1
|
Wu X, Zhang J, Lan W, Quan L, Ou J, Zhao W, Wu J, Woo PCY, Seto D, Zhang Q. Molecular Typing and Rapid Identification of Human Adenoviruses Associated With Respiratory Diseases Using Universal PCR and Sequencing Primers for the Three Major Capsid Genes: Penton Base, Hexon, and Fiber. Front Microbiol 2022; 13:911694. [PMID: 35633710 PMCID: PMC9133664 DOI: 10.3389/fmicb.2022.911694] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenoviruses (HAdVs) within species B, C, and E are responsible for highly contagious and potentially severe respiratory disease infections. The traditional method to type these pathogens was based on virus neutralization and hemagglutination assays, which are both time-consuming and difficult, particularly due to the nonavailability of reagents. Subsequent molecular typing based on the partial characterization of the hexon gene and/or the restriction enzyme analysis (REA) of the genomes is inadequate, particularly in identifying recombinants. Here, a rapid, simple, and cost-effective method for molecular typing HAdV respiratory pathogens is presented. This incorporates three pairs of universal PCR primers that target the variable regions of the three major capsid genes, i.e., hexon, penton base, and fiber genes, that span the genome. The protocol enables typing and characterization of genotypes within species B, C, and E, as well as of some genotypes within species D and F. To validate this method, we surveyed 100 children with HAdV-associated acute respiratory infections identified by direct immunofluorescence (Hong Kong; July through October, 2014). Throat swab specimens were collected and analyzed by PCR amplification and sequencing; these sequences were characterized by BLAST. HAdVs were detected in 98 out of 100 (98%) samples, distributing as follows: 74 HAdV-B3 (74%); 10 HAdV-E4 (10%); 7 HAdV-C2 (7%); 2 HAdV-C6 (2%); 1 HAdV-B7 (1%); 1 HAdV-C1 (1%); 2 co-infection (2%); and 1 novel recombinant (1%). This study is the first detailed molecular epidemiological survey of HAdVs in Hong Kong. The developed method allows for the rapid identification of HAdV respiratory pathogens, including recombinants, and bypasses the need for whole genome sequencing for real-time surveillance of circulating adenovirus strains in outbreaks and populations by clinical virologists, public health officials, and epidemiologists.
Collapse
Affiliation(s)
- Xiaowei Wu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wendong Lan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lulu Quan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, United States
- Donald Seto,
| | - Qiwei Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- *Correspondence: Qiwei Zhang,
| |
Collapse
|
2
|
Pérez-Illana M, Martínez M, Condezo GN, Hernando-Pérez M, Mangroo C, Brown M, Marabini R, San Martín C. Cryo-EM structure of enteric adenovirus HAdV-F41 highlights structural variations among human adenoviruses. SCIENCE ADVANCES 2021; 7:eabd9421. [PMID: 33627423 PMCID: PMC11425762 DOI: 10.1126/sciadv.abd9421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Enteric adenoviruses, one of the main causes of viral gastroenteritis in the world, must withstand the harsh conditions found in the gut. This requirement suggests that capsid stability must be different from that of other adenoviruses. We report the 4-Å-resolution structure of a human enteric adenovirus, HAdV-F41, and compare it with that of other adenoviruses with respiratory (HAdV-C5) and ocular (HAdV-D26) tropisms. While the overall structures of hexon, penton base, and internal minor coat proteins IIIa and VIII are conserved, we observe partially ordered elements reinforcing the vertex region, which suggests their role in enhancing the physicochemical capsid stability of HAdV-F41. Unexpectedly, we find an organization of the external minor coat protein IX different from all previously characterized human and nonhuman mastadenoviruses. Knowledge of the structure of enteric adenoviruses provides a starting point for the design of vectors suitable for oral delivery or intestinal targeting.
Collapse
Affiliation(s)
- Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Martínez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Casandra Mangroo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martha Brown
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Kang J, Ismail AM, Dehghan S, Rajaiya J, Allard MW, Lim HC, Dyer DW, Chodosh J, Seto D. Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis. Cladistics 2020; 36:358-373. [PMID: 34618969 DOI: 10.1111/cla.12422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.
Collapse
Affiliation(s)
- June Kang
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Shoaleh Dehghan
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,Chemistry Department, American University, Washington, DC, 20016, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Marc W Allard
- Division of Microbiology (HFS-710), Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD, 20740, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University Manassas, VA, 20110, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| |
Collapse
|
4
|
Mystery eye: Human adenovirus and the enigma of epidemic keratoconjunctivitis. Prog Retin Eye Res 2019; 76:100826. [PMID: 31891773 DOI: 10.1016/j.preteyeres.2019.100826] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
Known to occur in widespread outbreaks, epidemic keratoconjunctivitis (EKC) is a severe ocular surface infection with a strong historical association with human adenovirus (HAdV). While the conjunctival manifestations can vary from mild follicular conjunctivitis to hyper-acute, exudative conjunctivitis with formation of conjunctival membranes, EKC is distinct as the only form of adenovirus conjunctivitis in which the cornea is also involved, likely due to the specific corneal epithelial tropism of its causative viral agents. The initial development of a punctate or geographic epithelial keratitis may herald the later formation of stromal keratitis, and manifest as subepithelial infiltrates which often persist or recur for months to years after the acute infection has resolved. The chronic keratitis in EKC is associated with foreign body sensation, photophobia, glare, and reduced vision. However, over a century since the first clinical descriptions of EKC, and over 60 years since the first causative agent, human adenovirus type 8, was identified, our understanding of this disorder remains limited. This is underscored by a current lack of effective diagnostic tools and treatments. In part, stasis in our knowledge base has been encouraged by the continued acceptance, and indeed propagation of, inaccurate paradigms pertaining to disease etiology and pathogenesis, particularly with regard to mechanisms of innate and adaptive immunity within the cornea. Owing to its often persistent and medically refractory visual sequelae, reconsideration of key aspects of EKC disease biology is warranted to identify new treatment targets to curb its worldwide socioeconomic burden.
Collapse
|
5
|
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: lessons from mice. FEBS Lett 2019; 593:3461-3483. [PMID: 31769012 PMCID: PMC6928416 DOI: 10.1002/1873-3468.13696] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Adenovirus is a highly evolutionary successful pathogen, as it is widely prevalent across the animal kingdom, infecting hosts ranging from lizards and frogs to dolphins, birds, and humans. Although natural adenovirus infections in humans rarely cause severe pathology, intravenous injection of high doses of adenovirus-based vectors triggers rapid activation of the innate immune system, leading to cytokine storm syndrome, disseminated intravascular coagulation, thrombocytopenia, and hepatotoxicity, which individually or in combination may cause morbidity and mortality. Much of the information on exactly how adenovirus activates the innate immune system has been gathered from mouse experimental systems. Intravenous administration of adenovirus to mice revealed mechanistic insights into cellular and molecular components of the innate immunity that detect adenovirus particles, activate pro-inflammatory signaling pathways and cytokine production, sequester adenovirus particles from the bloodstream, and eliminate adenovirus-infected cells. Collectively, this information greatly improved our understanding of mechanisms of activation of innate immunity to adenovirus and may pave the way for designing safer adenovirus-based vectors for therapy of genetic and acquired human diseases.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Children’s Center for Transplantation and Immuno-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Ismail AM, Zhou X, Dyer DW, Seto D, Rajaiya J, Chodosh J. Genomic foundations of evolution and ocular pathogenesis in human adenovirus species D. FEBS Lett 2019; 593:3583-3608. [PMID: 31769017 PMCID: PMC7185199 DOI: 10.1002/1873-3468.13693] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Human adenovirus commonly causes infections of respiratory, gastrointestinal, genitourinary, and ocular surface mucosae. Although most adenovirus eye infections are mild and self-limited, specific viruses within human adenovirus species D are associated with epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular surface infection, which can lead to chronic and/or recurrent, visually disabling keratitis. In this review, we discuss the links between adenovirus ontogeny, genomics, immune responses, and corneal pathogenesis, for those viruses that cause EKC.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaohong Zhou
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Complete Genome Sequence of an Adenovirus-1 Isolate from an African Pygmy Hedgehog ( Atelerix albiventris) Exhibiting Respiratory Symptoms in Japan. Microbiol Resour Announc 2019; 8:8/40/e00695-19. [PMID: 31582434 PMCID: PMC6776763 DOI: 10.1128/mra.00695-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports the complete genome sequence of an African pygmy hedgehog adenovirus-1 isolate from an African pygmy hedgehog which displayed respiratory symptoms that included nasal discharge, sniffling, coughing, and respiratory distress. The viral genome is 31,764 bp long and shows four deletion sites compared to that of skunk adenovirus-1. This study reports the complete genome sequence of an African pygmy hedgehog adenovirus-1 isolate from an African pygmy hedgehog which displayed respiratory symptoms that included nasal discharge, sniffling, coughing, and respiratory distress. The viral genome is 31,764 bp long and shows four deletion sites compared to that of skunk adenovirus-1.
Collapse
|
8
|
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou X, Chodosh J, Rajaiya J. Disparate Entry of Adenoviruses Dictates Differential Innate Immune Responses on the Ocular Surface. Microorganisms 2019; 7:E351. [PMID: 31540200 PMCID: PMC6780103 DOI: 10.3390/microorganisms7090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus infection of the ocular surface is associated with severe keratoconjunctivitis and the formation of subepithelial corneal infiltrates, which may persist and impair vision for months to years following infection. Long term pathology persists well beyond the resolution of viral replication, indicating that the prolonged immune response is not virus-mediated. However, it is not clear how these responses are sustained or even initiated following infection. This review discusses recent work from our laboratory and others which demonstrates different entry pathways specific to both adenovirus and cell type. These findings suggest that adenoviruses may stimulate specific pattern recognition receptors in an entry/trafficking-dependent manner, leading to distinct immune responses dependent on the virus/cell type combination. Additional work is needed to understand the specific connections between adenoviral entry and the stimulation of innate immune responses by the various cell types present on the ocular surface.
Collapse
Affiliation(s)
- Matthew R Pennington
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - David F Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Christina Gavazzi
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiaohong Zhou
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Divergent Evolution of E1A CR3 in Human Adenovirus Species D. Viruses 2019; 11:v11020143. [PMID: 30744049 PMCID: PMC6409611 DOI: 10.3390/v11020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/31/2022] Open
Abstract
Adenovirus E1A is the first viral protein expressed during infection. E1A controls critical aspects of downstream viral gene expression and cell cycle deregulation, and its function is thought to be highly conserved among adenoviruses. Various bioinformatics analyses of E1A from 38 human adenoviruses of species D (HAdV-D), including likelihood clade model partitioning, provided highly significant evidence of divergence of HAdV-Ds into two distinct groups for the conserved region 3 (CR3), present only in the E1A 13S isoform. This variance within E1A 13S of HAdV-Ds was not found in any other human adenovirus (HAdV) species. By protein sequence and structural analysis, the zinc finger motif of E1A CR3, previously shown as critical for transcriptional activation, showed the greatest differences. Subsequent codon usage bias analysis revealed substantial divergence in E1A 13S between the two groups of HAdV-Ds, suggesting that these two sub-groups of HAdV-D evolved under different cellular conditions. Hence, HAdV-D E1A embodies a previously unappreciated evolutionary divergence among HAdVs.
Collapse
|
10
|
Ismail AM, Lee JS, Lee JY, Singh G, Dyer DW, Seto D, Chodosh J, Rajaiya J. Adenoviromics: Mining the Human Adenovirus Species D Genome. Front Microbiol 2018; 9:2178. [PMID: 30254627 PMCID: PMC6141750 DOI: 10.3389/fmicb.2018.02178] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Human adenovirus (HAdV) infections cause disease world-wide. Whole genome sequencing has now distinguished 90 distinct genotypes in 7 species (A-G). Over half of these 90 HAdVs fall within species D, with essentially all of the HAdV-D whole genome sequences generated in the last decade. Herein, we describe recent new findings made possible by mining of this expanded genome database, and propose future directions to elucidate new functional elements and new functions for previously known viral components.
Collapse
Affiliation(s)
- Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Ji Sun Lee
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,Molecular Virology Laboratory, Korea Zoonosis Research Institute, Jeonbuk National University, Jeonju, South Korea
| | - Gurdeep Singh
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VI, United States
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Abstract
Human adenovirus (HAdV) is a ubiquitous virus that infects the mucosa of the eye. It is the most common cause of infectious conjunctivitis worldwide, affecting people of all ages and demographics. Pharyngoconjunctival fever outbreak is due to HAdV types 3, 4, and 7, whereas outbreaks of epidemic keratoconjunctivitis are usually caused by HAdV types 8, 19, 37, and 54. Primary cellular receptors, such as CAR, CD46, and sialic acid interact with fiber-knob protein to mediate adenoviral attachment to the host cell, whereas adenoviral penton base–integrin interaction mediates internalization of adenovirus. Type 1 immunoresponse to adenoviral ocular infection involves both innate immunity mediated by natural killer cells and type 1 interferon, as well as adaptive immunity mediated mainly by CD8 T cells. The resulting ocular manifestations are widely variable, with pharyngoconjunctival fever being the most common, manifesting clinically with fever, pharyngitis, and follicular conjunctivitis. Epidemic keratoconjunctivitis, however, is the severest form, with additional involvement of the cornea leading to development of subepithelial infiltrates. Because there is currently no US Food and Drug Administration-approved treatment for adenoviral ocular infection, current management is palliative. The presence of sight-threatening complications following ocular adenoviral infection warrants the necessity for developing antiadenoviral therapy with enhanced therapeutic index. Future trends that focus on adenoviral pathogenesis, including adenoviral protein, which utilize host receptors to promote infection, could be potential therapeutic targets, yielding shorter active disease duration and reduced disease burden.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, USA,
| | - Bisant A Labib
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, USA,
| |
Collapse
|
12
|
Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection. mSphere 2018; 3:3/3/e00105-18. [PMID: 29925671 PMCID: PMC6010623 DOI: 10.1128/msphere.00105-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/03/2018] [Indexed: 12/30/2022] Open
Abstract
Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota. Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota.
Collapse
|
13
|
Cheng Z, Yan Y, Jing S, Li WG, Chen WW, Zhang J, Li M, Zhao S, Cao N, Ou J, Zhao S, Wu X, Cao B, Zhang Q. Comparative Genomic Analysis of Re-emergent Human Adenovirus Type 55 Pathogens Associated With Adult Severe Community-Acquired Pneumonia Reveals Conserved Genomes and Capsid Proteins. Front Microbiol 2018; 9:1180. [PMID: 29922263 PMCID: PMC5996824 DOI: 10.3389/fmicb.2018.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Human adenovirus type 55 (HAdV-B55) is a recently identified acute respiratory disease (ARD) pathogen in HAdV species B with a recombinant genome between renal HAdV-B11 and respiratory HAdV-B14. Since HAdV-B55 first appeared in China school in 2006, no more ARD cases associated with it had been reported until 2011, when there was an outbreak of adult severe community-acquired pneumonia (CAP) in Beijing, China. Reported here is the bioinformatics analysis of the re-emergent HAdV-B55 responsible for this outbreak. Recombination and protein sequence analysis re-confirmed that this isolate (BJ01) was a recombinant virus with the capsid hexon gene from HAdV-B11. The selection pressures for the three capsid proteins, i.e., hexon, penton base, and fiber genes, were all negative, along with very low non-synonymous (dN) and synonymous (dS) substitutions/site (<0.0007). Phylogenetic analyses of the whole genome and the three major capsid genes of HAdV-B55 revealed the close phylogenetic relationship among all HAdV-B55 strains. Comparative genomic analysis of this re-emergent HAdV-B55 strain (BJ01; 2011) with the first HAdV-B55 strain (QS-DLL; 2006) showed the high genome identity (99.87%), including 10 single-nucleotide non-synonymous substitutions, 11 synonymous substitutions, 3 insertions, and one deletion in non-coding regions. The major non-synonymous substitutions (6 of 10) occurred in the protein pVI in its L3 region, which protein has different functions at various stages of an adenovirus infection, and may be associated with the population distribution of HAdV-B55 infection. No non-synonymous substitutions were found in the three major capsid proteins, which proteins are responsible for type-specific neutralizing antibodies. Comparative genomic analysis of the re-emergent HAdV-B55 strains associated with adult severe CAP revealed conserved genome and capsid proteins, providing the foundation for the development of effective vaccines against this pathogen. This study also facilitates the further investigation of HAdV-B55 epidemiology, molecular evolution, patterns of pathogen emergence and re-emergence, and the predication of genome recombination between adenoviruses.
Collapse
Affiliation(s)
- Zetao Cheng
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuqian Yan
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuping Jing
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Gang Li
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Jing Zhang
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min Li
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Zhao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Na Cao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Suhui Zhao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xianbo Wu
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiwei Zhang
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Genomic analysis of a large set of currently-and historically-important human adenovirus pathogens. Emerg Microbes Infect 2018; 7:10. [PMID: 29410402 PMCID: PMC5837155 DOI: 10.1038/s41426-017-0004-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/23/2022]
Abstract
Human adenoviruses (HAdVs) are uniquely important “model organisms” as they have been used to elucidate fundamental biological processes, are recognized as complex pathogens, and are used as remedies for human health. As pathogens, HAdVs may effect asymptomatic or mild and severe symptomatic disease upon their infection of respiratory, ocular, gastrointestinal, and genitourinary systems. High-resolution genomic data have enhanced the understanding of HAdV epidemiology, with recombination recognized as an important and major pathway in the molecular evolution and genesis of emergent HAdV pathogens. To support this view and to actualize an algorithm for identifying, characterizing, and typing novel HAdVs, we determined the DNA sequence of 95 isolates from archives containing historically important pathogens and collections housing currently circulating strains to be sequenced. Of the 85 samples that were completely sequenced, 18 novel recombinants within species HAdV-B and D were identified. Two HAdV-D genomes were found to contain novel penton base and fiber genes with significant divergence from known molecular types. In this data set, we found additional isolates of HAdV-D53 and HAdV-D58, two novel genotypes recognized recently using genomics. This supports the thesis that novel HAdV genotypes are not limited to “one-time” appearances of the prototype but are of importance in HAdV epidemiology. These data underscore the significance of lateral genomic transfer in HAdV evolution and reinforce the potential public health impact of novel genotypes of HAdVs emerging in the population.
Collapse
|
15
|
Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 2017; 162:3567-3585. [PMID: 28866775 PMCID: PMC5671522 DOI: 10.1007/s00705-017-3497-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
16
|
Comparative genomic analysis of two emergent human adenovirus type 14 respiratory pathogen isolates in China reveals similar yet divergent genomes. Emerg Microbes Infect 2017; 6:e92. [PMID: 29089589 PMCID: PMC5717082 DOI: 10.1038/emi.2017.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 02/04/2023]
Abstract
Human adenovirus type 14 (HAdV-B14p) was originally identified as an acute respiratory disease (ARD) pathogen in The Netherlands in 1955. For approximately fifty years, few sporadic infections were observed. In 2005, HAdV-B14p1, a genomic variant, re-emerged and was associated with several large ARD outbreaks across the U.S. and, subsequently, in Canada, the U.K., Ireland, and China. This strain was associated with an unusually higher fatality rate than previously reported for both this prototype and other HAdV types in general. In China, HAdV-B14 was first observed in 2010, when two unrelated HAdV-B14-associated ARD cases were reported in Southern China (GZ01) and Northern China (BJ430), followed by three subsequent outbreaks. While comparative genomic analysis, including indel analysis, shows that the three China isolates, with whole genome data available, are similar to the de Wit prototype, all are divergent from the U.S. strain (303600; 2007). Although the genomes of strains GZ01 and BJ430 are nearly identical, as per their genome type characterization and percent identities, they are subtly divergent in their genome mutation patterns. These genomes indicate possibly two lineages of HAdV-B14 and independent introductions into China from abroad, or subsequent divergence from one; CHN2012 likely represents a separate sub-lineage. Observations of these simultaneously reported emergent strains in China add to the understanding of the circulation, epidemiology, and evolution of these HAdV pathogens, as well as provide a foundation for developing effective vaccines and public health strategies, including nationwide surveillance in anticipation of larger outbreaks with potentially higher fatality rates associated with HAdV-B14p1.
Collapse
|
17
|
Comparative Study on the Antivirus Activity of Shuang-Huang-Lian Injectable Powder and Its Bioactive Compound Mixture against Human Adenovirus III In Vitro. Viruses 2017; 9:v9040079. [PMID: 28417913 PMCID: PMC5408685 DOI: 10.3390/v9040079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 01/22/2023] Open
Abstract
Shuang-Huang-Lian injectable powder (SHL)-a classical purified herbal preparation extracted from Scutellaria baicalensis, Lonicera japonica, and Forsythia suspense-has been used against human adenovirus III (HAdV₃) for many years. The combination herb and its major bioactive compounds, including chlorogenic acid, baicalin, and forsythia glycosides A, are effective inhibitors of the virus. However, no comprehensive studies are available on the antiviral effects of SHL against HAdV₃. Moreover, it remains unclear whether the mixture of chlorogenic acid, baicalin, and forsythia glycosides A (CBF) has enhanced antiviral activity compared with SHL. Therefore, a comparative study was performed to investigate the combination which is promising for further antiviral drug development. To evaluate their antivirus activity in parallel, the combination ratio and dose of CBF were controlled and consistent with SHL. First, the fingerprint and the ratio of CBF in SHL were determined by high performance liquid chromatography. Then, a plaque reduction assay, reverse transcription polymerase chain reaction (PCR), real-time polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA) were used to explore its therapeutic effects on viral infection and replication, respectively. The results showed that SHL and CBF inhibited dose- and time-dependently HAdV₃-induced plaque formation in A549 and HEp-2 cells. SHL was more effective than CBF when supplemented prior to and after viral inoculation. SHL prevented viral attachment, internalization, and replication at high concentration and decreased viral levels within and out of cells at non-toxic concentrations in both cell types. Moreover, the expression of tumor necrosis factor alpha (TNF)-α, interleukin (IL)-1ß, and IL-6 was lower and the expression of interferon (IFN)-γ was higher in both cell types treated with SHL than with CBF. In conclusion, SHL is much more effective and slightly less toxic than CBF.
Collapse
|
18
|
Abstract
Periodic outbreaks of human adenovirus infections can cause severe illness in people with no known predisposing conditions. The reasons for this increased viral pathogenicity are uncertain. Adenoviruses are constantly undergoing mutation during circulation in the human population, but related phenotypic changes of the viruses are rarely detected because of the infrequency of such outbreaks and the limited biological studies of the emergent strains. Mutations and genetic recombinations have been identified in these new strains. However, the linkage between these genetic changes and increased pathogenicity is poorly understood. It has been observed recently that differences in virus-induced immunopathogenesis can be associated with altered expression of non-mutant viral genes associated with changes in viral modulation of the host innate immune response. Initial small animal studies indicate that these changes in viral gene expression can be associated with enhanced immunopathogenesis in vivo. Available evidence suggests the hypothesis that there is a critical threshold of expression of certain viral genes that determines both the sustainability of viral transmission in the human population and the enhancement of immunopathogenesis. Studies of this possibility will require extension of the analysis of outbreak viral strains from a sequencing-based focus to biological studies of relationships between viral gene expression and pathogenic responses. Advances in this area will require increased coordination among public health organizations, diagnostic microbiology laboratories, and research laboratories to identify, catalog, and systematically study differences between prototype and emergent viral strains that explain the increased pathogenicity that can occur during clinical outbreaks.
Collapse
Affiliation(s)
- James Cook
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Jay Radke
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
19
|
A bioinformatics pipeline to search functional motifs within whole-proteome data: a case study of poxviruses. Virus Genes 2016; 53:173-178. [PMID: 28000080 PMCID: PMC5357487 DOI: 10.1007/s11262-016-1416-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
Proteins harbor domains or short linear motifs, which facilitate their functions and interactions. Finding functional motifs in protein sequences could predict the putative cellular roles or characteristics of hypothetical proteins. In this study, we present Shetti-Motif, which is an interactive tool to (i) map UniProt and PROSITE flat files, (ii) search for multiple pre-defined consensus patterns or experimentally validated functional motifs in large datasets protein sequences (proteome-wide), (iii) search for motifs containing repeated residues (low-complexity regions, e.g., Leu-, SR-, PEST-rich motifs, etc.). As proof of principle, using this comparative proteomics pipeline, eleven proteomes encoded by member of Poxviridae family were searched against about 100 experimentally validated functional motifs. The closely related viruses and viruses infect the same host cells (e.g. vaccinia and variola viruses) show similar motif-containing proteins profile. The motifs encoded by these viruses are correlated, which explains why poxviruses are able to interact with wide range of host cells. In conclusion, this in silico analysis is useful to establish a dataset(s) or potential proteins for further investigation or compare between species.
Collapse
|
20
|
Selection Pressure in the Human Adenovirus Fiber Knob Drives Cell Specificity in Epidemic Keratoconjunctivitis. J Virol 2016; 90:9598-9607. [PMID: 27512073 PMCID: PMC5068513 DOI: 10.1128/jvi.01010-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/05/2016] [Indexed: 11/20/2022] Open
Abstract
Human adenoviruses (HAdVs) contain seven species (HAdV-A to -G), each associated with specific disease conditions. Among these, HAdV-D includes those viruses associated with epidemic keratoconjunctivitis (EKC), a severe ocular surface infection. The reasons for corneal tropism for some but not all HAdV-Ds are not known. The fiber protein is a major capsid protein; its C-terminal "knob" mediates binding with host cell receptors to facilitate subsequent viral entry. In a comprehensive phylogenetic analysis of HAdV-D capsid genes, fiber knob gene sequences of HAdV-D types associated with EKC formed a unique clade. By proteotyping analysis, EKC virus-associated fiber knobs were uniquely shared. Comparative structural modeling showed no distinct variations in fiber knobs of EKC types but did show variation among HAdV-Ds in a region overlapping with the known CD46 binding site in HAdV-B. We also found signature amino acid positions that distinguish EKC from non-EKC types, and by in vitro studies we showed that corneal epithelial cell tropism can be predicted by the presence of a lysine or alanine at residue 240. This same amino acid residue in EKC viruses shows evidence for positive selection, suggesting that evolutionary pressure enhances fitness in corneal infection, and may be a molecular determinant in EKC pathogenesis. IMPORTANCE Viruses adapt various survival strategies to gain entry into target host cells. Human adenovirus (HAdV) types are associated with distinct disease conditions, yet evidence for connections between genotype and cellular tropism is generally lacking. Here, we provide a structural and evolutionary basis for the association between specific genotypes within HAdV species D and epidemic keratoconjunctivitis, a severe ocular surface infection. We find that HAdV-D fiber genes of major EKC pathogens, specifically the fiber knob gene region, share a distinct phylogenetic clade. Deeper analysis of the fiber gene revealed that evolutionary pressure at crucial amino acid sites has a significant impact on its structural conformation, which is likely important in host cell binding and entry. Specific amino acids in hot spot residues provide a link to ocular cell tropism and possibly to corneal pathogenesis.
Collapse
|
21
|
Lynch JP, Kajon AE. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin Respir Crit Care Med 2016; 37:586-602. [PMID: 27486739 PMCID: PMC7171713 DOI: 10.1055/s-0036-1584923] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adenoviruses (AdVs) are DNA viruses that typically cause mild infections involving the upper or lower respiratory tract, gastrointestinal tract, or conjunctiva. Rare manifestations of AdV infections include hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreatitis, nephritis, or meningoencephalitis. AdV infections are more common in young children, due to lack of humoral immunity. Epidemics of AdV infection may occur in healthy children or adults in closed or crowded settings (particularly military recruits). The disease is more severe and dissemination is more likely in patients with impaired immunity (e.g., organ transplant recipients, human immunodeficiency virus infection). Fatality rates for untreated severe AdV pneumonia or disseminated disease may exceed 50%. More than 50 serotypes of AdV have been identified. Different serotypes display different tissue tropisms that correlate with clinical manifestations of infection. The predominant serotypes circulating at a given time differ among countries or regions, and change over time. Transmission of novel strains between countries or across continents and replacement of dominant viruses by new strains may occur. Treatment of AdV infections is controversial, as prospective, randomized therapeutic trials have not been conducted. Cidofovir is the drug of choice for severe AdV infections, but not all patients require treatment. Live oral vaccines are highly efficacious in reducing the risk of respiratory AdV infection and are in routine use in the military in the United States, but currently are not available to civilians.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Adriana E Kajon
- Department of Infectious Disease, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
22
|
Epidemic Keratoconjunctivitis-Causing Adenoviruses Induce MUC16 Ectodomain Release To Infect Ocular Surface Epithelial Cells. mSphere 2016; 1:mSphere00112-15. [PMID: 27303700 PMCID: PMC4863608 DOI: 10.1128/msphere.00112-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 01/26/2023] Open
Abstract
Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244–261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208–1217, 2011, doi:10.1016/j.meegid.2011.04.031)—a highly contagious infection that accounts for nearly 60% of conjunctivitis cases in the United States (R. P. Sambursky, N. Fram, and E. J. Cohen, Optometry 78:236–239, 2007, doi:10.1016/j.optm.2006.11.012, and A. M. Pihos, J Optom 6:69–74, 2013, doi:10.1016/j.optom.2012.08.003). The infection begins with HAdV entry within ocular surface epithelial cells; however, the mechanisms used by HAdVs to transit the otherwise protective mucosal barrier of ocular surface epithelial cells prior to entry remain unknown. Here, we report that the highly virulent keratoconjunctivitis-causing HAdV-D37 induces release of the extracellular domain (ectodomain) of MUC16, a major component of the mucosal barrier of ocular surface epithelial cells, prior to infecting underlying cells. Currently, there is no specific treatment for controlling this infection. Understanding the early steps involved in the pathogenesis of keratoconjunctivitis and using this information to intercept adenoviral entry within cells may guide the development of novel strategies for controlling the infection. Human adenoviruses (HAdV), species D in particular (HAdV-D), are frequently associated with epidemic keratoconjunctivitis (EKC). Although the infection originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds bypass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface epithelium to trigger infection and inflammation remain unknown. Here, we report that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-D19p), induces ectodomain release of MUC16—a MAM with barrier functions at the ocular surface—from cultured human corneal and conjunctival epithelial cells. HAdV-D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of corneal epithelial cells, as determined by rose bengal dye penetrance assays. Furthermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA using primers specific to a conserved region of the E1B gene show that, in comparison to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate infection at the ocular surface. These findings are important in terms of understanding the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the airway epithelium) that are prone to adenoviral infection. IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244–261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208–1217, 2011, doi:10.1016/j.meegid.2011.04.031)—a highly contagious infection that accounts for nearly 60% of conjunctivitis cases in the United States (R. P. Sambursky, N. Fram, and E. J. Cohen, Optometry 78:236–239, 2007, doi:10.1016/j.optm.2006.11.012, and A. M. Pihos, J Optom 6:69–74, 2013, doi:10.1016/j.optom.2012.08.003). The infection begins with HAdV entry within ocular surface epithelial cells; however, the mechanisms used by HAdVs to transit the otherwise protective mucosal barrier of ocular surface epithelial cells prior to entry remain unknown. Here, we report that the highly virulent keratoconjunctivitis-causing HAdV-D37 induces release of the extracellular domain (ectodomain) of MUC16, a major component of the mucosal barrier of ocular surface epithelial cells, prior to infecting underlying cells. Currently, there is no specific treatment for controlling this infection. Understanding the early steps involved in the pathogenesis of keratoconjunctivitis and using this information to intercept adenoviral entry within cells may guide the development of novel strategies for controlling the infection.
Collapse
|
23
|
Sobhy H. A Review of Functional Motifs Utilized by Viruses. Proteomes 2016; 4:proteomes4010003. [PMID: 28248213 PMCID: PMC5217368 DOI: 10.3390/proteomes4010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
24
|
Kozak RA, Ackford JG, Slaine P, Li A, Carman S, Campbell D, Welch MK, Kropinski AM, Nagy É. Characterization of a novel adenovirus isolated from a skunk. Virology 2015; 485:16-24. [DOI: 10.1016/j.virol.2015.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/17/2015] [Accepted: 06/19/2015] [Indexed: 01/23/2023]
|
25
|
Hoppe E, Pauly M, Robbins M, Gray M, Kujirakwinja D, Nishuli R, Boji Mungu-Akonkwa DD, Leendertz FH, Ehlers B. Phylogenomic evidence for recombination of adenoviruses in wild gorillas. J Gen Virol 2015. [DOI: 10.1099/jgv.0.000250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Eileen Hoppe
- Division 12 ‘Measles, Mumps, Rubella and Viruses affecting immunocompromised patients’, Robert Koch Institute, 13353 Berlin, Germany
| | - Maude Pauly
- Division 12 ‘Measles, Mumps, Rubella and Viruses affecting immunocompromised patients’, Robert Koch Institute, 13353 Berlin, Germany
- P3 ‘Epidemiology of highly pathogenic microorganisms’, Robert Koch Institute, 13353 Berlin, Germany
| | - Martha Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maryke Gray
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society, Grauer's Gorilla Project, Democratic Republic of the Congo
| | - Radar Nishuli
- Institut Congolais pour la Conservation de la Nature, Democratic Republic of the Congo
| | | | - Fabian H. Leendertz
- P3 ‘Epidemiology of highly pathogenic microorganisms’, Robert Koch Institute, 13353 Berlin, Germany
| | - Bernhard Ehlers
- Division 12 ‘Measles, Mumps, Rubella and Viruses affecting immunocompromised patients’, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
26
|
Singh G, Zhou X, Lee JY, Yousuf MA, Ramke M, Ismail AM, Lee JS, Robinson CM, Seto D, Dyer DW, Jones MS, Rajaiya J, Chodosh J. Recombination of the epsilon determinant and corneal tropism: Human adenovirus species D types 15, 29, 56, and 69. Virology 2015; 485:452-9. [PMID: 26343864 DOI: 10.1016/j.virol.2015.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022]
Abstract
Viruses within human adenovirus species D (HAdV-D) infect epithelia at essentially every mucosal site. Hypervariable loops 1 and 2 of the hexon capsid protein contain epitopes that together form the epsilon determinant for serum neutralization. We report our analyses comparing HAdV-D15, 29, 56, and the recently identified type 69, each with highly similar hexons and the same serum neutralization profile, but otherwise disparate genomes. Of these, only HAdV-D type 56 is associated with epidemic keratoconjunctivitis (EKC), a severe infection of ocular surface epithelium and underlying corneal stroma. In the mouse adenovirus keratitis model, all four viruses induced inflammation. However, HAdV-D56 entry into human corneal epithelial cells and fibroblasts in vitro dramatically exceeded that of the other three viruses. We conclude that the hexon epsilon determinant is not a prime contributor to corneal tropism.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Xiaohong Zhou
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Jeong Yoon Lee
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Mohammad A Yousuf
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Mirja Ramke
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Ashrafali M Ismail
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Ji Sun Lee
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Christopher M Robinson
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Morris S Jones
- Division of Infectious Diseases, Naval Medical Center San Diego, San Diego, CA, United States
| | - Jaya Rajaiya
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
27
|
Pauly M, Akoua-Koffi C, Buchwald N, Schubert G, Weiss S, Couacy-Hymann E, Anoh AE, Mossoun A, Calvignac-Spencer S, Leendertz SA, Leendertz FH, Ehlers B. Adenovirus in Rural Côte D'Ivoire: High Diversity and Cross-Species Detection. ECOHEALTH 2015; 12:441-452. [PMID: 25990885 DOI: 10.1007/s10393-015-1032-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
The Taï region in Western Côte d'Ivoire is characterized by extensive overlap of human and animal habitats. This could influence patterns of adenovirus transmission between humans and domestic animals. Fecal samples from humans and various domestic animals were tested for the presence of adenoviruses by PCR. Phylogenetic and species delineation analyses were performed to further characterize the adenoviruses circulating in the region and to identify potential cross-species transmission events. Among domestic animals, adenovirus shedding was frequent (21.6% of domestic mammals and 41.5% of chickens) and the detected strains were highly diverse, several of them representing novel types. Although no evidence for zoonotic transmission of animal adenovirus was obtained, the present study provides concordant evidence in favor of common cross-species transmission of adenoviruses between different animal species and first indications for adenovirus transmission from humans to animals. These findings underline the thus far underestimated importance of reverse zoonotic transmission of viruses and of the role of domestic animals as pathogen reservoirs, "bridge species," or intermediate hosts.
Collapse
Affiliation(s)
- Maude Pauly
- Project Group "Epidemiology of highly pathogenic microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
- Department of Immunology, Luxembourg Institute of Health, 20A Rue Auguste Lumière, 1950, Luxembourg, Luxembourg
| | - Chantal Akoua-Koffi
- Centre de Recherche pour le Développement, Université Alassane Ouattara of Bouake, BP V18, Bouake 01, Côte d'Ivoire
| | - Nanina Buchwald
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Grit Schubert
- Project Group "Epidemiology of highly pathogenic microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Sabrina Weiss
- Project Group "Epidemiology of highly pathogenic microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Emmanuel Couacy-Hymann
- Laboratoire National d`Aide au Développement Agricole/Laboratoire Central de Pathologie Animale, 206, Bingerville, Côte d'Ivoire
| | - Augustin Etile Anoh
- Centre de Recherche pour le Développement, Université Alassane Ouattara of Bouake, BP V18, Bouake 01, Côte d'Ivoire
- Laboratoire National d`Aide au Développement Agricole/Laboratoire Central de Pathologie Animale, 206, Bingerville, Côte d'Ivoire
| | - Arsène Mossoun
- Centre de Recherche pour le Développement, Université Alassane Ouattara of Bouake, BP V18, Bouake 01, Côte d'Ivoire
- Laboratoire National d`Aide au Développement Agricole/Laboratoire Central de Pathologie Animale, 206, Bingerville, Côte d'Ivoire
| | - Sébastien Calvignac-Spencer
- Project Group "Epidemiology of highly pathogenic microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Siv Aina Leendertz
- Project Group "Epidemiology of highly pathogenic microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Fabian H Leendertz
- Project Group "Epidemiology of highly pathogenic microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
| | - Bernhard Ehlers
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany.
| |
Collapse
|
28
|
Zhang G, He LS, Wong YH, Xu Y, Zhang Y, Qian PY. Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell. PLoS One 2015. [PMID: 26222041 PMCID: PMC4519255 DOI: 10.1371/journal.pone.0133866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 12 proteins were unknown. Besides the known proteins in barnacle shell (SIPC, carbonic anhydrase and acidic acid matrix protein), we also identified chorion peroxidase, C-type lectin-like domains, serine proteases and proteinase inhibitor proteins in the A. Amphitrite shell. The sequences of these proteins were characterized and their potential functions were discussed. Histology and DAPI staining revealed living cells in the shell, which might secrete the shell proteins identified in this study.
Collapse
Affiliation(s)
- Gen Zhang
- Environmental Science Programs and Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, R. P. China
| | - Li-sheng He
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya City, Hainan Province, 572000, P. R. China
| | - Yue-Him Wong
- Environmental Science Programs and Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, R. P. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Science, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Science, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pei-yuan Qian
- Environmental Science Programs and Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, R. P. China
- * E-mail:
| |
Collapse
|
29
|
Matsushima Y, Nakajima E, Ishikawa M, Kano A, Komane A, Fujimoto T, Hanaoka N, Okabe N, Shimizu H. Construction of new primer sets for corresponding to genetic evolution of human adenoviruses in major capsid genes through frequent recombination. Jpn J Infect Dis 2015; 67:495-502. [PMID: 25410569 DOI: 10.7883/yoken.67.495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A number of novel recombinant human adenoviruses (HAdVs) have recently been identified through sequencing of the complete genomes. The recombinant HAdV sequences share similarity with other types in the major capsid genes, namely the hexon, penton base, and fiber genes, implying recombination events, which may result in escape from the immune response and the acquisition of different organotropisms. Therefore, a surveillance system of HAdVs that considers the effect of frequent recombination on genetic evolution in these genes must be constructed. In this study, we designed new primer sets that can amplify the partial penton base and fiber genes from species HAdV-A to HAdV-F and proteotype HAdVs on the basis of sequence analyses, including previously reported primers that amplify loop 1 of the hexon. Phylogenetic analysis through sequencing with these primers correctly classified clinical HAdV isolates in loop 1 of the hexon gene, the Arg-Gly-Asp (RGD) loop of the penton base gene, and the knob of the fiber gene, which contain neutralizing, hemagglutination, and receptor binding epitopes associated with immunogenicity and tissue tropisms of HAdVs. This study contributes to the accumulation of correct information regarding genetic diversity and evolution in the worldwide HAdV surveillance.
Collapse
Affiliation(s)
- Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tian X, Liu M, Su X, Jiang Z, Ma Q, Liao X, Li X, Zhou Z, Li C, Zhou R. Mapping the epitope of neutralizing monoclonal antibodies against human adenovirus type 3. Virus Res 2015; 208:66-72. [PMID: 26071383 DOI: 10.1016/j.virusres.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023]
Abstract
Human adenovirus type 3 (HAdV-3) has produced a global epidemic in recent years causing serious diseases such as pneumonia in both pediatric and adult patients. Development of an effective neutralizing monoclonal antibody (MAb) and identification of its neutralizing epitope is important for the control of HAdV-3 infection. In this study, three neutralizing MAbs were generated, of which MAb 3D7 had a high neutralization titer of 4096 (approximately 0.5 μg/ml) against HAdV-3 infection. In indirect enzyme-linked immunosorbent assays, all three MAbs specifically recognized HAdV-3 virus particles and hexon protein, but did not react with the virus particles or the hexon protein of HAdV-7. Analyses using a series of peptides and chimeric adenovirus particles of epitope mutants revealed that all three MAbs bound to the same exposed region (amino acid positions 244-254 of hexon) in hypervariable region 4 (HVR4), which is highly conserved among global HAdV-3 strains. The amino acids T246 and G250 may be the critical amino acids recognized by these MAbs. MAb 3D7 reduced the recombinant enhanced green fluorescent protein-expressing HAdV-3 (rAd3EGFP) load recovered in the lungs of mice at 3 days post-infection. The generation of MAb 3D7 and the identification of its neutralizing epitope may be useful for therapeutic treatment development, subunit vaccine construction, and virion structural analysis for HAdV-3.
Collapse
Affiliation(s)
- Xingui Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Minglong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Xiaobo Su
- Department of Medical Genetics and Cell Biology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zaixue Jiang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Qiang Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Xiaohong Liao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Chenyang Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The Affiliated First Hospital of Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
31
|
Fujimoto T, Yamane S, Ogawa T, Hanaoka N, Ogura A, Hotta C, Niwa T, Chiba Y, Gonzalez G, Aoki K, Koyanagi KO, Watanabe H. A novel complex recombinant form of type 48-related human adenovirus species D isolated in Japan. Jpn J Infect Dis 2015; 67:282-7. [PMID: 25056074 DOI: 10.7883/yoken.67.282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, new genotypes of human adenoviruses (HAdVs) have been reported and many of them have been found to be recombinant forms of different known types of HAdV species D (HAdV-D). The objective of this study was to document the evolutionary features of a novel isolate (HAdV_Chiba_E086/2012) obtained from the eye swab of a patient with conjunctivitis in Japan. Viral DNA was extracted from the isolate to sequence the whole genome by the Sanger method and aligned with available genome sequences of HAdV-Ds. The phylogenetic trees of the nucleotide sequences of the penton base, hexon, and fiber genes and the E3 region showed that HAdV_Chiba_E086/2012 is closest to HAdV genotype 65 (HAdV-GT65), HAdV-48, HAdV-GT60 and HAdV-22 at 98%, 99%, 95% and 98% identity, respectively, suggesting that this isolate is a novel recombinant form to be designated as P65H48F60. Further phylogenetic and recombination analyses of the genome alignment of the new isolate implied that nested recombination events involving HAdV-GT59, GT65, 48, GT60, 22, and some ancestral lineages or their close relatives have shaped its genome. These results showed that HAdV_Chiba_E086/2012 is the first HAdV-48-related HAdV found in Japan, which has the most complicated evolutionary history among the known HAdVs so far.
Collapse
|
32
|
Kajon AE, Lamson D, Shudt M, Oikonomopoulou Z, Fisher B, Klieger S, St George K, Hodinka RL. Identification of a novel intertypic recombinant species D human adenovirus in a pediatric stem cell transplant recipient. J Clin Virol 2014; 61:496-502. [PMID: 25449172 DOI: 10.1016/j.jcv.2014.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/08/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Human adenoviruses (HAdV) are known opportunistic pathogens in hematopoietic stem cell transplant (SCT) recipients. The detection of HAdV infection in children after SCT has been implicated as a determinant of poor outcome but specific associations between HAdV species or individual HAdV types and disease are poorly understood. OBJECTIVES Characterization of a HAdV-D strain isolated from multiple clinical specimens of an 11-year-old female recipient of a matched unrelated donor peripheral SCT for T-cell lymphoma and case report. STUDY DESIGN Archived HAdV PCR-positive plasma, urine, and stool specimens were processed for virus isolation and detailed molecular typing. Complete genomic sequencing was carried out on 2 isolates. RESULTS The patient tested positive for HAdV DNA by real-time PCR of a stool specimen at 44 days after initiation of a SCT conditioning regimen. In the subsequent 3 months, HAdV was detected in plasma, urine and stool specimens in association with symptoms of gastroenteritis and hemorrhagic cystitis. A novel HAdV-D with a HAdV20-like hexon gene was isolated from both urine and stool specimens. All isolates yielded identical restriction profiles with endonucleases BamHI, BglII, BstEII, HindIII, PstI and SmaI. Analysis of 2 complete genomic sequences further identified the virus as a novel intertypic recombinant HAdV-D (P20/H20/F42) closely related to HAdV42. CONCLUSIONS This case highlights the identification of a previously unknown HAdV-D from an immunocompromised host. In this patient, the course of adenovirus infection is compatible with reactivation of a latent virus or a primary opportunistic infection. Adenoviremia in this patient resolved without definitive adenovirus-directed antiviral therapy.
Collapse
Affiliation(s)
- Adriana E Kajon
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| | - Daryl Lamson
- Virology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Matthew Shudt
- Applied Genomics Technologies Core, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Zacharoula Oikonomopoulou
- Division of Infectious Diseases, and The Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian Fisher
- Division of Infectious Diseases, and The Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Klieger
- Division of Infectious Diseases, and The Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kirsten St George
- Virology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Richard L Hodinka
- Department of Pathology and Laboratory Medicine and Clinical Virology Laboratory, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Genome sequences of three species d adenoviruses isolated from AIDS patients. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01267-13. [PMID: 24504002 PMCID: PMC3916496 DOI: 10.1128/genomea.01267-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HAdVD23 and two novel adenoviruses, HAdVD60a and HAdVD62, isolated from feces of AIDS patients in Manchester, United Kingdom, have been sequenced. The HAdVD60a genome lacks the penton arginine-glycine-aspartic acid (RGD) motif and differs from HAdVD60 by a recombinant E3 region. HAdVD62 has penton, hexon, and fiber regions not previously found in other adenoviruses.
Collapse
|
34
|
The genome sequence of a novel simian adenovirus in a chimpanzee reveals a close relationship to human adenoviruses. Arch Virol 2014; 159:1765-70. [DOI: 10.1007/s00705-013-1967-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/19/2013] [Indexed: 11/25/2022]
|
35
|
Caveolin-1 associated adenovirus entry into human corneal cells. PLoS One 2013; 8:e77462. [PMID: 24147000 PMCID: PMC3795695 DOI: 10.1371/journal.pone.0077462] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/09/2013] [Indexed: 12/27/2022] Open
Abstract
The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream proinflammatory cell signaling.
Collapse
|
36
|
Dehghan S, Seto J, Jones MS, Dyer DW, Chodosh J, Seto D. Simian adenovirus type 35 has a recombinant genome comprising human and simian adenovirus sequences, which predicts its potential emergence as a human respiratory pathogen. Virology 2013; 447:265-73. [PMID: 24210123 DOI: 10.1016/j.virol.2013.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
Abstract
Emergent human and simian adenoviruses (HAdVs) may arise from genome recombination. Computational analysis of SAdV type 35 reveals a genome comprising a chassis with elements mostly from two simian adenoviruses, SAdV-B21 and -B27, and regions of high sequence similarity shared with HAdV-B21 and HAdV-B16. Although recombination direction cannot be determined, the presence of these regions suggests prior infections of humans by an ancestor of SAdV-B35, and/or vice versa. Absence of this virus in humans may reflect non-optimal conditions for zoonosis or incomplete typing, e.g., limited epitope-based. The presence of both a critical viral replication element found in HAdV genomes and genes that are highly similar to ones in HAdVs suggest the potential to establish in a human host. This allows a prediction that this virus may be a nascent human respiratory pathogen. The recombination potential of human and simian adenovirus genomes should be considered in the use of SAdVs as vectors for gene delivery in humans.
Collapse
Affiliation(s)
- Shoaleh Dehghan
- Chemistry Department, American University, Washington, D.C. 20016, USA; Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
Genes within the E3 transcription unit of human adenoviruses modulate host immune responses to infection. A comprehensive genomics and bioinformatics analysis of the E3 transcription unit for 38 viruses within human adenovirus species D (HAdV-D) revealed distinct and surprising patterns of homologous recombination. Homologous recombination was identified in open reading frames for E3 CR1α, CR1β, and CR1γ, similar to that previously observed with genes encoding the three major structural capsid proteins, the penton base, hexon, and fiber.
Collapse
|