015; 100:2203-12. [DOI: 10.1007/s00253-015-7071-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 01/24/2023]
|