1
|
Mollik M, Rohorzka A, Chen X, Kropff B, Eisler L, Külekci B, Puchhammer-Stöckl E, Thomas M, Görzer I. Growth defect of domain III glycoprotein B mutants of human cytomegalovirus reverted by compensatory mutations co-localizing in post-fusion conformation. mBio 2024; 15:e0181224. [PMID: 39315800 PMCID: PMC11481916 DOI: 10.1128/mbio.01812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Cell entry is a crucial step for a virus to infect a host cell. Human cytomegalovirus utilizes glycoprotein B (gB) to fuse the viral and host cell membranes upon receptor binding of gH/gL-containing complexes. Fusion is mediated by major conformational changes of gB from a metastable pre-fusion to a stable post-fusion state whereby the central trimeric coiled-coils, formed by domain (Dom)III α helices, remain structurally nearly unchanged. To better understand the role of the stable core, we individually introduced three potentially helix-breaking or one disulfide bond-breaking mutation in the DIII α3 to study different aspects of the viral behavior upon long-term culturing. Two of the three helix-breaking mutations, gB_Y494P and gB_I495P, were lethal for the virus in either fibroblasts or epithelial cells. The third substitution, gB_G493P, on the other hand, displayed a delayed replication and spread, which was more pronounced in epithelial cells, hinting at an impaired fusion. Interestingly, the disulfide bond-breaker mutation, gB_C507S, performed strikingly differently in the two cell types - lethal in epithelial cells and an atypical phenotype in fibroblasts, respectively. Replication curve analyses paired with the infection efficiency, the spread morphology, and the cell-cell fusogenicity suggest a dysregulated fusion process, which could be reverted by second-site mutations mapping predominantly to gB DomV. Our findings underline the functional importance of a stable DomIII core for a well-regulated DomV rearrangement during fusion.IMPORTANCEHuman cytomegalovirus (HCMV) can establish a lifelong infection. In most people, the infection follows an asymptomatic course; however, it is a major cause of morbidity and mortality in immunocompromised patients or neonates. HCMV has a very broad cell tropism, ranging from fibroblasts to epi- and endothelial cells. The virus uses different entry pathways utilizing the core fusion machinery consisting of glycoprotein complexes gH/gL and glycoprotein B (gB). The fusion protein gB undergoes fundamental rearrangements from a metastable pre-fusion to a stable post-fusion conformation. Here, we characterized the viral behavior after the introduction of four single-point mutations in the gB central core. These led to various cell type-specific atypical phenotypes and the emergence of compensatory mutations, demonstrating an important interaction between domains III and V. We provide a new basis for the development of a structurally and functionally altered gB, which can further serve as a tool for drug and vaccine development.
Collapse
Affiliation(s)
- Madlen Mollik
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Andreas Rohorzka
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Eisler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Büsra Külekci
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Vallbracht M, Schnell M, Seyfarth A, Fuchs W, Küchler R, Mettenleiter TC, Klupp BG. A Single Amino Acid Substitution in the Transmembrane Domain of Glycoprotein H Functionally Compensates for the Absence of gL in Pseudorabies Virus. Viruses 2023; 16:26. [PMID: 38257727 PMCID: PMC10819001 DOI: 10.3390/v16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpesvirus entry requires the coordinated action of at least four viral glycoproteins. Virus-specific binding to a cellular receptor triggers a membrane fusion cascade involving the conserved gH/gL complex and gB. Although gB is the genuine herpesvirus fusogen, it requires gH/gL for fusion, but how activation occurs is still unclear. To study the underlying mechanism, we used a gL-deleted pseudorabies virus (PrV) mutant characterized by its limited capability to directly infect neighboring cells that was exploited for several independent serial passages in cell culture. Unlike previous revertants that acquired mutations in the gL-binding N-terminus of gH, we obtained a variant, PrV-ΔgLPassV99, that unexpectedly contained two amino acid substitutions in the gH transmembrane domain (TMD). One of these mutations, I662S, was sufficient to compensate for gL function in virus entry and in in vitro cell-cell fusion assays in presence of wild type gB, but barely for cell-to-cell spread. Additional expression of receptor-binding PrV gD, which is dispensable for cell-cell fusion mediated by native gB, gH and gL, resulted in hyperfusion in combination with gH V99. Overall, our results uncover a yet-underestimated role of the gH TMD in fusion regulation, further shedding light on the complexity of herpesvirus fusion involving all structural domains of the conserved entry glycoproteins.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marina Schnell
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Annemarie Seyfarth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin und Humboldt—Universität zu Berlin, 12200 Berlin, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Richard Küchler
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| |
Collapse
|
3
|
Zhou M, Vollmer B, Machala E, Chen M, Grünewald K, Arvin AM, Chiu W, Oliver SL. Targeted mutagenesis of the herpesvirus fusogen central helix captures transition states. Nat Commun 2023; 14:7958. [PMID: 38042814 PMCID: PMC10693595 DOI: 10.1038/s41467-023-43011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/27/2023] [Indexed: 12/04/2023] Open
Abstract
Herpesviruses remain a burden for animal and human health, including the medically important varicella-zoster virus (VZV). Membrane fusion mediated by conserved core glycoproteins, the fusogen gB and the heterodimer gH-gL, enables herpesvirus cell entry. The ectodomain of gB orthologs has five domains and is proposed to transition from a prefusion to postfusion conformation but the functional relevance of the domains for this transition remains poorly defined. Here we describe structure-function studies of the VZV gB DIII central helix targeting residues 526EHV528. Critically, a H527P mutation captures gB in a prefusion conformation as determined by cryo-EM, a loss of membrane fusion in a virus free assay, and failure of recombinant VZV to spread in cell monolayers. Importantly, two predominant cryo-EM structures of gB[H527P] are identified by 3D classification and focused refinement, suggesting they represented gB conformations in transition. These studies reveal gB DIII as a critical element for herpesvirus gB fusion function.
Collapse
Affiliation(s)
- Momei Zhou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Emily Machala
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Muyuan Chen
- Division of Cryo-EM and Bioimaging SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Kay Grünewald
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ann M Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Vir Biotechnology Inc, San Francisco, CA, USA
| | - Wah Chiu
- Division of Cryo-EM and Bioimaging SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stefan L Oliver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Wu H, Qi H, Wang B, Li M, Qu L, Li S, Luo Y, Li LF, Zheng GL, Qiu HJ, Sun Y. The mutations on the envelope glycoprotein D contribute to the enhanced neurotropism of the pseudorabies virus variant. J Biol Chem 2023; 299:105347. [PMID: 37838171 PMCID: PMC10652121 DOI: 10.1016/j.jbc.2023.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
The pseudorabies virus (PRV) TJ strain, a variant of PRV, induces more severe neurological symptoms and higher mortality in piglets and mice than the PRV SC strain isolated in 1980. However, the mechanism underlying responsible for the discrepancy in virulence between these strains remains unclear. Our study investigated the differences in neurotropism between PRV TJ and PRV SC using both in vitro and in vivo models. We discovered that PRV TJ enters neural cells more efficiently than PRV SC. Furthermore, we found that PRV TJ has indistinguishable genomic DNA replication capability and axonal retrograde transport dynamics compared to the PRV SC. To gain deeper insights into the mechanisms underlying these differences, we constructed gene-interchanged chimeric virus constructs and assessed the affinity between envelope glycoprotein B, C, and D (gD) and corresponding receptors. Our findings confirmed that mutations in these envelope proteins, particularly gD, significantly contributed to the heightened attachment and penetration capabilities of PRV TJ. Our study revealed the critical importance of the gDΔR278/P279 and gDV338A in facilitating viral invasion. Furthermore, our observations indicated that mutations in envelope proteins have a more significant impact on viral invasion than on virulence in the mouse model. Our findings provide valuable insights into the roles of natural mutations on the PRV envelope glycoproteins in cell tropism, which sheds light on the relationship between cell tropism and clinical symptoms and offers clues about viral evolution.
Collapse
Affiliation(s)
- Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hansong Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guang-Lai Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
5
|
Klupp BG, Mettenleiter TC. The Knowns and Unknowns of Herpesvirus Nuclear Egress. Annu Rev Virol 2023; 10:305-323. [PMID: 37040797 DOI: 10.1146/annurev-virology-111821-105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
6
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Ebel H, Benecke T, Vollmer B. Stabilisation of Viral Membrane Fusion Proteins in Prefusion Conformation by Structure-Based Design for Structure Determination and Vaccine Development. Viruses 2022; 14:1816. [PMID: 36016438 PMCID: PMC9415420 DOI: 10.3390/v14081816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
The membrane surface of enveloped viruses contains dedicated proteins enabling the fusion of the viral with the host cell membrane. Working with these proteins is almost always challenging because they are membrane-embedded and naturally metastable. Fortunately, based on a range of different examples, researchers now have several possibilities to tame membrane fusion proteins, making them amenable for structure determination and immunogen generation. This review describes the structural and functional similarities of the different membrane fusion proteins and ways to exploit these features to stabilise them by targeted mutational approaches. The recent determination of two herpesvirus membrane fusion proteins in prefusion conformation holds the potential to apply similar methods to this group of viral fusogens. In addition to a better understanding of the herpesviral fusion mechanism, the structural insights gained will help to find ways to further stabilise these proteins using the methods described to obtain stable immunogens that will form the basis for the development of the next generation of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Henriette Ebel
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Tim Benecke
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
8
|
Abstract
Herpesviruses—ubiquitous pathogens that cause persistent infections—have some of the most complex cell entry mechanisms. Entry of the prototypical herpes simplex virus 1 (HSV-1) requires coordinated efforts of 4 glycoproteins, gB, gD, gH, and gL. The current model posits that the glycoproteins do not interact before receptor engagement and that binding of gD to its receptor causes a “cascade” of sequential pairwise interactions, first activating the gH/gL complex and subsequently activating gB, the viral fusogen. But how these glycoproteins interact remains unresolved. Here, using a quantitative split-luciferase approach, we show that pairwise HSV-1 glycoprotein complexes form before fusion, interact at a steady level throughout fusion, and do not depend on the presence of the cellular receptor. Based on our findings, we propose a revised “conformational cascade” model of HSV-1 entry. We hypothesize that all 4 glycoproteins assemble into a complex before fusion, with gH/gL positioned between gD and gB. Once gD binds to a cognate receptor, the proximity of the glycoproteins within this complex allows for efficient transmission of the activating signal from the receptor-activated gD to gH/gL to gB through sequential conformational changes, ultimately triggering the fusogenic refolding of gB. Our results also highlight previously unappreciated contributions of the transmembrane and cytoplasmic domains to glycoprotein interactions and fusion. Similar principles could be at play in other multicomponent viral entry systems, and the split-luciferase approach used here is a powerful tool for investigating protein-protein interactions in these and a variety of other systems.
Collapse
|
9
|
Pataki Z, Sanders EK, Heldwein EE. A surface pocket in the cytoplasmic domain of the herpes simplex virus fusogen gB controls membrane fusion. PLoS Pathog 2022; 18:e1010435. [PMID: 35767585 PMCID: PMC9275723 DOI: 10.1371/journal.ppat.1010435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/12/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022] Open
Abstract
Membrane fusion during the entry of herpesviruses is carried out by the viral fusogen gB that is activated by its partner protein gH in some manner. The fusogenic activity of gB is controlled by its cytoplasmic (or intraviral) domain (gBCTD) and, according to the current model, the gBCTD is a trimeric, inhibitory clamp that restrains gB in the prefusion conformation. But how the gBCTD clamp is released by gH is unclear. Here, we identified two new regulatory elements within gB and gH from the prototypical herpes simplex virus 1: a surface pocket within the gBCTD and residue V831 within the gH cytoplasmic tail. Mutagenesis and structural modeling suggest that gH V831 interacts with the gB pocket. The gB pocket is located above the interface between adjacent protomers, and we hypothesize that insertion of the gH V831 wedge into the pocket serves to push the protomers apart, which releases the inhibitory clamp. In this manner, gH activates the fusogenic activity of gB. Both gB and gH are conserved across all herpesviruses, and this activation mechanism could be used by other gB homologs. Our proposed mechanism emphasizes a central role for the cytoplasmic regions in regulating the activity of a viral fusogen.
Collapse
Affiliation(s)
- Zemplen Pataki
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Erin K. Sanders
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Wang C, Liang Q, Sun D, He Y, Jiang J, Guo R, Malla T, Hamrah P, Liu X, Huang Z, Hu K. Nectin-1 and Non-muscle Myosin Heavy Chain-IIB: Major Mediators of Herpes Simplex Virus-1 Entry Into Corneal Nerves. Front Microbiol 2022; 13:830699. [PMID: 35295302 PMCID: PMC8919962 DOI: 10.3389/fmicb.2022.830699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes Simplex Virus 1 (HSV-1) invades corneal nerves upon its infection of the cornea and then establishes latency in the trigeminal ganglion (TG). The latent virus in TG is often reactivated and travels back to the cornea, causing recurrent herpes simplex keratitis (HSK). The entry of HSV-1 into the corneal nerve is considered the initial step of infection resulting in HSV-1 latency and HSK recurrence. Several gD and gB receptors have been identified, including nectin-1, herpes virus entry medium (HVEM) and 3-O-sulfated heparan sulfate (3-OS-HS) as gD receptors, and non-muscle myosin heavy chain IIA (NMHC-IIA), NMHC-IIB and myelin-associated glycoprotein (MAG) as gB receptors. However, which receptors contribute to the entry of HSV-1 into corneal nerves are yet to be determined. This study observed that receptors nectin-1, HVEM, 3-OS-HS, NMHC-IIA, and NMHC-IIB, not MAG, were expressed in healthy corneal nerves. Further, we cultured TG neurons extracted from mice in vitro to screen for functional gD/gB receptors. Both in vitro siRNA knockdown and in vivo antibody blocking of either nectin-1 or NMHC-IIB reduced the entry and the replication of HSV-1 as shown by qPCR analysis and immunofluorescence measure, respectively. Also, we observed that the re-localization and the upregulation expression of NMHC-IIB after HSV-1 exposure were inhibited when gD receptor nectin-1 was knocked down. These data suggest that nectin-1 was the main gD receptor and NMHC-IIB was the main gB receptor in mediating HSV-1 entry and hold promise as therapeutic targets for resolving HSV-1 latency and HSK recurrence.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Ophthalmology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Liang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dong Sun
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun He
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongjie Guo
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tejsu Malla
- Tej Eye Care & Health Support Center, Kathmandu, Nepal
| | - Pedram Hamrah
- Tufts Medical Center, Schepens Eye Research Institute, Boston, MA, United States
| | - Xun Liu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenping Huang
- Department of Ophthalmology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Herpes Simplex Virus Glycoprotein B Mutations Define Structural Sites in Domain I, the Membrane Proximal Region, and the Cytodomain That Regulate Entry. J Virol 2021; 95:e0105021. [PMID: 34431697 DOI: 10.1128/jvi.01050-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral fusion protein glycoprotein B (gB) is conserved in all herpesviruses and is essential for virus entry. During entry, gB fuses viral and host cell membranes by refolding from a prefusion to a postfusion form. We previously introduced three structure-based mutations (gB-I671A/H681A/F683A) into the domain V arm of the gB ectodomain that resulted in reduced cell-cell fusion. A virus carrying these three mutations (called gB3A) displayed a small-plaque phenotype and remarkably delayed entry into cells. To identify mutations that could counteract this phenotype, we serially passaged the gB3A virus and selected for revertant viruses with increased plaque sizes. Genomic sequencing revealed that the revertant viruses had second-site mutations in gB, including E187A, M742T, and S383F/G645R/V705I/V880G. Using expression constructs encoding these mutations, only gB-V880G was shown to enhance cell-cell fusion. In contrast, all of the revertant viruses showed enhanced entry kinetics, underscoring the fact that cell-cell fusion and virus-cell fusion are different. The results indicate that mutations in three different regions of gB (domain I, the membrane proximal region, and the cytoplasmic tail domain) can counteract the slow-entry phenotype of gB3A virus. Mapping these compensatory mutations to prefusion and postfusion structural models suggests sites of intramolecular functional interactions with the gB domain V arm that may contribute to the gB fusion function. IMPORTANCE The nine human herpesviruses are ubiquitous and cause a range of diseases in humans. Glycoprotein B (gB) is an essential viral fusion protein that is conserved in all herpesviruses. During host cell entry, gB mediates virus-cell membrane fusion by undergoing a conformational change. Structural models for the prefusion and postfusion forms of gB exist, but the details of how the protein converts from one to the other are unclear. We previously introduced structure-based mutations into gB that inhibited virus entry and fusion. By passaging this entry-deficient virus over time, we selected second-site mutations that partially restore virus entry. The locations of these mutations suggest regulatory sites that contribute to fusion and gB refolding during entry. gB is a target of neutralizing antibodies, and defining how gB refolds during entry could provide a basis for the development of fusion inhibitors for future research or clinical use.
Collapse
|