1
|
Meethip W, Paengkoum S, Onjai-uea N, Thongpea S, Taethaisong N, Surakhunthod J, Paengkoum P. Utilization of Purple Napier Grass Silage on Milk Quality and Blood Antioxidant Activity in Lactating Dairy Goats. Animals (Basel) 2024; 14:3209. [PMID: 39595262 PMCID: PMC11591485 DOI: 10.3390/ani14223209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, our subjects were 18 female crossbred Saanen lactating goats; the goats weighed approximately 43.25 ± 2.35 kg and had been producing milk for 14 ± 2 days. They were assigned to three equally sized experimental groups based on the cycle of the lactation period. In accordance with the randomized complete block design (RCBD), six animals were randomly assigned to the treatments in each block. There were three treatments: (1) control = Napier Pakchong-1 grass silage (NPS); (2) = sweet grass silage (SGS); and (3) = purple Napier silage (PNS). Our findings show that the goats fed with purple Napier grass silage had a higher DM intake (1805.97 g/day) than those that underwent a different treatment (1312.76 and 1443.43 g/day). The goats fed with purple Napier grass silage had higher protein digestibility (79.85) than those fed with Napier Pakchong-1 and sweet grass silage. There were significant differences in the ruminal ammonia nitrogen and blood urea nitrogen. Nevertheless, purple Napier grass silage significantly increased butyric acid 2 and 4 h after feeding and increased the number of microorganisms. In the dairy goats fed purple Napier grass silage, we observed a reduction in protozoa and methanogen populations. The levels of antioxidants shown by the plasma indices differed in the goats fed with purple Napier grass silage and showed enhanced milk composition, higher levels of total antioxidants, superoxide dismutase and glutathione peroxidase in the plasma, reduced protozoa methanogen, and a decreased level of malondialdehyde in the plasma. This study highlights that purple Napier grass silage has the potential to be a beneficial source of roughage for lactating dairy goats.
Collapse
Affiliation(s)
- Weerada Meethip
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand; (W.M.); (S.T.); (N.T.); (J.S.)
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Muang, Nakhon Ratchasima 30000, Thailand;
| | - Narawich Onjai-uea
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand; (W.M.); (S.T.); (N.T.); (J.S.)
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand; (W.M.); (S.T.); (N.T.); (J.S.)
| | - Jariya Surakhunthod
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand; (W.M.); (S.T.); (N.T.); (J.S.)
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand; (W.M.); (S.T.); (N.T.); (J.S.)
| |
Collapse
|
2
|
Nair GR, Kooverjee BB, de Scally S, Cowan DA, Makhalanyane TP. Changes in nutrient availability substantially alter bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol 2024; 100:fiae071. [PMID: 38697936 PMCID: PMC11107947 DOI: 10.1093/femsec/fiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/07/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024] Open
Abstract
In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.
Collapse
Affiliation(s)
- Girish R Nair
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bhaveni B Kooverjee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Storme de Scally
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Hecht AL, Harling LC, Friedman ES, Tanes C, Lee J, Firrman J, Hao F, Tu V, Liu L, Patterson AD, Bittinger K, Goulian M, Wu GD. Dietary carbohydrates regulate intestinal colonization and dissemination of Klebsiella pneumoniae. J Clin Invest 2024; 134:e174726. [PMID: 38512401 PMCID: PMC11060737 DOI: 10.1172/jci174726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.
Collapse
Affiliation(s)
- Aaron L. Hecht
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa C. Harling
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Junhee Lee
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Usai G, Cordara A, Mazzocchi E, Re A, Fino D, Pirri CF, Menin B. Coupling dairy wastewaters for nutritional balancing and water recycling: sustainable heterologous 2-phenylethanol production by engineered cyanobacteria. Front Bioeng Biotechnol 2024; 12:1359032. [PMID: 38497052 PMCID: PMC10940361 DOI: 10.3389/fbioe.2024.1359032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Microalgae biotechnology is hampered by the high production costs and the massive usage of water during large-volume cultivations. These drawbacks can be softened by the production of high-value compounds and by adopting metabolic engineering strategies to improve their performances and productivity. Today, the most sustainable approach is the exploitation of industrial wastewaters for microalgae cultivation, which couples valuable biomass production with water resource recovery. Among the food processing sectors, the dairy industry generates the largest volume of wastewaters through the manufacturing process. These effluents are typically rich in dissolved organic matter and nutrients, which make it a challenging and expensive waste stream for companies to manage. Nevertheless, these rich wastewaters represent an appealing resource for microalgal biotechnology. In this study, we propose a sustainable approach for high-value compound production from dairy wastewaters through cyanobacteria. This strategy is based on a metabolically engineered strain of the model cyanobacterium Synechococcus elongatus PCC 7942 (already published elsewhere) for 2-phenylethanol (2-PE). 2-PE is a high-value aromatic compound that is widely employed as a fragrance in the food and cosmetics industry thanks to its pleasant floral scent. First, we qualitatively assessed the impact of four dairy effluents on cyanobacterial growth to identify the most promising substrates. Both tank-washing water and the liquid effluent of exhausted sludge resulted as suitable nutrient sources. Thus, we created an ideal buffer system by combining the two wastewaters while simultaneously providing balanced nutrition and completely avoiding the need for fresh water. The combination of 75% liquid effluent of exhausted sludge and 25% tank-washing water with a fine-tuning ammonium supplementation yielded 180 mg L-1 of 2-PE and a biomass concentration of 0.6 gDW L-1 within 10 days. The mixture of 90% exhausted sludge and 10% washing water produced the highest yield of 2-PE (205 mg L-1) and biomass accumulation (0.7 gDW L-1), although in 16 days. Through these treatments, the phosphates were completely consumed, and nitrogen was removed in a range of 74%-77%. Overall, our approach significantly valorized water recycling and the exploitation of valuable wastewaters to circularly produce marketable compounds via microalgae biotechnology, laying a promising groundwork for subsequent implementation and scale-up.
Collapse
Affiliation(s)
- Giulia Usai
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Alessandro Cordara
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Environment, Land and Infrastructure Engineering—DIATI, Politecnico di Torino, Turin, Italy
| | - Elena Mazzocchi
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Angela Re
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Debora Fino
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA-CNR, Milan, Italy
| |
Collapse
|
5
|
Aida H, Ying BW. Efforts to Minimise the Bacterial Genome as a Free-Living Growing System. BIOLOGY 2023; 12:1170. [PMID: 37759570 PMCID: PMC10525146 DOI: 10.3390/biology12091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Exploring the minimal genetic requirements for cells to maintain free living is an exciting topic in biology. Multiple approaches are employed to address the question of the minimal genome. In addition to constructing the synthetic genome in the test tube, reducing the size of the wild-type genome is a practical approach for obtaining the essential genomic sequence for living cells. The well-studied Escherichia coli has been used as a model organism for genome reduction owing to its fast growth and easy manipulation. Extensive studies have reported how to reduce the bacterial genome and the collections of genomic disturbed strains acquired, which were sufficiently reviewed previously. However, the common issue of growth decrease caused by genetic disturbance remains largely unaddressed. This mini-review discusses the considerable efforts made to improve growth fitness, which was decreased due to genome reduction. The proposal and perspective are clarified for further accumulated genetic deletion to minimise the Escherichia coli genome in terms of genome reduction, experimental evolution, medium optimization, and machine learning.
Collapse
Affiliation(s)
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
6
|
Zhang Y, Dong J, Xu G, Han R, Zhou J, Ni Y. Efficient production of hyaluronic acid by Streptococcus zooepidemicus using two-stage semi-continuous fermentation. BIORESOURCE TECHNOLOGY 2023; 377:128896. [PMID: 36933576 DOI: 10.1016/j.biortech.2023.128896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Hyaluronic acid is a kind of mucopolysaccharide that has wide applications in cosmetics, health food, and orthopedics. Using Streptococcus zooepidemicus ATCC 39920 as parent, a beneficial mutant SZ07 was obtained by UV mutagenesis, giving 1.42 g/L hyaluronic acid in shake flasks. To enhance the efficiency of hyaluronic acid production, a semi-continuous fermentation process consisted of two-stage 3-L bioreactors was developed, in which 1.01 g/L/h productivity and 14.60 g/L hyaluronic acid were obtained. To further enhance the titer of hyaluronic acid, recombinant hyaluronidase SzHYal was added into 2nd stage bioreactor at 6 h to reduce the viscosity of broth. The highest hyaluronic acid titer of 29.38 g/L was achieved with a productivity of 1.13 g/L/h at 300 U/L SzHYal after 24 h. This newly developed semi-continuous fermentation process provides a promising strategy for the industrial production of hyaluronic acid and related polysaccharides.
Collapse
Affiliation(s)
- Yongjie Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinjun Dong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ruizhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
7
|
Schwardmann LS, Wu T, Dransfeld AK, Lindner SN, Wendisch VF. Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12592-3. [PMID: 37246985 DOI: 10.1007/s00253-023-12592-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Formamide is rarely used as nitrogen source by microorganisms. Therefore, formamide and formamidase have been used as protection system to allow for growth under non-sterile conditions and for non-sterile production of acetoin, a product lacking nitrogen. Here, we equipped Corynebacterium glutamicum, a renowned workhorse for industrial amino acid production for 60 years, with formamidase from Helicobacter pylori 26695, enabling growth with formamide as sole nitrogen source. Thereupon, the formamide/formamidase system was exploited for efficient formamide-based production of the nitrogenous compounds L-glutamate, L-lysine, N-methylphenylalanine, and dipicolinic acid by transfer of the formamide/formamidase system to established producer strains. Stable isotope labeling verified the incorporation of nitrogen from formamide into biomass and the representative product L-lysine. Moreover, we showed ammonium leakage during formamidase-based access of formamide to be exploitable to support growth of formamidase-deficient C. glutamicum in co-cultivation and demonstrated that efficient utilization of formamide as sole nitrogen source benefitted from overexpression of formate dehydrogenase. KEY POINTS: • C. glutamicum was engineered to access formamide. • Formamide-based production of nitrogenous compounds was established. • Nitrogen cross-feeding supported growth of a formamidase-negative strain.
Collapse
Affiliation(s)
- Lynn S Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Tong Wu
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Aron K Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Steffen N Lindner
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
8
|
Kim B, Oh SJ, Hwang JH, Kim HJ, Shin N, Bhatia SK, Jeon JM, Yoon JJ, Yoo J, Ahn J, Park JH, Yang YH. Polyhydroxybutyrate production from crude glycerol using a highly robust bacterial strain Halomonas sp. YLGW01. Int J Biol Macromol 2023; 236:123997. [PMID: 36907298 DOI: 10.1016/j.ijbiomac.2023.123997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Petrochemical-based plastics are hardly biodegradable and a major cause of environmental pollution, and polyhydroxybutyrate (PHB) is attracting attention as an alternative due to its similar properties. However, the cost of PHB production is high and is considered the greatest challenge for its industrialization. Here, crude glycerol was used as a carbon source for more efficient PHB production. Among the 18 strains investigated, Halomonas taeanenisis YLGW01 was selected for PHB production due to its salt tolerance and high glycerol consumption rate. Furthermore, this strain can produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3 HV)) with 17 % 3 HV mol fraction when a precursor is added. PHB production was maximized through medium optimization and activated carbon treatment of crude glycerol, resulting in 10.5 g/L of PHB with 60 % PHB content in fed-batch fermentation. Physical properties of the produced PHB were analyzed, i.e., weight average molecular weight (6.8 × 105), number average molecular weight (4.4 × 105), and the polydispersity index (1.53). In the universal testing machine analysis, the extracted intracellular PHB showed a decrease in Young's modulus, an increase in Elongation at break, greater flexibility than authentic film, and decreased brittleness. This study confirmed that YLGW01 is a promising strain for industrial PHB production using crude glycerol.
Collapse
Affiliation(s)
- Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jaehung Yoo
- GRIBIO Co. Ltd, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Lei H, Zhang J, Huang J, Shen D, Li Y, Jiao R, Zhao R, Li X, Lin L, Li B. New insights into lincomycin biodegradation by Conexibacter sp. LD01: Genomics characterization, biodegradation kinetics and pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129824. [PMID: 36087529 DOI: 10.1016/j.jhazmat.2022.129824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The aerobic, lincomycin-degrading bacterial strain Conexibacter sp. LD01, belonging to the phylum Actinobacteria, was isolated from activated sludge. Both second- and third-generation sequencing technologies were applied to uncover the genomic characterization and high-quality genome with 99.2% completeness and 2.2% contamination was obtained. The biodegradation kinetics of lincomycin fit well with the modified Gompertz model (R2 > 0.97). Conexibacter sp. LD01 could subsist with lincomycin as the sole source of carbon, nitrogen, and energy. When 500 mg/L of glucose was added as a co-substrate, the biodegradation rate improved significantly, whereas the addition of 500 mg/L sodium pyruvate had a slight inhibitory effect. Ammonia nitrogen was the best nitrogen source for Conexibacter sp. LD01 when growing and degrading lincomycin. In total, 17 metabolic products consisting of nine novel products were detected, and five biodegradation pathways, including N-demethylation, breakage of the amido bond, sulfoxidation, and oxidation of the pyrrolidine ring and propylamino chain, were proposed. This study significantly expands our understanding of the functional microorganisms and mechanism involved in lincomycin biodegradation at the phylum level.
Collapse
Affiliation(s)
- Huaxin Lei
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Dengjin Shen
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yin Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Jiao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
10
|
Abbey L, Yurgel SN, Asunni OA, Ofoe R, Ampofo J, Gunupuru LR, Ajeethan N. Changes in Soil Characteristics, Microbial Metabolic Pathways, TCA Cycle Metabolites and Crop Productivity following Frequent Application of Municipal Solid Waste Compost. PLANTS (BASEL, SWITZERLAND) 2022; 11:3153. [PMID: 36432882 PMCID: PMC9695376 DOI: 10.3390/plants11223153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The benefit sof municipal solid waste (MSW) compost on soil health and plant productivity are well known, but not its long-term effect on soil microbial and plant metabolic pathways. A 5-year study with annual (AN), biennial (BI) and no (C, control) MSW compost application were carried out to determine the effect on soil properties, microbiome function, and plantgrowth and TCA cycle metabolites profile of green beans (Phaseolus vulgaris), lettuce (Latuca sativa) and beets (Beta vulgaris). MSW compost increased soil nutrients and organic matter leading to a significant (p < 0.05) increase in AN-soil water-holding capacity followed by BI-soil compared to C-soil. Estimated nitrogen release in the AN-soil was ca. 23% and 146% more than in BI-soil and C-soil, respectively. Approximately 44% of bacterial community due to compost. Deltaproteobacteria, Bacteroidetes Bacteroidia, and Chloroflexi Anaerolineae were overrepresented in compost amended soils compared to C-soil. A strong positive association existed between AN-soil and 18 microbial metabolic pathways out of 205. Crop yield in AN-soil were increased by 6−20% compared to the BI-soil, and by 35−717% compared to the C-soil. Plant tricarboxylic acid cycle metabolites were highly (p < 0.001) influenced by compost. Overall, microbiome function and TCA cycle metabolites and crop yield were increased in the AN-soil followed by the BI-soil and markedly less in C-soil. Therefore, MSW compost is a possible solution to increase soil health and plants production in the medium to long term. Future study must investigate rhizosphere metabolic activities.
Collapse
Affiliation(s)
- Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| | - Svetlana N. Yurgel
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
- United States Department of Agriculture, ARS, Grain Legume Genetics and Physiology Research Unit, 24106 N Bunn Road, Prosser, DC 99350-9687, USA
| | - Ojo Alex Asunni
- Department of Applied Disasters and Emergency Studies, Brandon University, Brandon, MB R7A 6A9, Canada
| | - Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| | - Josephine Ampofo
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Lokanadha Rao Gunupuru
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| | - Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| |
Collapse
|
11
|
McClure R, Farris Y, Danczak R, Nelson W, Song HS, Kessell A, Lee JY, Couvillion S, Henry C, Jansson JK, Hofmockel KS. Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes. mSystems 2022; 7:e0037222. [PMID: 36154140 PMCID: PMC9599572 DOI: 10.1128/msystems.00372-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, "model soil consortium-2" (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soil. IMPORTANCE The soil microbiome performs many functions that are key to ecology, agriculture, and nutrient cycling. However, because of the complexity of this ecosystem we do not know the molecular details of the interactions between microbial species that lead to these important functions. Here, we use a representative but simplified model community of bacteria to understand the details of these interactions. We show that certain species act as primary degraders of carbon sources and that the most successful species are likely those that can take the most advantage of breakdown products, not necessarily the primary degraders. We also show that a species phenotype, including whether it is a primary degrader or not, is driven in large part by the membership of the community it resides in. These conclusions are critical to a better understanding of the soil microbial interaction network and how these interactions drive central soil microbiome functions.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Robert Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - William Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Aimee Kessell
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Joon-Yong Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sneha Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Henry
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S. Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Yang Z, Liu Z, Dabrowska M, Debiec-Andrzejewska K, Stasiuk R, Yin H, Drewniak L. Biostimulation of sulfate-reducing bacteria used for treatment of hydrometallurgical waste by secondary metabolites of urea decomposition by Ochrobactrum sp. POC9: From genome to microbiome analysis. CHEMOSPHERE 2021; 282:131064. [PMID: 34118631 DOI: 10.1016/j.chemosphere.2021.131064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/25/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Sulfate-reducing bacteria (SRB) are key players in many passive and active systems dedicated to the treatment of hydrometallurgical leachates. One of the main factors reducing the efficiency and activity of SRB is the low pH and poor nutrients in leachates. We propose an innovative solution utilizing biogenic ammonia (B-NH3), produced by urea degrading bacteria, as a pretreatment agent for increasing the pH of the leachate and spontaneously stimulating SRB activity via bacterial secondary metabolites. The selected strain, Ochrobactrum sp. POC9, generated 984.7 mg/L of ammonia in 24 h and promotes an effective neutralization of B-NH3. The inferred metabolic traits indicated that the Ochrobactrum sp. POC9 can synthesize a group of vitamins B, and the production of various organic metabolites was confirmed by GC-MS analysis. These metabolites comprise alcohols, organic acids, and unsaturated hydrocarbons that may stimulate biological sulfate reduction. With the pretreatment of B-NH3, sulfate removal efficiency reached ~92.3% after 14 days of incubation, whereas SRB cell count and abundance were boosted (~107 cell counts and 88 OTUs of SRB) compared to synthetic ammonia (S-NH3) (~103 cell counts and 40 OTUs of SRB). The dominant SRB is Desulfovibrio in both S-NH3 and B-NH3 pretreated leachate, however, it belonged to two different clades. By reconstructing the ecological network, we found that B-NH3 not only directly increases SRB performance but also promotes other strains with positive correlations with SRB.
Collapse
Affiliation(s)
- Zhendong Yang
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Zhenghua Liu
- Central South University, School of Resource Processing and Bioengineering, No. 932 Lushan South Road, Changsha, China
| | - Maria Dabrowska
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Robert Stasiuk
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Huaqun Yin
- Central South University, School of Resource Processing and Bioengineering, No. 932 Lushan South Road, Changsha, China
| | - Lukasz Drewniak
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
14
|
Liu H, Chen Y, Ye J, Xu H, Zhu Z, Xu T. Effects of different amino acids and their configurations on methane yield and biotransformation of intermediate metabolites during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113152. [PMID: 34217942 DOI: 10.1016/j.jenvman.2021.113152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) comprises a series of biochemical reactions, with methane as one of the target products. Amino acids (AAs) are important molecular and primary intermediate products when protein is the main component of organic waste/wastewater. The L (levorotatory, left-handed)-configuration is natural for AAs, while D (dextrorotatory, right-handed) -AAs also widely exist in the natural environment and can be generated by racemization. However, the effects and underlying mechanisms of natural AAs and their enantiomers on the methane yield and the underlying mechanisms remain unclear. In this study, the effects of certain widespread L-AAs and their enantiomers on two-stage AD and the mechanisms therein were investigated. The AAs enantiomers showed variable or even opposite effects on different processes. The methane yield from a model monosaccharide (glucose) decreased by 57% with D-leucine addition. The butyrate generation and the methane yield from propionate were sensitive to the AA configuration and were inhibited by D-leucine by 80% and 61.8%, respectively, with D-leucine addition, while the volatile fatty acids concentration was slightly increased with the addition of L-leucine. The related mechanisms were further investigated in terms of key enzymes and microbial communities. The addition of D-Leucine decreased acetic acid production from homoacetogens by 30.2% due to the inhibition of key enzymes involved in hydrogen generation and consumption. The transform of butyryl CoA to butyryl phosphate was the rate-limiting step, with the related enzyme (phosphotransbutylase) was inhibited by D-leucine. Furthermore, the bacteria related to butyric acid generation and organic matter degradation were inhibited by D-leucine, while the methanogenic archaea remained stable irrespective of leucine addition. The effect of D-AAs on microorganisms is related to the type of sludge. In this study, the methanogenetic seed sludge was granular and did not dissociate after treatment; however, the D-AAs could trigger biofilm disassembly and reduce the stability of the sludge floc. The study provides a novel method for regulating AD by adding specific AAs with L or D configuration.
Collapse
Affiliation(s)
- Hui Liu
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Jianfeng Ye
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China.
| | - Huiting Xu
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China
| | - Zhihao Zhu
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China
| | - Tianchen Xu
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China
| |
Collapse
|
15
|
Wu D, Qi W, Nie W, Lu Z, Ye Y, Li J, Sun T, Zhu Y, Cheng H, Wang X. BacFlash signals acid-resistance gene expression in bacteria. Cell Res 2021; 31:703-712. [PMID: 33159153 PMCID: PMC8169942 DOI: 10.1038/s41422-020-00431-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022] Open
Abstract
Intracellular pH (pHi) homeostasis is crucial for cellular functions and signal transduction across all kingdoms of life. In particular, bacterial pHi homeostasis is important for physiology, ecology, and pathogenesis. Here we report an exquisite bacterial acid-resistance (AR) mechanism in which proton leak elicits a pre-emptive AR response. A single bacterial cell undergoes quantal electrochemical excitation, termed "BacFlash", which consists of membrane depolarization, transient pHi rise, and bursting production of reactive oxygen species. BacFlash ignition is dictated by acid stress in the form of proton leak across the plasma membrane and the rate of BacFlash occurrence is reversely correlated with the pHi buffering capacity. Through genome-wide screening, we further identify the ATP synthase Fo complex subunit a as the putative proton sensor for BacFlash biogenesis. Importantly, persistent BacFlash hyperactivity activates transcription of a panel of key AR genes and predisposes the cells to survive imminent extreme acid stress. These findings demonstrate a prototypical coupling between electrochemical excitation and nucleoid gene expression in prokaryotes.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenfeng Qi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wei Nie
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Zhengyuan Lu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yongxin Ye
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yufei Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China.
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, Op den Camp HJM. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev 2021; 45:6125968. [PMID: 33524112 PMCID: PMC8498564 DOI: 10.1093/femsre/fuab007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
Methanotrophs are an important group of microorganisms that counteract methane emissions to the atmosphere. Methane-oxidising bacteria of the Alpha- and Gammaproteobacteria have been studied for over a century, while methanotrophs of the phylum Verrucomicrobia are a more recent discovery. Verrucomicrobial methanotrophs are extremophiles that live in very acidic geothermal ecosystems. Currently, more than a dozen strains have been isolated, belonging to the genera Methylacidiphilum and Methylacidimicrobium. Initially, these methanotrophs were thought to be metabolically confined. However, genomic analyses and physiological and biochemical experiments over the past years revealed that verrucomicrobial methanotrophs, as well as proteobacterial methanotrophs, are much more metabolically versatile than previously assumed. Several inorganic gases and other molecules present in acidic geothermal ecosystems can be utilised, such as methane, hydrogen gas, carbon dioxide, ammonium, nitrogen gas and perhaps also hydrogen sulfide. Verrucomicrobial methanotrophs could therefore represent key players in multiple volcanic nutrient cycles and in the mitigation of greenhouse gas emissions from geothermal ecosystems. Here, we summarise the current knowledge on verrucomicrobial methanotrophs with respect to their metabolic versatility and discuss the factors that determine their diversity in their natural environment. In addition, key metabolic, morphological and ecological characteristics of verrucomicrobial and proteobacterial methanotrophs are reviewed.
Collapse
Affiliation(s)
- Rob A Schmitz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
17
|
A new l-glutaminase from Kosakonia sp.: extracellular production, gene identification and structural analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
McGill SL, Yung Y, Hunt KA, Henson MA, Hanley L, Carlson RP. Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy. Sci Rep 2021; 11:1457. [PMID: 33446818 PMCID: PMC7809481 DOI: 10.1038/s41598-020-80522-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a globally-distributed bacterium often found in medical infections. The opportunistic pathogen uses a different, carbon catabolite repression (CCR) strategy than many, model microorganisms. It does not utilize a classic diauxie phenotype, nor does it follow common systems biology assumptions including preferential consumption of glucose with an 'overflow' metabolism. Despite these contradictions, P. aeruginosa is competitive in many, disparate environments underscoring knowledge gaps in microbial ecology and systems biology. Physiological, omics, and in silico analyses were used to quantify the P. aeruginosa CCR strategy known as 'reverse diauxie'. An ecological basis of reverse diauxie was identified using a genome-scale, metabolic model interrogated with in vitro omics data. Reverse diauxie preference for lower energy, nonfermentable carbon sources, such as acetate or succinate over glucose, was predicted using a multidimensional strategy which minimized resource investment into central metabolism while completely oxidizing substrates. Application of a common, in silico optimization criterion, which maximizes growth rate, did not predict the reverse diauxie phenotypes. This study quantifies P. aeruginosa metabolic strategies foundational to its wide distribution and virulence including its potentially, mutualistic interactions with microorganisms found commonly in the environment and in medical infections.
Collapse
Affiliation(s)
- S Lee McGill
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Yeni Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kristopher A Hunt
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Michael A Henson
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
19
|
Jacoby RP, Succurro A, Kopriva S. Nitrogen Substrate Utilization in Three Rhizosphere Bacterial Strains Investigated Using Proteomics. Front Microbiol 2020; 11:784. [PMID: 32411116 PMCID: PMC7198800 DOI: 10.3389/fmicb.2020.00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Nitrogen metabolism in the rhizosphere microbiome plays an important role in mediating plant nutrition, particularly under low inputs of mineral fertilizers. However, there is relatively little mechanistic information about which genes and metabolic pathways are induced by rhizosphere bacterial strains to utilize diverse nitrogen substrates. Here we investigate nitrogen substrate utilization in three taxonomically diverse bacterial strains previously isolated from Arabidopsis roots. The three strains represent taxa that are consistently detected as core members of the plant microbiome: Pseudomonas, Streptomyces, and Rhizobium. We use phenotype microarrays to determine the nitrogen substrate preferences of these strains, and compare the experimental results vs. computational simulations of genome-scale metabolic network models obtained with EnsembleFBA. Results show that all three strains exhibit generalistic nitrogen substrate preferences, with substrate utilization being well predicted by EnsembleFBA. Using label-free quantitative proteomics, we document hundreds of proteins in each strain that exhibit differential abundance values following cultivation on five different nitrogen sources: ammonium, glutamate, lysine, serine, and urea. The proteomic response to these nitrogen sources was strongly strain-dependent, with lysine nutrition eliciting widespread protein-level changes in Pseudomonas sp. Root9, whereas Rhizobium sp. Root491 showed relatively stable proteome composition across different nitrogen sources. Our results give new protein-level information about the specific transporters and enzymes induced by diverse rhizosphere bacterial strains to utilize organic nitrogen substrates.
Collapse
Affiliation(s)
- Richard P. Jacoby
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
20
|
Ma L, Guo L, Yang Y, Guo K, Yan Y, Ma X, Huo YX. Protein-based biorefining driven by nitrogen-responsive transcriptional machinery. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:29. [PMID: 32127916 PMCID: PMC7045595 DOI: 10.1186/s13068-020-1667-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Protein-based bioconversion has been demonstrated as a sustainable approach to produce higher alcohols and ammonia fertilizers. However, owing to the switchover from transcription mediated by the bacterial RNA polymerase σ70 to that mediated by alternative σ factors, the biofuel production driven by σ70-dependent promoters declines rapidly once cells enter the stationary phase or encounter stresses. To enhance biofuel production, in this study the growth phase-independent and nitrogen-responsive transcriptional machinery mediated by the σ54 is exploited to drive robust protein-to-fuel conversion. RESULTS We demonstrated that disrupting the Escherichia coli ammonia assimilation pathways driven by glutamate dehydrogenase and glutamine synthetase could sustain the activity of σ54-mediated transcription under ammonia-accumulating conditions. In addition, two σ54-dependent promoters, argTp and glnAp2, were identified as suitable candidates for driving pathway expression. Using these promoters, biofuel production from proteins was shown to persist to the stationary phase, with the net production in the stationary phase being 1.7-fold higher than that derived from the optimal reported σ70-dependent promoter P LlacO1. Biofuel production reaching levels 1.3- to 3.4-fold higher than those of the σ70-dependent promoters was also achieved by argTp and glnAp2 under stressed conditions. Moreover, the σ54-dependent promoters realized more rapid and stable production than that of σ70-dependent promoters during fed-batch fermentation, producing up to 4.78 g L - 1 of total biofuels. CONCLUSIONS These results suggested that the nitrogen-responsive transcriptional machinery offers the potential to decouple production from growth, highlighting this system as a novel candidate to realize growth phase-independent and stress-resistant biofuel production.
Collapse
Affiliation(s)
- Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yunpeng Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Kai Guo
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602 USA
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 China
| |
Collapse
|
21
|
VanMensel D, Chaganti SR, Droppo IG, Weisener CG. Exploring bacterial pathogen community dynamics in freshwater beach sediments: A tale of two lakes. Environ Microbiol 2019; 22:568-583. [PMID: 31736260 DOI: 10.1111/1462-2920.14860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 11/28/2022]
Abstract
Pathogenic bacteria associated with freshwater ecosystems can pose significant health risks particularly where recreational water use is popular. Common water quality assessments involve quantifying indicator Escherichia coli within the water column but neglect to consider physical and geochemical factors and contributions from the sediment. In this study, we used high-throughput sequencing to investigate sediment microbial communities at four freshwater public beaches in southern Ontario, Canada and analysed community structure, function, and gene expression with relation to geographical characteristics. Our results indicate that beach sediments at the sediment-water interface could serve as potential sources of bacterial contamination under low-energy environments with tightly packed small sediment particles compared with high-energy environments. Further, the absence of pathogens but expression of pathogenic transcripts suggests occurrence of alternate gene acquisition. Pathogenicity at these locations included expression of Salmonella virulence factors, genes involved in pertussis, and antimicrobial resistance. Finally, we introduce a proposed universal bacterial pathogen model to consider the combined and synergistic processes used by these microbes. To our knowledge, this is the first study of its kind to investigate chemolithotrophic activity related to pathogens within bed sediment at freshwater beaches. This work helps advance current understanding of health risks in these environments.
Collapse
Affiliation(s)
- Danielle VanMensel
- Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada.,Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Ian G Droppo
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, Ontario, Canada
| |
Collapse
|
22
|
Bacterial Microcompartment-Mediated Ethanolamine Metabolism in Escherichia coli Urinary Tract Infection. Infect Immun 2019; 87:IAI.00211-19. [PMID: 31138611 PMCID: PMC6652756 DOI: 10.1128/iai.00211-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. The role of ethanolamine as a potential nutrient source during UTIs is understudied. We evaluated the role of the metabolism of ethanolamine as a potential nitrogen and carbon source for UPEC in the urinary tract. We analyzed infected urine samples by culture, high-performance liquid chromatography, reverse transcription-quantitative PCR, and genomic sequencing. The ethanolamine concentration in urine was comparable to the concentration of the most abundant reported urinary amino acid, d-serine. Transcription of the eut operon was detected in the majority of urine samples containing E. coli screened. All sequenced UPEC strains had conserved eut operons, while metabolic genotypes previously associated with UTI (dsdCXA, metE) were mainly limited to phylogroup B2. In vitro ethanolamine was found to be utilized as a sole source of nitrogen by UPEC strains. The metabolism of ethanolamine in artificial urine medium (AUM) induced metabolosome formation and provided a growth advantage at the physiological levels found in urine. Interestingly, eutE (which encodes acetaldehyde dehydrogenase) was required for UPEC strains to utilize ethanolamine to gain a growth advantage in AUM, suggesting that ethanolamine is also utilized as a carbon source. These data suggest that urinary ethanolamine is a significant additional carbon and nitrogen source for infecting E. coli strains.
Collapse
|
23
|
Albright MBN, Johansen R, Lopez D, Gallegos-Graves LV, Steven B, Kuske CR, Dunbar J. Short-Term Transcriptional Response of Microbial Communities to Nitrogen Fertilization in a Pine Forest Soil. Appl Environ Microbiol 2018; 84:e00598-18. [PMID: 29802185 PMCID: PMC6052259 DOI: 10.1128/aem.00598-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems; however, N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) time scale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (ca. 1 mg/g of soil material) in laboratory microcosms. We hypothesized that N fertilization would repress the expression of fungal and bacterial genes linked to N mining from plant litter. However, despite N suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ∼4% of metabolic genes changed in expression with N addition, while three times as many (∼12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example, in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N addition observed in longer-term field studies likely result from changes in microbial composition.IMPORTANCE Ecosystems are receiving increased nitrogen (N) from anthropogenic sources, including fertilizers and emissions from factories and automobiles. High levels of N change ecosystem functioning. For example, high inorganic N decreases the microbial decomposition of plant litter, potentially reducing nutrient recycling for plant growth. Understanding how N regulates microbial decomposition can improve the prediction of ecosystem functioning over extended time scales. We found little support for the conventional view that high N supply represses the expression of genes involved in decomposition or alters the expression of bacterial genes for inorganic N cycling. Instead, our study of pine forest soil 3 days after N addition showed changes in microbial gene expression related to cell maintenance and stress response. This highlights the challenge of establishing predictive links between microbial gene expression levels and measures of ecosystem function.
Collapse
Affiliation(s)
| | - Renee Johansen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Deanna Lopez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
24
|
Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci Rep 2018; 8:10928. [PMID: 30026566 PMCID: PMC6053447 DOI: 10.1038/s41598-018-29204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Transfer of nitrogen fixation (nif) genes from diazotrophs to amenable heterologous hosts is of increasing interest to genetically engineer nitrogen fixation. However, how the non-diazotrophic host maximizes opportunities to fine-tune the acquired capacity for nitrogen fixation has not been fully explored. In this study, a global investigation of an engineered nitrogen-fixing Escherichia coli strain EN-01 harboring a heterologous nif island from Pseudomonas stutzeri was performed via transcriptomics and proteomics analyses. A total of 1156 genes and 206 discriminative proteins were found to be significantly altered when cells were incubated under nitrogen-fixation conditions. Pathways for regulation, metabolic flux and oxygen protection to nitrogenase were particularly discussed. An NtrC-dependent regulatory coupling between E. coli nitrogen regulation system and nif genes was established. Additionally, pentose phosphate pathway was proposed to serve as the primary route for glucose catabolism and energy supply to nitrogenase. Meanwhile, HPLC analysis indicated that organic acids produced by EN-01 might have negative effects on nitrogenase activity. This study provides a global view of the complex network underlying the acquired nif genes in the recombinant E. coli and also provides clues for the optimization and redesign of robust nitrogen-fixing organisms to improve nitrogenase efficiency by overcoming regulatory or metabolic obstacles.
Collapse
|
25
|
Pereira RVV, Carroll LM, Lima S, Foditsch C, Siler JD, Bicalho RC, Warnick LD. Impacts of feeding preweaned calves milk containing drug residues on the functional profile of the fecal microbiota. Sci Rep 2018; 8:554. [PMID: 29323259 PMCID: PMC5764986 DOI: 10.1038/s41598-017-19021-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
Feeding drug residue-containing milk to calves is common worldwide and no information is currently available on the impact on the functional profile of the fecal microbiota. Our objective was to characterize the functional profile of the fecal microbiota of preweaned dairy calves fed raw milk with residual concentrations of antimicrobials commonly found in waste milk from birth to weaning. Calves were assigned to a controlled feeding trial being fed milk with no drug residues or milk with antibiotic residues. Fecal samples collected from each calf once a week starting at birth, prior to the first feeding in the trial, until 6 weeks of age. Antibiotic residues resulted in a significant difference in relative abundance of microbial cell functions, especially with genes linked with stress response, regulation and cell signaling, and nitrogen metabolism. These changes could directly impacts selection and dissemination of virulence and antimicrobial. Our data also identified a strong association between age in weeks and abundance of Resistance to Antibiotics and Toxic Compounds. Findings from this study support the hypothesis that drug residues, even at very low concentrations, impact the gut microbiota of calves and result in changes in the functional profile of microbial populations.
Collapse
Affiliation(s)
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Svetlana Lima
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Carla Foditsch
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Julie D Siler
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rodrigo Carvalho Bicalho
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lorin D Warnick
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
26
|
Dai X, Wang H, Zhang Z, Li K, Zhang X, Mora-López M, Jiang C, Liu C, Wang L, Zhu Y, Hernández-Ascencio W, Dong Z, Huang L. Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains. Front Microbiol 2016; 7:1902. [PMID: 27965637 PMCID: PMC5127849 DOI: 10.3389/fmicb.2016.01902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus, and Sulfolobus tokodaii, which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a specific genomic site in some strains and lost in other strains during the course of evolution. The versatility in nitrogen and sulfur metabolism may represent adaptation of Sulfolobus to thriving in different habitats.
Collapse
Affiliation(s)
- Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Haina Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Marielos Mora-López
- Center for Research in Cell and Molecular Biology, Universidad de Costa Rica San José, Costa Rica
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | | | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|