1
|
Miao C, Zhao Q, Zhang YT, Luo SQ, Han X, Wen Y, Wu R, Yan QG, Huang X, Wang Y, Zhao S, Lang YF, Zheng Y, Zhao F, Du S, Cao SJ. RAB4B and Japanese encephalitis virus E protein interaction is essential for viral entry in early endosomes. Int J Biol Macromol 2025; 306:141452. [PMID: 40020812 DOI: 10.1016/j.ijbiomac.2025.141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
RAB4B (Ras-Related GTP-Binding Protein 4b) is essential for intracellular trafficking and endosomal recycling processes. Our previous study, we demonstrated that RAB4B promotes Japanese encephalitis virus (JEV) replication in PK15 cells. However, the exact mechanisms underlying the role of RAB4B in JEV internalization remain unclear. Here, a genome-wide CRISPR/Cas9 library screen was performed, which identified RAB4B, along with other significant hits like ST8SIA4 and ELAVL1, as essential mediators of JEV replication. In vitro validation using RAB4B knockout in U251 and BV2 cells showed a significant reduction in JEV genome copies and viral titers, which were restored upon reintroducing RAB4B, confirming its pivotal role in viral propagation. Further mechanistic investigation revealed that RAB4B is required for JEV internalization into early endosomes. Co-immunoprecipitation and in vitro binding assays demonstrated a direct interaction between RAB4B and the JEV E protein, highlighting the functional importance of this interaction. In vivo experiments with RAB4B knockout mice showed a reduction in viral load in the brain and improved survival rates compared to wild-type mice. Taken together, these findings provide compelling evidence that RAB4B is indispensable for JEV entry and replication.
Collapse
Affiliation(s)
- Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Ya-Ting Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai-Qi Luo
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Qi-Gui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yi-Fei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yi Zheng
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Fei Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China.
| | - San-Jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Mahmutefendić Lučin H, Štimac I, Marcelić M, Skočaj M, Lisnić B, Omerović A, Viduka I, Radić B, Karleuša L, Blagojević Zagorac G, Deželjin M, Jurak Begonja A, Lučin P. Rab10-associated tubulation as an early marker for biogenesis of the assembly compartment in cytomegalovirus-infected cells. Front Cell Dev Biol 2025; 12:1517236. [PMID: 39866842 PMCID: PMC11760598 DOI: 10.3389/fcell.2024.1517236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Cytomegalovirus (CMV) infection reorganizes early endosomes (EE), recycling endosome (RE), and trans-Golgi network (TGN) and expands their intermediates into a large perinuclear structure that forms the inner part of the cytoplasmic assembly complex (AC). The reorganization begins and results with the basic configuration (known as pre-AC) in the early (E) phase of infection, but the sequence of developmental steps is not yet well understood. One of the first signs of the establishment of the inner pre-AC, which can be observed by immunofluorescence, is the accumulation of Rab10. This study aims to investigate whether Rab10-positive domain (Rab10-PD) is expanded during the E phase of infection. Methods We performed long-term live imaging of EGFP-Rab10 with epifluorescence imaging-enhanced digital holotomographic microscopy (DHTM), confocal imaging of known Rab10 interactors and identification of important Rab10 interactors with the proximity-dependent biotin identification assay (BioID). The accumulation of Rab10-PD was analyzed after knock-down of EHBP1 and Rabin8, two proteins that facilitate Rab10 recruitment to membranes, and after blocking of PI(4,5)P2 by PI(4,5)P2-binding protein domains. Results Our study shows the gradual expansion of Rab10-PD in the inner pre-AC, the association of Rab10 with EHBP1 and MICAL-L1, and the dependence of Rab10-PD expansion on EHBP1 and PI(4,5)P2 but not Rabin8, indicating the expansion of EE-derived tubular recycling endosome-like membranes in the pre-AC. Silencing of Rab10 and EHBP1 suggests that Rab10-PD expansion is not required for the establishment of the inner pre-AC nor for the expansion of downstream tubular domains. Conclusion The present work characterizes one of the earliest sequences in the establishment of pre-AC and suggests that subsets of EE-derived tubular membranes may serve as the earliest biomarkers in pre-AC biogenesis. Our study also indicates that the pre-AC biogenesis is complex and likely involves multiple parallel processes, of which Rab10-PD expansion is one. Our experiments, particularly our silencing experiments, show that Rab10 and EHBP-1 do not play a significant role in the later stages of inner pre-AC biogenesis or in the expansion of downstream tubular domains. A more comprehensive understanding of the tubular domain expansion remains to be established.
Collapse
Affiliation(s)
- Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| | - Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Matej Skočaj
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alen Omerović
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Barbara Radić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| | - Martina Deželjin
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
3
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
4
|
Zhao Q, Miao C, Chen YT, Zhu LY, Zhang YT, Luo SQ, Wang YL, Zhu ZM, Han X, Wen Y, Wu R, Du S, Yan QG, Huang X, Zhao S, Lang YF, Wang Y, Zheng Y, Zhao F, Cao SJ. Host Factor Rab4b Promotes Japanese Encephalitis Virus Replication. Microorganisms 2024; 12:1804. [PMID: 39338478 PMCID: PMC11433971 DOI: 10.3390/microorganisms12091804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Although the Japanese encephalitis virus (JEV) infects various cell types, its receptor molecules are still not clearly understood. In our laboratory's prior research, Rab4b was identified as a potential host factor that facilitates JEV infection in PK15 cells, utilizing a genome-wide CRISPR/Cas9 knockout library (PK-15-GeCKO). To further explore the effect of Rab4b on JEV replication, we used the Rab4b knockout PK15 cell line using the CRISPR/Cas9 technology and overexpressing the Rab4b PK15 cell line, with IFA, RT-qPCR, and Western blot to study the effect of Rab4b on viral replication in the whole life cycle of the JEV. The results show that the knockout of Rab4b inhibited the replication of the JEV in PK15 cells, and the overexpression of Rab4b promoted the replication of the JEV in PK15 cell lines. Furthermore, we demonstrated for the first time that host factor Rab4b facilitates the adsorption, internalization, assembly, and release of the JEV, thereby promoting JEV replication. This study enriches the regulatory network between the JEV and host factors and lays the experimental foundation for further understanding of the function of the Rab4b protein.
Collapse
Affiliation(s)
- Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Ting Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Long-Yue Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Ting Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sai-Qi Luo
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Luo Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhu-Ming Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Qi-Gui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yi-Fei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yi Zheng
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Fei Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - San-Jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| |
Collapse
|
5
|
Crawford BI, Talley MJ, Russman J, Riddle J, Torres S, Williams T, Longworth MS. Condensin-mediated restriction of retrotransposable elements facilitates brain development in Drosophila melanogaster. Nat Commun 2024; 15:2716. [PMID: 38548759 PMCID: PMC10978865 DOI: 10.1038/s41467-024-47042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Neural stem and progenitor cell (NSPC) maintenance is essential for ensuring that organisms are born with proper brain volumes and head sizes. Microcephaly is a disorder in which babies are born with significantly smaller head sizes and cortical volumes. Mutations in subunits of the DNA organizing complex condensin have been identified in microcephaly patients. However, the molecular mechanisms by which condensin insufficiency causes microcephaly remain elusive. We previously identified conserved roles for condensins in repression of retrotransposable elements (RTEs). Here, we show that condensin subunit knockdown in NSPCs of the Drosophila larval central brain increases RTE expression and mobility which causes cell death, and significantly decreases adult head sizes and brain volumes. These findings suggest that unrestricted RTE expression and activity may lead to improper brain development in condensin insufficient organisms, and lay the foundation for future exploration of causative roles for RTEs in other microcephaly models.
Collapse
Affiliation(s)
- Bert I Crawford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mary Jo Talley
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Joshua Russman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - James Riddle
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sabrina Torres
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Troy Williams
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Fénéant L, Leske A, Günther K, Groseth A. Generation of Reporter-Expressing New World Arenaviruses: A Systematic Comparison. Viruses 2022; 14:v14071563. [PMID: 35891543 PMCID: PMC9317149 DOI: 10.3390/v14071563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Replication-competent reporter-expressing viruses are crucial tools in molecular virology with applications that range from antiviral screening to live-cell imaging of protein spatiotemporal dynamics. However, there is currently little information available regarding viable strategies to develop reporter-expressing arenaviruses. To address this, we used Tacaribe virus (TCRV), an apathogenic BSL2 arenavirus, to assess the feasibility of different reporter expression approaches. We first generated trisegmented TCRV viruses with either the glycoprotein (GP) or nucleoprotein (NP) replaced by a reporter (GFP, mCherry, or nanoluciferase). These viruses were all viable, but showed marked differences in brightness and attenuation. Next, we generated terminal fusions with each of the TCRV proteins (i.e., NP, GP, polymerase (L), matrix protein (Z)) either with or without a T2A self-cleavage site. We tested both the function of the reporter-fused proteins alone, and the viability of corresponding recombinant TCRVs. We successfully rescued viruses with both direct and cleavable reporter fusions at the C-terminus of Z, as well as cleavable N-terminal fusions with NP. These viruses all displayed detectable reporter activity, but were also moderately attenuated. Finally, reporter proteins were inserted into a flexible hinge region within L. These viruses were also viable and showed moderate attenuation; however, reporter expression was only detectable for the luminescent virus. These strategies provide an exciting range of new tools for research into the molecular biology of TCRV that can likely also be adapted to other arenaviruses.
Collapse
|
8
|
Wedemann L, Flomm FJ, Bosse JB. The unconventional way out-Egress of HCMV through multiviral bodies. Mol Microbiol 2022; 117:1317-1323. [PMID: 35607767 DOI: 10.1111/mmi.14946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus and the leading cause of congenital disabilities as well as a significant cause of disease in immunocompromised patients. The envelopment and egress of HCMV particles is an essential step of the viral life cycle as it determines viral spread and potentially tropism. Here we review the current literature on HCMV envelopment and egress with a particular focus on the role of virus-containing multivesicular body-like vesicles for virus egress and spread. We discuss the difficulties of determining the cellular provenance of these structures in light of viral redistribution of cellular marker proteins and provide potential paths to illuminate their genesis. Finally, we discuss how divergent egress pathways could result in virions of different tropisms.
Collapse
Affiliation(s)
- Linda Wedemann
- Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Leibniz-Institute of Virology, Hamburg, Germany
| | - Felix J Flomm
- Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Leibniz-Institute of Virology, Hamburg, Germany
| | - Jens B Bosse
- Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Leibniz-Institute of Virology, Hamburg, Germany
| |
Collapse
|
9
|
Hong YM, Min SY, Kim D, Kim S, Seo D, Lee KH, Han SH. Human MicroRNAs Attenuate the Expression of Immediate Early Proteins and HCMV Replication during Lytic and Latent Infection in Connection with Enhancement of Phosphorylated RelA/p65 (Serine 536) That Binds to MIEP. Int J Mol Sci 2022; 23:ijms23052769. [PMID: 35269913 PMCID: PMC8911160 DOI: 10.3390/ijms23052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Attenuating the expression of immediate early (IE) proteins is essential for controlling the lytic replication of human cytomegalovirus (HCMV). The human microRNAs (hsa-miRs), miR-200b-3p and miR-200c-3p, have been identified to bind the 3′-untranslated region (3′-UTR) of the mRNA encoding IE proteins. However, whether hsa-miRs can reduce IE72 expression and HCMV viral load or exhibit a crosstalk with the host cellular signaling machinery, most importantly the NF-κB cascade, has not been evaluated. In this study, argonaute-crosslinking and immunoprecipitation-seq revealed that miR-200b-3p and miR-200c-3p bind the 3′-UTR of UL123, which is a gene that encodes IE72. The binding of these miRNAs to the 3′-UTR of UL123 was verified in transfected cells stably expressing GFP. We used miR-200b-3p/miR-200c-3p mimics to counteract the downregulation of these miRNA after acute HCMV infection. This resulted in reduced IE72/IE86 expression and HCMV VL during lytic infection. We determined that IE72/IE86 alone can inhibit the phosphorylation of RelA/p65 at the Ser536 residue and that p-Ser536 RelA/p65 binds to the major IE promoter/enhancer (MIEP). The upregulation of miR-200b-3p and miR-200c-3p resulted in the phosphorylation of RelA/p65 at Ser536 through the downregulation of IE, and the binding of the resultant p-Ser536 RelA/p65 to MIEP resulted in a decreased production of pro-inflammatory cytokines. Overall, miR-200b-3p and miR-200c-3p—together with p-Ser536 RelA/p65—can prevent lytic HCMV replication during acute and latent infection
Collapse
Affiliation(s)
- Yeon-Mi Hong
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Seo Yeon Min
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Dayeong Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Subin Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Daekwan Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
- Correspondence: ; Tel.: +82-2-2019-3319; Fax: +82-2-3463-3882
| |
Collapse
|
10
|
Manska S, Rossetto CC. Identification of cellular proteins associated with human cytomegalovirus (HCMV) DNA replication suggests novel cellular and viral interactions. Virology 2022; 566:26-41. [PMID: 34861458 PMCID: PMC8720285 DOI: 10.1016/j.virol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Upon entry of Human cytomegalovirus (HCMV) into the host cell, the viral genome is transported to the nucleus where it serves as a template for transcription and genome replication. Production of new viral genomes is a coordinated effort between viral and cellular proteins. While the core replication proteins are encoded by the virus, additional cellular proteins support the process of genome synthesis. We used accelerated native isolation of proteins on nascent DNA (aniPOND) to study protein dynamics on nascent viral DNA during HCMV infection. Using this method, we identified specific viral and cellular proteins that are associated with nascent viral DNA. These included transcription factors, transcriptional regulators, DNA damage and repair factors, and chromatin remodeling complexes. The association of these identified proteins with viral DNA was confirmed by immunofluorescent imaging, chromatin-immunoprecipitation analyses, and shRNA knockdown experiments. These data provide evidence for the requirement of cellular factors involved in HCMV replication.
Collapse
Affiliation(s)
- Salomé Manska
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA
| | - Cyprian C. Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA,Correspondence to: Cyprian C. Rossetto, Ph.D.
| |
Collapse
|
11
|
Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH, Rasool MH, Shahid A, Xueshan X, Baloch Z. Antibiotic Resistance: One Health One World Outlook. Front Cell Infect Microbiol 2021; 11:771510. [PMID: 34900756 PMCID: PMC8656695 DOI: 10.3389/fcimb.2021.771510] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance (ABR) is a growing public health concern worldwide, and it is now regarded as a critical One Health issue. One Health's interconnected domains contribute to the emergence, evolution, and spread of antibiotic-resistant microorganisms on a local and global scale, which is a significant risk factor for global health. The persistence and spread of resistant microbial species, and the association of determinants at the human-animal-environment interface can alter microbial genomes, resulting in resistant superbugs in various niches. ABR is motivated by a well-established link between three domains: human, animal, and environmental health. As a result, addressing ABR through the One Health approach makes sense. Several countries have implemented national action plans based on the One Health approach to combat antibiotic-resistant microbes, following the Tripartite's Commitment Food and Agriculture Organization (FAO)-World Organization for Animal Health (OIE)-World Health Organization (WHO) guidelines. The ABR has been identified as a global health concern, and efforts are being made to mitigate this global health threat. To summarize, global interdisciplinary and unified approaches based on One Health principles are required to limit the ABR dissemination cycle, raise awareness and education about antibiotic use, and promote policy, advocacy, and antimicrobial stewardship.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| | - Tamoor Hamid Chaudhry
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | | | - Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Xia Xueshan
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
12
|
Kirby EN, Shue B, Thomas PQ, Beard MR. CRISPR Tackles Emerging Viral Pathogens. Viruses 2021; 13:2157. [PMID: 34834963 PMCID: PMC8624524 DOI: 10.3390/v13112157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the dynamic relationship between viral pathogens and cellular host factors is critical to furthering our knowledge of viral replication, disease mechanisms and development of anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.
Collapse
Affiliation(s)
- Emily N. Kirby
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| | - Byron Shue
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| | - Paul Q. Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
- Genome Editing Program, South Australian Health & Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Michael R. Beard
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| |
Collapse
|
13
|
Russell T, Samolej J, Hollinshead M, Smith GL, Kite J, Elliott G. Novel Role for ESCRT-III Component CHMP4C in the Integrity of the Endocytic Network Utilized for Herpes Simplex Virus Envelopment. mBio 2021; 12:e02183-20. [PMID: 33975940 PMCID: PMC8262985 DOI: 10.1128/mbio.02183-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
Enveloped viruses exploit cellular trafficking pathways for their morphogenesis, providing potential scope for the development of new antiviral therapies. We have previously shown that herpes simplex virus 1 (HSV1) utilizes recycling endocytic membranes as the source of its envelope, in a process involving four Rab GTPases. To identify novel factors involved in HSV1 envelopment, we have screened a small interfering RNA (siRNA) library targeting over 80 human trafficking proteins, including coat proteins, adaptor proteins, fusion factors, fission factors, and Rab effectors. The depletion of 11 factors reduced virus yields by 20- to 100-fold, including three early secretory pathway proteins, four late secretory pathway proteins, and four endocytic pathway proteins, three of which are membrane fission factors. Five of the 11 targets were chosen for further analysis in virus infection, where it was found that the absence of only 1, the fission factor CHMP4C, but not the CHMP4A or CHMP4B paralogues, reduced virus production at the final stage of morphogenesis. Ultrastructural and confocal microscopy of CHMP4C-depleted, HSV1-infected cells showed an accumulation of endocytic membranes; extensive tubulation of recycling, transferrin receptor-positive endosomes indicative of aberrant fission; and a failure in virus envelopment. No effect on the late endocytic pathway was detected, while exogenous CHMP4C was shown to localize to recycling endosomes. Taken together, these data reveal a novel role for the CHMP4C fission factor in the integrity of the recycling endosomal network, which has been unveiled through the dependence of HSV1 on these membranes for the acquisition of their envelopes.IMPORTANCE Cellular transport pathways play a fundamental role in secretion and membrane biogenesis. Enveloped viruses exploit these pathways to direct their membrane proteins to sites of envelopment and, as such, are powerful tools for unraveling subtle activities of trafficking factors, potentially pinpointing therapeutic targets. Using the sensitive biological readout of virus production, over 80 trafficking factors involved in diverse and poorly defined cellular processes have been screened for involvement in the complex process of HSV1 envelopment. Out of 11 potential targets, CHMP4C, a key component in the cell cycle abscission checkpoint, stood out as being required for the process of virus wrapping in endocytic tubules, where it localized. In the absence of CHMP4C, recycling endocytic membranes failed to undergo scission in infected cells, causing transient tubulation and accumulation of membranes and unwrapped virus. These data reveal a new role for this important cellular factor in the biogenesis of recycling endocytic membranes.
Collapse
Affiliation(s)
- Tiffany Russell
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Jerzy Samolej
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Kite
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Gillian Elliott
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Rand U, Kubsch T, Kasmapour B, Cicin-Sain L. A Novel Triple-Fluorescent HCMV Strain Reveals Gene Expression Dynamics and Anti-Herpesviral Drug Mechanisms. Front Cell Infect Microbiol 2021; 10:536150. [PMID: 33489928 PMCID: PMC7820782 DOI: 10.3389/fcimb.2020.536150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022] Open
Abstract
Human Cytomegalovirus (HCMV) infection may result in severe outcomes in immunocompromised individuals such as AIDS patients, transplant recipients, and neonates. To date, no vaccines are available and there are only few drugs for anti-HCMV therapy. Adverse effects and the continuous emergence of drug-resistance strains require the identification of new drug candidates in the near future. Identification and characterization of such compounds and biological factors requires sensitive and reliable detection techniques of HCMV infection, gene expression and spread. In this work, we present and validate a novel concept for multi-reporter herpesviruses, identified through iterative testing of minimally invasive mutations. We integrated up to three fluorescence reporter genes into replication-competent HCMV strains, generating reporter HCMVs that allow the visualization of replication cycle stages of HCMV, namely the immediate early (IE), early (E), and late (L) phase. Fluorescent proteins with clearly distinguishable emission spectra were linked by 2A peptides to essential viral genes, allowing bicistronic expression of the viral and the fluorescent protein without major effects on viral fitness. By using this triple color reporter HCMV, we monitored gene expression dynamics of the IE, E, and L genes by measuring the fluorescent signal of the viral gene-associated fluorophores within infected cell populations and at high temporal resolution. We demonstrate distinct inhibitory profiles of foscarnet, fomivirsen, phosphonoacetic acid, ganciclovir, and letermovir reflecting their mode-of-action. In conclusion, our data argues that this experimental approach allows the identification and characterization of new drug candidates in a single step.
Collapse
Affiliation(s)
- Ulfert Rand
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Tobias Kubsch
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Bahram Kasmapour
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany.,Centre for Individualised Infection Medicine (CIIM), A Joint Venture of Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
15
|
Pollock J, Low AS, McHugh RE, Muwonge A, Stevens MP, Corbishley A, Gally DL. Alternatives to antibiotics in a One Health context and the role genomics can play in reducing antimicrobial use. Clin Microbiol Infect 2020; 26:1617-1621. [PMID: 32220638 DOI: 10.1016/j.cmi.2020.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND This review follows on from the International Conference on One Health Antimicrobial Resistance (ICOHAR 2019), where strategies to improve the fundamental understanding and management of antimicrobial resistance at the interface between humans, animals and the environment were discussed. OBJECTIVE This review identifies alternatives to antimicrobials in a One Health context, noting how advances in genomic technologies are assisting their development and enabling more targeted use of antimicrobials. SOURCES Key articles on the use of microbiota modulation, livestock breeding and gene editing, vaccination, antivirulence strategies and bacteriophage therapy are discussed. CONTENT Antimicrobials are central for disease control, but reducing their use is paramount as a result of the rise of transmissible antimicrobial resistance. This review discusses antimicrobial alternatives in the context of improved understanding of fundamental host-pathogen and microbiota interactions using genomic tools. IMPLICATIONS Host and microbial genomics and other novel technologies play an important role in devising disease control strategies for healthier animals and humans that in turn reduce our reliance on antimicrobials.
Collapse
Affiliation(s)
- J Pollock
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - A S Low
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - R E McHugh
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, Scotland, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - A Muwonge
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - M P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - A Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - D L Gally
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK.
| |
Collapse
|
16
|
Krey K, Babnis AW, Pichlmair A. System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses 2020; 12:E1196. [PMID: 33096788 PMCID: PMC7589202 DOI: 10.3390/v12101196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses pose substantial challenges for society, economy, healthcare systems, and research. Their distinctive pathologies are based on specific interactions with cellular factors. In order to develop new antiviral treatments, it is of central importance to understand how viruses interact with their host and how infected cells react to the virus on a molecular level. Invading viruses are commonly sensed by components of the innate immune system, which is composed of a highly effective yet complex network of proteins that, in most cases, mediate efficient virus inhibition. Central to this process is the activity of interferons and other cytokines that coordinate the antiviral response. So far, numerous methods have been used to identify how viruses interact with cellular processes and revealed that the innate immune response is highly complex and involves interferon-stimulated genes and their binding partners as functional factors. Novel approaches and careful experimental design, combined with large-scale, high-throughput methods and cutting-edge analysis pipelines, have to be utilized to delineate the antiviral innate immune landscape at a global level. In this review, we describe different currently used screening approaches, how they contributed to our knowledge on virus-host interactions, and essential considerations that have to be taken into account when planning such experiments.
Collapse
Affiliation(s)
- Karsten Krey
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Aleksandra W. Babnis
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
- German Center for Infection Research (DZIF), Munich Partner Site, 80538 Munich, Germany
| |
Collapse
|
17
|
Turner DL, Korneev DV, Purdy JG, de Marco A, Mathias RA. The host exosome pathway underpins biogenesis of the human cytomegalovirus virion. eLife 2020; 9:e58288. [PMID: 32910773 PMCID: PMC7556872 DOI: 10.7554/elife.58288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Human Cytomegalovirus (HCMV) infects over half the world's population, is a leading cause of congenital birth defects, and poses serious risks for immuno-compromised individuals. To expand the molecular knowledge governing virion maturation, we analysed HCMV virions using proteomics, and identified a significant proportion of host exosome constituents. To validate this acquisition, we characterized exosomes released from uninfected cells, and demonstrated that over 99% of the protein cargo was subsequently incorporated into HCMV virions during infection. This suggested a common membrane origin, and utilization of host exosome machinery for virion assembly and egress. Thus, we selected a panel of exosome proteins for knock down, and confirmed that loss of 7/9 caused significantly less HCMV production. Saliently, we report that VAMP3 is essential for viral trafficking and release of infectious progeny, in various HCMV strains and cell types. Therefore, we establish that the host exosome pathway is intrinsic for HCMV maturation, and reveal new host regulators involved in viral trafficking, virion envelopment, and release. Our findings underpin future investigation of host exosome proteins as important modulators of HCMV replication with antiviral potential.
Collapse
Affiliation(s)
- Declan L Turner
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash UniversityVictoriaAustralia
| | - Denis V Korneev
- School of Biological Sciences, Monash UniversityVictoriaAustralia
| | - John G Purdy
- Department of Immunobiology and BIO5 Institute, University of ArizonaTucsonUnited States
| | - Alex de Marco
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash UniversityVictoriaAustralia
- University of WarwickCoventryUnited Kingdom
| | - Rommel A Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash UniversityVictoriaAustralia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
| |
Collapse
|
18
|
Yuan S, Chu H, Huang J, Zhao X, Ye ZW, Lai PM, Wen L, Cai JP, Mo Y, Cao J, Liang R, Poon VKM, Sze KH, Zhou J, To KKW, Chen Z, Chen H, Jin DY, Chan JFW, Yuen KY. Viruses harness YxxØ motif to interact with host AP2M1 for replication: A vulnerable broad-spectrum antiviral target. SCIENCE ADVANCES 2020; 6:eaba7910. [PMID: 32923629 PMCID: PMC7455044 DOI: 10.1126/sciadv.aba7910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/14/2020] [Indexed: 05/24/2023]
Abstract
Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.
Collapse
MESH Headings
- A549 Cells
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antiviral Agents/pharmacology
- Betacoronavirus/drug effects
- Binding Sites/genetics
- COVID-19
- Cell Line, Tumor
- Chlorocebus aethiops
- Cinnamates/pharmacology
- Coronavirus Infections/drug therapy
- Coronavirus Infections/pathology
- Dogs
- HEK293 Cells
- HIV Infections/drug therapy
- HIV Infections/pathology
- HIV-1/drug effects
- Host-Pathogen Interactions/drug effects
- Humans
- Influenza A virus/drug effects
- Influenza, Human/drug therapy
- Influenza, Human/pathology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Middle East Respiratory Syndrome Coronavirus/drug effects
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/pathology
- Protein Binding/genetics
- Protein Transport/drug effects
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/genetics
- SARS-CoV-2
- Transforming Growth Factor beta1/metabolism
- Vero Cells
- Virus Replication/drug effects
- Zika Virus/drug effects
- Zika Virus Infection/pathology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingjing Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaoyu Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pok-Man Lai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yufei Mo
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kong-Hung Sze
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
19
|
Lee CH, Grey F. Systems Virology and Human Cytomegalovirus: Using High Throughput Approaches to Identify Novel Host-Virus Interactions During Lytic Infection. Front Cell Infect Microbiol 2020; 10:280. [PMID: 32587832 PMCID: PMC7298070 DOI: 10.3389/fcimb.2020.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is a highly prevalent herpesvirus, persistently infecting between 30 and 100% of the population, depending on socio-economic status (Fields et al., 2013). HCMV remains an important clinical pathogen accounting for more than 60% of complications associated with solid organ transplant patients (Kotton, 2013; Kowalsky et al., 2013; Bruminhent and Razonable, 2014). It is also the leading cause of infectious congenital birth defects and has been linked to chronic inflammation and immune aging (Ballard et al., 1979; Griffith et al., 2016; Jergovic et al., 2019). There is currently no effective vaccine and HCMV antivirals have significant side effects. As current antivirals target viral genes, the virus can develop resistance, reducing drug efficacy. There is therefore an urgent need for new antiviral agents that are effective against HCMV, have better toxicity profiles and are less vulnerable to the emergence of resistant strains. Targeting of host factors that are critical to virus replication is a potential strategy for the development of novel antivirals that circumvent the development of viral resistance. Systematic high throughput approaches provide powerful methods for the identification of novel host-virus interactions. As well as contributing to our basic understanding of virus and cell biology, such studies provide potential targets for the development of novel antiviral agents. High-throughput studies, such as RNA sequencing, proteomics, and RNA interference screens, are useful tools to identify HCMV-induced global changes in host mRNA and protein expression levels and host factors important for virus replication. Here, we summarize new findings on HCMV lytic infection from high-throughput studies since 2014 and how screening approaches have evolved.
Collapse
Affiliation(s)
- Chen-Hsuin Lee
- Division of Infection and Immunity, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Finn Grey
- Division of Infection and Immunity, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Lee CH, Griffiths S, Digard P, Pham N, Auer M, Haas J, Grey F. Asparagine Deprivation Causes a Reversible Inhibition of Human Cytomegalovirus Acute Virus Replication. mBio 2019; 10:e01651-19. [PMID: 31594813 PMCID: PMC6786868 DOI: 10.1128/mbio.01651-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023] Open
Abstract
As obligate intracellular pathogens, viruses rely on the host cell machinery to replicate efficiently, with the host metabolism extensively manipulated for this purpose. High-throughput small interfering RNA (siRNA) screens provide a systematic approach for the identification of novel host-virus interactions. Here, we report a large-scale screen for host factors important for human cytomegalovirus (HCMV), consisting of 6,881 siRNAs. We identified 47 proviral factors and 68 antiviral factors involved in a wide range of cellular processes, including the mediator complex, proteasome function, and mRNA splicing. Focused characterization of one of the hits, asparagine synthetase (ASNS), demonstrated a strict requirement for asparagine for HCMV replication which leads to an early block in virus replication before the onset of DNA amplification. This effect is specific to HCMV, as knockdown of ASNS had little effect on herpes simplex virus 1 or influenza A virus replication, suggesting that the restriction is not simply due to a failure in protein production. Remarkably, virus replication could be completely rescued 7 days postinfection with the addition of exogenous asparagine, indicating that while virus replication is restricted at an early stage, it maintains the capacity for full replication days after initial infection. This study represents the most comprehensive siRNA screen for the identification of host factors involved in HCMV replication and identifies the nonessential amino acid asparagine as a critical factor in regulating HCMV virus replication. These results have implications for control of viral latency and the clinical treatment of HCMV in patients.IMPORTANCE HCMV accounts for more than 60% of complications associated with solid organ transplant patients. Prophylactic or preventative treatment with antivirals, such as ganciclovir, reduces the occurrence of early onset HCMV disease. However, late onset disease remains a significant problem, and prolonged treatment, especially in patients with suppressed immune systems, greatly increases the risk of antiviral resistance. Very few antivirals have been developed for use against HCMV since the licensing of ganciclovir, and of these, the same viral genes are often targeted, reducing the usefulness of these drugs against resistant strains. An alternative approach is to target host genes essential for virus replication. Here we demonstrate that HCMV replication is highly dependent on levels of the amino acid asparagine and that knockdown of a critical enzyme involved in asparagine synthesis results in severe attenuation of virus replication. These results suggest that reducing asparagine levels through dietary restriction or chemotherapeutic treatment could limit HCMV replication in patients.
Collapse
Affiliation(s)
- Chen-Hsuin Lee
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Samantha Griffiths
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Digard
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nhan Pham
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Juergen Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|