1
|
Calvet-Mirabent M, Sánchez-Cerrillo I, Martín-Cófreces N, Martínez-Fleta P, de la Fuente H, Tsukalov I, Delgado-Arévalo C, Calzada MJ, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Buzón MJ, Martín-Gayo E. Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8+ T cells in people living with HIV. EBioMedicine 2022; 81:104090. [PMID: 35665682 PMCID: PMC9301875 DOI: 10.1016/j.ebiom.2022.104090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. Methods We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. Findings HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1− cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. Interpretation Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. Funding NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martín-Cófreces
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | | | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria J Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain.
| |
Collapse
|
2
|
LIU Z, ZHANG Q, DENG B, SANG F, WANG D, KANG N, LI J, ZHANG M, LIANG S, DUAN C, LIU Z, XU Q, LI Q. Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 expression and its relationship with T cell activation in human immunodeficiency virus/acquired immune deficiency syndrome patients with lung-spleen deficiency syndrome pattern. J TRADIT CHIN MED 2022; 42:451-457. [PMID: 35610016 PMCID: PMC9924747 DOI: 10.19852/j.cnki.jtcm.20220408.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the relationship between antiviral restriction factor Sterile Alpha Motif and Histidine-Aspartic acid domain-containing protein 1 (SAMHD1) expression and T cell activation, furthermore, identifying objective indexes of lung-spleen deficiency symptom pattern. METHODS We assessed the profile of T lymphocyte subsets, characteristics of SAMHD1 and human leukocyte antigen DR (HLA-DR) expression in lung-spleen deficiency patients. At the same time, people living with human immunodeficiency virus / acquired immune deficiency syndrome (HIV/AIDS) (PLWHA) without obvious clinical symptoms and healthy donors in this area were used as controls. RESULTS Immunohematologic indexes lower CD4 count, lower CD4/CD8 ratio and higher SAMHD1 level were found in lung-spleen deficiency patients. Furthermore, we demonstrated a positive relationship between SAMHD1 and HLA-DR level as well as with interferon factor in lung-spleen deficiency syndrome and patients without obvious clinical signs and symptoms groups. CONCLUSIONS These data indicated the positive relationship between SAMHD1 and T cell activation which further elucidated the role of SAMHD1 in cellular immune response. Furthermore, combination of T lymphocyte subsets counts and SAMHD1 level may be used as clinical and biological reference basis for the differentiation and diagnosis of HIV / AIDS traditional Chinese medicine syndromes.
Collapse
Affiliation(s)
- Zhen LIU
- 1 Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Qingyan ZHANG
- 1 Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Bowen DENG
- 1 Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Feng SANG
- 1 Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Danni WANG
- 2 Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Ning KANG
- 3 Department of Obstetrics and Gynecology, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Jie LI
- 1 Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Min ZHANG
- 2 Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shoupei LIANG
- 4 Medical Department, Medical Department of Zhengzhou People’s Hospital, Zhengzhou 450000, China
| | - Chenchen DUAN
- 1 Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Zhibin LIU
- 2 Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Qianlei XU
- 2 Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
- XU Qianlei, Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China.
| | - Qiang LI
- 1 Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
- XU Qianlei, Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
4
|
Mohamed H, Clemen R, Freund E, Lackmann JW, Wende K, Connors J, Haddad EK, Dampier W, Wigdahl B, Miller V, Bekeschus S, Krebs FC. Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection. PLoS One 2021; 16:e0247125. [PMID: 33647028 PMCID: PMC7920340 DOI: 10.1371/journal.pone.0247125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ramona Clemen
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Eric Freund
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Jan-Wilm Lackmann
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany.,CECAD proteomics facility, University of Cologne, Cologne, Germany
| | - Kristian Wende
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Jennifer Connors
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Will Dampier
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sander Bekeschus
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Fred C Krebs
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, Lim SY, Li L, Kashem MA, Wan Y, Correia-Pinto JF, Seaman MS, Liu XQ, Balshaw RF, Li Q, Schultz-Darken N, Alonso MJ, Plummer FA, Whitney JB, Luo M. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest 2021; 130:6429-6442. [PMID: 32853182 DOI: 10.1172/jci138728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
After over 3 decades of research, an effective anti-HIV vaccine remains elusive. The recently halted HVTN702 clinical trial not only further stresses the challenge to develop an effective HIV vaccine but also emphasizes that unconventional and novel vaccine strategies are urgently needed. Here, we report that a vaccine focusing the immune response on the sequences surrounding the 12 viral protease cleavage sites (PCSs) provided greater than 80% protection to Mauritian cynomolgus macaques against repeated intravaginal SIVmac251 challenges. The PCS-specific T cell responses correlated with vaccine efficacy. The PCS vaccine did not induce immune activation or inflammation known to be associated with increased susceptibility to HIV infection. Machine learning analyses revealed that the immune microenvironment generated by the PCS vaccine was predictive of vaccine efficacy. Our study demonstrates, for the first time to our knowledge, that a vaccine which targets only viral maturation, but lacks full-length Env and Gag immunogens, can prevent intravaginal infection in a stringent macaque/SIV challenge model. Targeting HIV maturation thus offers a potentially novel approach to developing an effective HIV vaccine.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dane Schalk
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanmin Wan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jorge F Correia-Pinto
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiao Qing Liu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert F Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nancy Schultz-Darken
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Maria J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Garcia-Bates TM, Palma ML, Anderko RR, Hsu DC, Ananworanich J, Korber BT, Gaiha GD, Phanuphak N, Thomas R, Tovanabutra S, Walker BD, Mellors JW, Piazza PA, Kroon E, Riddler SA, Michael NL, Rinaldo CR, Mailliard RB. Dendritic cells focus CTL responses toward highly conserved and topologically important HIV-1 epitopes. EBioMedicine 2021; 63:103175. [PMID: 33450518 PMCID: PMC7811131 DOI: 10.1016/j.ebiom.2020.103175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/05/2022] Open
Abstract
Background During early HIV-1 infection, immunodominant T cell responses to highly variable epitopes lead to the establishment of immune escape virus variants. Here we assessed a type 1-polarized monocyte-derived dendritic cell (MDC1)-based approach to selectively elicit cytotoxic T lymphocyte (CTL) responses against highly conserved and topologically important HIV-1 epitopes in HIV-1-infected individuals from the Thailand RV254/SEARCH 010 cohort who initiated antiretroviral therapy (ART) during early infection (Fiebig stages I-IV). Methods Autologous MDC1 were used as antigen presenting cells to induce in vitro CTL responses against HIV-1 Gag, Pol, Env, and Nef as determined by flow cytometry and ELISpot assay. Ultra-conserved or topologically important antigens were respectively identified using the Epigraph tool and a structure-based network analysis approach and compared to overlapping peptides spanning the Gag proteome. Findings MDC1 presenting either the overlapping Gag, Epigraph, or Network 14–21mer peptide pools consistently activated and expanded HIV-1-specific T cells to epitopes identified at the 9–13mer peptide level. Interestingly, some CTL responses occurred outside known or expected HLA associations, providing evidence of new HLA-associated CTL epitopes. Comparative analyses demonstrated more sequence conservation among Epigraph antigens but a higher magnitude of CTL responses to Network and Gag peptide groups. Importantly, CTL responses against topologically constrained Gag epitopes contained in both the Network and Gag peptide pools were selectively enhanced in the Network pool-initiated cultures. Interpretation Our study supports the use of MDC1 as a therapeutic strategy to induce and focus CTL responses toward putative fitness-constrained regions of HIV-1 to prevent immune escape and control HIV-1 infection. Funding A full list of the funding sources is detailed in the Acknowledgment section of the manuscript.
Collapse
Affiliation(s)
- Tatiana M Garcia-Bates
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, United States
| | - Mariana L Palma
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, United States
| | - Renee R Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, United States
| | - Denise C Hsu
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Center for Infectious Diseases Research, Walter Reed Army Institute of Research Silver Spring, MD, United States; SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Center for Infectious Diseases Research, Walter Reed Army Institute of Research Silver Spring, MD, United States; SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand; Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Bette T Korber
- Los Alamos National Laboratory, Los Alamos, NM, New Mexico Consortium, Los Alamos, NM, United States
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, United States
| | | | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Center for Infectious Diseases Research, Walter Reed Army Institute of Research Silver Spring, MD, United States
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Center for Infectious Diseases Research, Walter Reed Army Institute of Research Silver Spring, MD, United States
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - John W Mellors
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, United States
| | - Paolo A Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, United States
| | - Eugene Kroon
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Sharon A Riddler
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States; Center for Infectious Diseases Research, Walter Reed Army Institute of Research Silver Spring, MD, United States
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, United States.
| | | |
Collapse
|
7
|
Chan HY, Zhang J, Garliss CC, Kwaa AK, Blankson JN, Smith KN. A T Cell Receptor Sequencing-Based Assay Identifies Cross-Reactive Recall CD8 + T Cell Clonotypes Against Autologous HIV-1 Epitope Variants. Front Immunol 2020; 11:591. [PMID: 32318072 PMCID: PMC7154155 DOI: 10.3389/fimmu.2020.00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 positive elite controllers or suppressors control viral replication without antiretroviral therapy, likely via CTL-mediated elimination of infected cells, and therefore represent a model of an HIV-1 functional cure. Efforts to cure HIV-1 accordingly rely on the existence or generation of antigen-specific cytotoxic T lymphocytes (CTL) to eradicate infected cells upon reversal of latency. Detecting and quantifying these HIV-1-specific CTL responses will be crucial for developing vaccine and T cell-based immunotherapies. A recently developed assay, called MANAFEST, uses T cell receptor (TCR) Vβ sequencing of peptide-stimulated cultures followed by a bioinformatic pipeline to identify neoantigen-specific T cells in cancer patients. This assay is more sensitive than conventional immune assays and therefore has the possibility to identify HIV-1 antigenic targets that have not been previously explored for vaccine or T cell immunotherapeutic strategies. Here we show that a modified version of the MANAFEST assay, called ViraFEST, can identify memory CD8+ T cell responses against autologous HIV-1 Gag and Nef epitope variants in an elite suppressor. Nine TCR Vβ clonotypes were identified and 6 of these were cross-reactive for autologous variants or known escape variants. Our findings are a proof of principle that the ViraFEST assay can be used to detect and monitor these responses for downstream use in immunotherapeutic treatment approaches.
Collapse
Affiliation(s)
- Hok Yee Chan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jiajia Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Caroline C Garliss
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Abena K Kwaa
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joel N Blankson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kellie N Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Boucau J, Das J, Joshi N, Le Gall S. Latency reversal agents modulate HIV antigen processing and presentation to CD8 T cells. PLoS Pathog 2020; 16:e1008442. [PMID: 32196533 PMCID: PMC7112239 DOI: 10.1371/journal.ppat.1008442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/01/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reservoirs are not cleared. Whether HIV epitope presentation is similar between latency reversal and initial infection of CD4 T cells is unknown yet crucial to define immune responses able to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC comes from the intracellular degradation of proteins by proteasomes and post-proteasomal peptidases but the impact of LRAs on antigen processing is not known. Here we show that HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa) increased them to a lesser extent than that induced by TCR activation. During the cytosolic degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa modulated degradation patterns of peptides and altered the production of HIV epitopes in often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-dependent manner. Interestingly the efficiency of endogenous epitope processing and presentation to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of antigens. LRA-induced modulations of antigen processing should be considered and exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve immune recognition after latency reversal. This property of LRAs, if confirmed with other antigens, might be exploited to improve immune detection of diseased cells beyond HIV. Latently HIV-infected CD4 T cells persist and remain invisible to the immune system. Strategies to flush out HIV reservoirs propose to re-express HIV with latency reversal agents (LRAs), leading to CD4 T cell death or clearance by HIV-specific immune responses. LRAs tested so far variably induced HIV re-expression but did not eliminate reservoirs. The activation of HIV-specific immune responses is triggered by HIV peptides displayed by infected cells after HIV intracellular degradation. Whether HIV antigens are similarly degraded and displayed by CD4 T cells after latency reversal or during initial infection is unknown. We showed that LRAs altered the activities of the degradation machinery and changed the degradation patterns of HIV into peptides. LRA-treated HIV-infected CD4 T cells were variably recognized by immune cells in a time- and peptide-dependent manner. Some LRAs increased the efficiency of HIV peptide presentation despite low levels of HIV antigens inside CD4 T cells. The modulation of HIV peptide presentation by current or future LRAs should be accounted for and exploited to improve HIV peptide presentation and enhance immune detection of HIV-infected CD4 T cells after latency reversal.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neelambari Joshi
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Role of Dendritic Cells in Exposing Latent HIV-1 for the Kill. Viruses 2019; 12:v12010037. [PMID: 31905690 PMCID: PMC7019604 DOI: 10.3390/v12010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The development of effective yet nontoxic strategies to target the latent human immunodeficiency virus-1 (HIV-1) reservoir in antiretroviral therapy (ART)-suppressed individuals poses a critical barrier to a functional cure. The ‘kick and kill’ approach to HIV eradication entails proviral reactivation during ART, coupled with generation of cytotoxic T lymphocytes (CTLs) or other immune effectors equipped to eliminate exposed infected cells. Pharmacological latency reversal agents (LRAs) that have produced modest reductions in the latent reservoir ex vivo have not impacted levels of proviral DNA in HIV-infected individuals. An optimal cure strategy incorporates methods that facilitate sufficient antigen exposure on reactivated cells following the induction of proviral gene expression, as well as the elimination of infected targets by either polyfunctional HIV-specific CTLs or other immune-based strategies. Although conventional dendritic cells (DCs) have been used extensively for the purpose of inducing antigen-specific CTL responses in HIV-1 clinical trials, their immunotherapeutic potential as cellular LRAs has been largely ignored. In this review, we discuss the challenges associated with current HIV-1 eradication strategies, as well as the unharnessed potential of ex vivo-programmed DCs for both the ‘kick and kill’ of latent HIV-1.
Collapse
|
10
|
Qin K, Boppana S, Du VY, Carlson JM, Yue L, Dilernia DA, Hunter E, Mailliard RB, Mallal SA, Bansal A, Goepfert PA. CD8 T cells targeting adapted epitopes in chronic HIV infection promote dendritic cell maturation and CD4 T cell trans-infection. PLoS Pathog 2019; 15:e1007970. [PMID: 31398241 PMCID: PMC6703693 DOI: 10.1371/journal.ppat.1007970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/21/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
HIV-1 frequently escapes from CD8 T cell responses via HLA-I restricted adaptation, leading to the accumulation of adapted epitopes (AE). We previously demonstrated that AE compromise CD8 T cell responses during acute infection and are associated with poor clinical outcomes. Here, we examined the impact of AE on CD8 T cell responses and their biological relevance in chronic HIV infection (CHI). In contrast to acute infection, the majority of AE are immunogenic in CHI. Longitudinal analyses from acute to CHI showed an increased frequency and magnitude of AE-specific IFNγ responses compared to NAE-specific ones. These AE-specific CD8 T cells also were more cytotoxic to CD4 T cells. In addition, AE-specific CD8 T cells expressed lower levels of PD1 and CD57, as well as higher levels of CD28, suggesting a more activated and less exhausted phenotype. During CHI, viral sequencing identified AE-encoding strains as the dominant quasispecies. Despite increased CD4 T cell cytotoxicity, CD8 T cells responding to AE promoted dendritic cell (DC) maturation and CD4 T cell trans-infection perhaps explaining why AE are predominant in CHI. Taken together, our data suggests that the emergence of AE-specific CD8 T cell responses in CHI confers a selective advantage to the virus by promoting DC-mediated CD4 T cell trans-infection. HIV-1 infection remains a critical public health threat across the world. Over the past two decades, CD8 T cells have been clearly shown to exert immune pressure on HIV and drive viral adaptation. Previously, our group reported that such HLA-I associated adaptations can predict clinical outcomes and are beneficial to HIV-1 as CD8 T cells are unable to recognize epitopes with adaptation in acute HIV infection. However, it is still unclear how HIV-1 adaptation impacts CD8 T cells during chronic HIV infection. In this study, we observed an enhancement of CD8 T cell responses targeting adapted epitopes in chronic infection. Although these responses were cytotoxic, they also exhibited a “helper” effect by promoting viral infection of CD4 T cells via interaction with dendritic cells. This phenomenon may contribute to the persistence of adapted viruses. In summary, these findings present a novel mechanism of CD8 T cell driven HIV-1 adaptation.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sushma Boppana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victor Y. Du
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Dario A. Dilernia
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon A. Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| |
Collapse
|
11
|
Kristoff J, Palma ML, Garcia-Bates TM, Shen C, Sluis-Cremer N, Gupta P, Rinaldo CR, Mailliard RB. Type 1-programmed dendritic cells drive antigen-specific latency reversal and immune elimination of persistent HIV-1. EBioMedicine 2019; 43:295-306. [PMID: 30952614 PMCID: PMC6557749 DOI: 10.1016/j.ebiom.2019.03.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background Despite the success of antiretroviral therapy (ART), latent HIV-1 continues to persist in a long-lived population of resting memory CD4+ T cells within those who are infected. Finding a safe and effective means to induce latency reversal (LR) during ART to specifically expose this latent HIV-1 cellular reservoir for immune elimination has been a major barrier to a functional cure. Methods In this study, we test the use of antigen-presenting type 1-polarized, monocyte-derived dendritic cells (MDC1) generated from chronic HIV-1-infected individuals on ART as a means to induce HIV-1 latency reversal in autologous CD4+ T cells harboring replication-competent provirus. We use the same MDC1 for ex-vivo generation of autologous HIV-1 antigen-specific CD8+ cytotoxic T cells (CTL) and test their effector responses against the MDC1-exposed HIV-1- infected CD4+ T cell targets. Findings MDC1 presentation of either HIV-1 or cytomegalovirus (CMV) antigens to CD4+ T cells facilitated HIV-1 LR. This antigen-driven MDC1-mediated LR was sharply diminished with blockade of the CD40L/CD40 ‘helper’ signaling pathway. Importantly, these antigen-presenting MDC1 also activated the expansion of CTL capable of killing the exposed HIV-1-infected targets. Interpretation Inclusion of virus-associated MHC class II ‘helper’ antigens in MDC1-based HIV-1 immunotherapies could serve both as a targeted means to safely unmask antigen-specific CD4+ T cells harboring HIV-1, and to support CTL responses that can effectively target the MDC1-exposed HIV-1 cellular reservoir as a functional cure strategy. Fund This study was supported by the NIH-NAID grants R21-AI131763, U01-AI35041, UM1-AI126603, and T32-AI065380.
Collapse
Affiliation(s)
- Jan Kristoff
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Mariana L Palma
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Tatiana M Garcia-Bates
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Chengli Shen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
12
|
Yang J, Wang H, Zhang W. Regulation of Virus Replication and T Cell Homeostasis by N 6-Methyladenosine. Virol Sin 2019; 34:22-29. [PMID: 30671921 DOI: 10.1007/s12250-018-0075-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023] Open
Abstract
RNA modifications are abundant in eukaryotes, bacteria, and archaea. N6-methyladenosine (m6A), a type of RNA modification mainly found in messenger RNA (mRNA), has significant effects on the metabolism and function of mRNAs. This modification is governed by three types of proteins, namely methyltransferases as "writers", demethylases as "erasers", and specific m6A-binding proteins (YTHDF1-3) as "readers". Further, it is important for the regulation of cell fate and has a critical function in many biological processes including virus replication, stem cell differentiation, and cancer development, and exerts its effect by controlling gene expression. Herein, we summarize recent advances in research on m6A in virus replication and T cell regulation, which is a rapidly emerging field that will facilitate the development of antiviral therapies and the study of innate immunity.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
|