1
|
Rios-Delgado G, McReynolds AKG, Pagella EA, Norambuena J, Briaud P, Zheng V, Munneke MJ, Kim J, Racine H, Carroll RK, Zelzion E, Skaar E, Bose JL, Parker D, Lalaouna D, Boyd JM. The Staphylococcus aureus non-coding RNA IsrR regulates TCA cycle activity and virulence. Nucleic Acids Res 2024:gkae1243. [PMID: 39704109 DOI: 10.1093/nar/gkae1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. Staphylococcus aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake. We demonstrate that an S. aureus Δfur mutant has decreased expression of acnA, which codes for the Fe-dependent enzyme aconitase. This prevents the Δfur mutant from growing with amino acids as sole carbon and energy sources. We used a suppressor screen to exploit this phenotype and determined that a mutation that decreases the transcription of isrR, which produces a regulatory RNA, increased acnA expression, thereby enabling growth. Directed mutation of bases predicted to facilitate the interaction between the acnA transcript and IsrR, decreased the ability of IsrR to control acnA expression in vivo and IsrR bound to the acnA transcript in vitro. IsrR also bound transcripts coding the alternate tricarboxylic acid cycle proteins sdhC, mqo, citZ and citM. Whole-cell metal analyses suggest that IsrR promotes Fe uptake and increases intracellular Fe not ligated by macromolecules. Lastly, we determined that Fur and IsrR promote infection using murine skin and acute pneumonia models.
Collapse
Affiliation(s)
- Gustavo Rios-Delgado
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Dr, New Brunswick, NJ 08901, USA
| | - Aubrey K G McReynolds
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Emma A Pagella
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Dr, New Brunswick, NJ 08901, USA
| | - Paul Briaud
- Department of Biological Sciences, Ohio University, 7 Depot St, Athens, OH 45701, USA
| | - Vincent Zheng
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Dr, New Brunswick, NJ 08901, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hugo Racine
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, 15 rue René Descartes, Strasbourg 67000, France
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, 7 Depot St, Athens, OH 45701, USA
| | - Ehud Zelzion
- Office of Advanced Research Computing, Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Eric Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, 15 rue René Descartes, Strasbourg 67000, France
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Dr, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Peignier A, Kim J, Lemenze A, Parker D. Monocyte-regulated interleukin 12 production drives clearance of Staphylococcus aureus. PLoS Pathog 2024; 20:e1012648. [PMID: 39418302 PMCID: PMC11521269 DOI: 10.1371/journal.ppat.1012648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Staphylococcus aureus is a versatile bacterium responsible for conditions ranging from mild skin and soft-tissue infections to serious disorders such as pneumonia and sepsis. Monocytes play a role in protection against pathogens by migrating to inflamed tissues and differentiating into macrophages but their specific role in the context of S. aureus pulmonary infection has not been fully elucidated. Using a CCR2-DTR transgenic mouse model we demonstrate that over the course of infection monocyte depletion resulted in worse airway clearance of S. aureus. The bronchoalveolar lavage fluid (BALF) of CCR2-DTR mice after S. aureus infection displayed significant decreases in interleukin-12 (IL-12), IFN-γ, IP-10, MIG and RANTES, all IFN-γ regulated, compared to wild-type (WT) infected controls. NK cells were identified as the main producers of IFN-γ, but both NK cells and IFN-γ were dispensable for clearance. We demonstrated through cytokine production and RNA-seq analysis that IL-12 and IL-12 regulated genes are strongly induced in monocytes upon S. aureus infection. Administration of IL-12 during infection restored the bacterial burdens in the BALF and lungs of monocyte-depleted CCR2-DTR mice to the levels of WT mice, independent of IFN-γ. In the absence of monocytes, alveolar macrophages are the primary phagocytic cells, and IL-12 influences their capacity to produce reactive oxygen species and clear S. aureus. These results show that production of IL-12 contributes to the control of S. aureus via its influence on alveolar macrophage function.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Alexander Lemenze
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| |
Collapse
|
3
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
4
|
Schneider N, Gilreath K, Henriksen NM, Donaldson WA, Chaudhury S, St. Maurice M. Synthesis and Evaluation of 1,3-Disubstituted Imidazolidine-2,4,5-triones as Inhibitors of Pyruvate Carboxylase. ACS Med Chem Lett 2024; 15:1088-1093. [PMID: 39015262 PMCID: PMC11247459 DOI: 10.1021/acsmedchemlett.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Substituted imidazolidinetriones (IZTs) have been identified as potent inhibitors of pyruvate carboxylase (PC) through an in silico screening approach. Alkyl 2-(2,4,5-trioxo-3-substituted imidazolidin-1-yl)acetates (6i-6r) are the most potent of the series, with IC50 values between 3 and 12 μM, and several IZTs demonstrate high passive permeability across an artificial membrane. IZTs are mixed-type inhibitors with respect to pyruvate and noncompetitive with respect to ATP. This class of inhibitors appears to be selective for PC. Inhibitors in the IZT series do not inhibit the metalloenzymes human carbonic anhydrase II and matrix metalloprotease-12, and they do not inhibit the related biotin-dependent enzyme, guanidine carboxylase. Altogether, IZTs offer promise as PC inhibitors with potential downstream applications in cellular and in vivo systems.
Collapse
Affiliation(s)
- Nicholas
O. Schneider
- Department
of Biological Science, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Kendra Gilreath
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Niel M. Henriksen
- Atomwise,
Inc., 250 Sutter St, Suite 650, San Francisco, California 94108, United States
| | - William A. Donaldson
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Subhabrata Chaudhury
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Martin St. Maurice
- Department
of Biological Science, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
5
|
Rios-Delgado G, McReynolds AKG, Pagella EA, Norambuena J, Briaud P, Zheng V, Munneke MJ, Kim J, Racine H, Carroll R, Zelzion E, Skaar E, Bose JL, Parker D, Lalaouna D, Boyd JM. The Staphylococcus aureus small non-coding RNA IsrR regulates TCA cycle activity and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601953. [PMID: 39005296 PMCID: PMC11245030 DOI: 10.1101/2024.07.03.601953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. S. aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake. We demonstrate that an S. aureus Δfur mutant has decreased expression of acnA, which codes for the Fe-dependent enzyme aconitase. Decreased acnA expression prevented the Δfur mutant from growing with amino acids as sole carbon and energy sources. Suppressor analysis determined that a mutation in isrR, which produces a regulatory RNA, permitted growth by decreasing isrR transcription. The decreased AcnA activity of the Δfur mutant was partially relieved by an ΔisrR mutation. Directed mutation of bases predicted to facilitate the interaction between the acnA transcript and IsrR, decreased the ability of IsrR to control acnA expression in vivo and IsrR bound to the acnA transcript in vitro. IsrR also bound to the transcripts coding the alternate TCA cycle proteins sdhC, mqo, citZ, and citM. Whole cell metal analyses suggest that IsrR promotes Fe uptake and increases intracellular Fe not ligated by macromolecules. Lastly, we determined that Fur and IsrR promote infection using murine skin and acute pneumonia models.
Collapse
Affiliation(s)
- Gustavo Rios-Delgado
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Aubrey K. G. McReynolds
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kanas City, KS, 66103, USA
| | - Emma A. Pagella
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kanas City, KS, 66103, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Vincent Zheng
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Matthew J. Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Hugo Racine
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, Strasbourg, 67000, France
| | - Ronan Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Ehud Zelzion
- Office of Advanced Research Computing, Rutgers University, 96 Frelinghuysen Road Piscataway, NJ 08854, USA
| | - Eric Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeffrey L. Bose
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kanas City, KS, 66103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, Strasbourg, 67000, France
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
6
|
Alreshidi M, Dunstan H, Roberts T, Alreshidi F, Hossain A, Bardakci F, Snoussi M, Badraoui R, Adnan M, Alouffi S, Saeed M. Cytoplasmic amino acid profiles of clinical and ATCC 29213 strains of Staphylococcus aureus harvested at different growth phases. BIOMOLECULES & BIOMEDICINE 2023; 23:1038-1050. [PMID: 37270805 PMCID: PMC10655876 DOI: 10.17305/bb.2023.9246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Staphylococcus aureus strains are a great contributor to both hospital acquired infections as well as community acquired infections. The objective of the present investigation was to compare potential differences in cytoplasmic amino acid levels between clinical and ATCC 29213 strains of S. aureus. The two strains were grown under ideal conditions to mid-exponential and stationary growth phases, after which they were harvested to analyze their amino acid profiles. Initially, the amino acid patterns of both strains were compared at the mid-exponential phase when grown in controlled conditions. At the mid-exponential phase, both strains shared common features in cytoplasmic amino acid levels, with glutamic acid, aspartic acid, proline, and alanine identified as key amino acids. However, the concentration profiles of seven amino acids exhibited major variances between the strains, even though the total cytoplasmic levels of amino acids did not alter significantly. At the stationary phase, the magnitudes of the amino acids abundant in the mid-exponential phase were altered. Aspartic acid became the most abundant amino acid in both strains accounting for 44% and 59% of the total amino acids in the clinical and ATCC 29213 strains, respectively. Lysine was the second most abundant amino acid in both strains, accounting for 16% of the total cytoplasmic amino acids, followed by glutamic acid, the concentration of which was significantly higher in the clinical strain than in the ATCC 29213 strain. Interestingly, histidine was clearly present in the clinical strain but was virtually lacking in the ATCC 29213 strain. This study reveals the dynamic diversity of amino acid levels among strains, which is an essential step toward illustrating the variability in S. aureus cytoplasmic amino acid profiles and could be significant in explaining variances among strains of S. aureus.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Fayez Alreshidi
- Department of Family and Community Medicine, College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, RAK Hospital, Al Qusaidat, Ras Al Khaimah, United Arab Emirates
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
7
|
Zhu Q, Lin Q, Jiang Y, Chen S, Tian J, Yang S, Li Y, Li M, Wang Y, Shen C, Meng S, Yang L, Feng Y, Qu J. Construction and application of the conditionally essential gene knockdown library in Klebsiella pneumoniae to screen potential antimicrobial targets and virulence genes via Mobile-CRISPRi-seq. Appl Environ Microbiol 2023; 89:e0095623. [PMID: 37815340 PMCID: PMC10617577 DOI: 10.1128/aem.00956-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
Klebsiella pneumoniae is a ubiquitous human pathogen, and its clinical treatment faces two major challenges: multidrug resistance and the pathogenesis of hypervirulent K. pneumoniae. The discovery and study of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern due to their restriction in the development of novel antibiotics. However, the lack of essential functional genomic data has hampered the study of the mechanisms of essential genes related to antimicrobial susceptibility. In this study, we developed a pooled CE genes mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference screening method (Mobile-CRISPRi-seq) for K. pneumoniae to identify genes that play critical roles in antimicrobial fitness in vitro and host immunity in vivo. Targeting 870 predicted CE genes in K. pneumoniae, Mobile-CRISPRi-seq uncovered the depletion of tetrahydrofolate synthesis pathway genes folB and folP under trimethoprim pressure. Our screening also identified genes waaE and fldA related to polymyxin and β-lactam susceptibility by applying a screening strategy based on Mobile-CRISPRi-seq and comparative genomics. Furthermore, using a mouse infection model and Mobile-CRISPRi-seq, multiple virulence genes were identified, and among these genes, pal, yciS, and ribB were demonstrated to contribute to the pathogenesis of K. pneumoniae. This study provides a simple, rapid, and effective platform for screening potential antimicrobial targets and virulence genes in K. pneumoniae, and this broadly applicable system can be expanded for high-throughput functional gene study in multiple pathogenic bacteria, especially in gram-negative bacteria. IMPORTANCE The discovery and investigation of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern because of the restriction of antimicrobial targets in the development of novel antibiotics. In this study, we developed a pooled CE gene-wide mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference sequencing (Mobile-CRISPRi-seq) strategy in Klebsiella pneumoniae to identify genes that play critical roles in the fitness of antimicrobials in vitro and host immunity in vivo. The data suggest a robust tool to screen for loss-of-function phenotypes in a pooled gene knockdown library in K. pneumoniae, and Mobile-CRISPRi-seq may be expanded to multiple bacteria for screening and identification of genes with crucial roles in the fitness of antimicrobials and hosts.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuyan Chen
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Junxuan Tian
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shijin Yang
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuanchun Li
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuelin Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Youjun Feng
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Paudel S, Guedry S, Obernuefemann CLP, Hultgren SJ, Walker JN, Kulkarni R. Defining the Roles of Pyruvate Oxidation, TCA Cycle, and Mannitol Metabolism in Methicillin-Resistant Staphylococcus aureus Catheter-Associated Urinary Tract Infection. Microbiol Spectr 2023; 11:e0536522. [PMID: 37378538 PMCID: PMC10433999 DOI: 10.1128/spectrum.05365-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of complicated urinary tract infection (UTI) associated with the use of indwelling urinary catheters. Previous reports have revealed host and pathogen effectors critical for MRSA uropathogenesis. Here, we sought to determine the significance of specific metabolic pathways during MRSA UTI. First, we identified four mutants from the Nebraska transposon mutant library in the MRSA JE2 background that grew normally in rich medium but displayed significantly reduced growth in pooled human urine (HU). This prompted us to transduce the uropathogenic MRSA 1369 strain with the transposon mutants in sucD and fumC (tricarboxylic acid [TCA] cycle), mtlD (mannitol metabolism), and lpdA (pyruvate oxidation). Notably, sucD, fumC, and mtlD were also significantly upregulated in the MRSA 1369 strain upon exposure to HU. Compared to the WT, the MRSA 1369 lpdA mutant was significantly defective for (i) growth in HU, and (ii) colonization of the urinary tract and dissemination to the kidneys and the spleen in the mouse model of catheter-associated UTI (CAUTI), which may be attributed to its increased membrane hydrophobicity and higher susceptibility to killing by human blood. In contrast to their counterparts in the JE2 background, the sucD, fumC, and mtlD mutants in the MRSA 1369 background grew normally in HU; however, they displayed significant fitness defects in the CAUTI mouse model. Overall, identification of novel metabolic pathways important for the urinary fitness and survival of MRSA can be used for the development of novel therapeutics. IMPORTANCE While Staphylococcus aureus has historically not been considered a uropathogen, S. aureus urinary tract infection (UTI) is clinically significant in certain patient populations, including those with chronic indwelling urinary catheters. Moreover, most S. aureus strains causing catheter-associated UTI (CAUTI) are methicillin-resistant S. aureus (MRSA). MRSA is difficult to treat due to limited treatment options and the potential to deteriorate into life-threatening bacteremia, urosepsis, and shock. In this study, we found that pathways involved in pyruvate oxidation, TCA cycle, and mannitol metabolism are important for MRSA fitness and survival in the urinary tract. Improved understanding of the metabolic needs of MRSA in the urinary tract may help us develop novel inhibitors of MRSA metabolism that can be used to treat MRSA-CAUTI more effectively.
Collapse
Affiliation(s)
- Santosh Paudel
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Sarah Guedry
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Chloe L. P. Obernuefemann
- Center for Women’s Infectious Disease Research, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
- Department of Epidemiology, Human Genetics, and Environmental Science, School of Public Health, University of Texas Health Science Center at Houston, Texas, USA
| | - Ritwij Kulkarni
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| |
Collapse
|
9
|
Kim J, Kim GL, Norambuena J, Boyd JM, Parker D. Impact of the pentose phosphate pathway on metabolism and pathogenesis of Staphylococcus aureus. PLoS Pathog 2023; 19:e1011531. [PMID: 37440594 PMCID: PMC10368262 DOI: 10.1371/journal.ppat.1011531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that leads to significant disease through multiple routes of infection. We recently published a transposon sequencing (Tn-seq) screen in a mouse acute pneumonia model and identified a hypothetical gene (SAUSA300_1902, pgl) with similarity to a lactonase of Escherichia coli involved in the pentose phosphate pathway (PPP) that was conditionally essential. Limited studies have investigated the role of the PPP in physiology and pathogenesis of S. aureus. We show here that mutation of pgl significantly impacts ATP levels and respiration. RNA-seq analysis of the pgl mutant and parent strains identified compensatory changes in gene expression for glucose and gluconate as well as reductions in the pyrimidine biosynthesis locus. These differences were also evident through unbiased metabolomics studies and 13C labeling experiments that showed mutation of pgl led to reductions in pyrimidine metabolism including decreases in ribose-5P, UMP and GMP. These nucleotide reductions impacted the amount of extracellular DNA in biofilms and reduced biofilm formation. Mutation also limited the capacity of the strain to resist oxidant damage induced by hydrogen peroxide and paraquat and subsequent intracellular survival inside macrophages. Changes in wall teichoic acid impacted susceptibility to hydrogen peroxide. We demonstrated the importance of these changes on virulence in three different models of infection, covering respiratory, skin and septicemia, demonstrating the need for proper PPP function in all models. This work demonstrates the multifaceted role metabolism can play in multiple aspects of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
10
|
Cai J, Zhou M, Zhang Y, Ma Y, Zhang Y, Wang Q. Identification of determinants for entering into a viable but nonculturable state in Vibrio alginolyticus by Tn-seq. Appl Microbiol Biotechnol 2023; 107:1813-1827. [PMID: 36729225 DOI: 10.1007/s00253-023-12376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023]
Abstract
The viable but nonculturable (VBNC) state is a dormant state of nonsporulating bacteria that enhances survival in adverse environments. Systematic genome-wide research on the genetic basis of VBNC formation is warranted. In this study, we demonstrated that the marine bacterium Vibrio alginolyticus lost culturability but remained viable and entered into the VBNC state when exposed to low nutrient concentrations for prolonged periods of time. Using transposon-insertion sequencing (Tn-seq), we identified 635 determinants governing the formation of the VBNC state, including 322 genes with defective effects on VBNC formation and 313 genes contributing to entry into the VBNC state. Tn-seq analysis revealed that genes involved in various metabolic pathways were shown to have an inhibitory effect on VBNC formation, while genes related to chemotaxis or folate biosynthesis promoted entry into the VBNC state. Moreover, the effects of these genes on the formation of VBNC were validated with the growth of deletion mutants of eight selected genes under nutrient-limited conditions. Interestingly, fleQ and pyrI were identified as essential for entry into the VBNC state, and they affected the formation of the VBNC state independent of RpoE or ToxR regulation. Collectively, these results provide new insights into the mechanism of VBNC formation. KEY POINTS: • Vibrio alginolyticus has the ability to enter into the VBNC state under low nutrient conditions at low temperature. • The 635 determinants for entry into the VBNC state were systematically identified by transposon-insertion sequencing. • PyrI and FleQ were validated to play significant roles in the formation of the VBNC state.
Collapse
Affiliation(s)
- Jingxiao Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
11
|
Phage transcription activator RinA regulates Staphylococcus aureus virulence by governing sarA expression. Genes Genomics 2023; 45:191-202. [PMID: 36520268 PMCID: PMC9867676 DOI: 10.1007/s13258-022-01352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major human pathogen, that can lead to various community- and hospital-acquired infections. RinA is a transcription activator of S. aureus phage φ 11 involved in phage packaging and virulence gene transfer. However, little is known about the molecular mechanism of RinA in the regulation of virulence. OBJECTIVE We aimed to explore a novel contribution of RinA in the regulation of virulence and provide a new drug target in the treatment of S. aureus infections. METHODS The specific functions of RinA in S. aureus were analyzed by the methods of growth curve, real-time quantitative PCR (RT-qPCR), subcellular localization, electrophoretic mobility shift assay (EMSA), infection model of Galleria mellonella larvae and the mouse subcutaneous abscess model. RESULTS In this study, we demonstrated that RinA is a protein evenly distributed in the cytoplasm of S. aureus, and its deletion could cause the growth defects. RT-qPCR and EMSA determined that rinA could negatively regulate the expression of sarA by directly binding to its promoter, and vice versa. The Galleria mellonella larvae infection and mouse subcutaneous abscess models revealed that the rinA mutant strain exhibited obvious virulence defects. When sarA is knocked out, the virulence of S.aureus had no significantly changes whether rinA is knocked out or not. CONCLUSION Our fndings demonstrated that phage transcription activator RinA regulates S. aureus virulence by governing sarA expression.
Collapse
|
12
|
Essential Fitness Repertoire of Staphylococcus aureus during Co-infection with Acinetobacter baumannii In Vivo. mSystems 2022; 7:e0033822. [PMID: 36040021 PMCID: PMC9600432 DOI: 10.1128/msystems.00338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus represents a major human pathogen that is frequently involved in polymicrobial infections. However, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. In this study, we firstly performed a retrospective surveillance of 760 clinical samples and revealed a notable predominance of co-infection with S. aureus and Acinetobacter baumannii. The high-density S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) further identified a core set of genes enriched in metabolism of inorganic ions, amino acids, and carbohydrates, which are essential for infection and tissue colonization of S. aureus in the murine systemic infection model. Notably, we revealed a differential requirement of fitness factors for S. aureus in tissue-specific (liver and kidney) and infection-type-specific manner (mono- and co-infection). Co-infection with A. baumannii dramatically altered the fitness requirements of S. aureus in vivo; 49% of the mono-infection fitness genes in S. aureus strain Newman were converted to non-essential, and the functionality of ATP-binding cassette (ABC) transporters was significantly elicited during co-infection. Furthermore, the number of genes essential during co-infection (503) outnumbers the genes essential during mono-infection (362). In addition, the roles of 3 infection-type-specific genes in S. aureus during mono-infection or co-infection with A. baumannii were validated with competitive experiments in vivo. Our data indicated a high incidence and clinical relevance of S. aureus and A. baumannii co-infection, and provided novel insights into establishing antimicrobial regimens to control co-infections. IMPORTANCE Polymicrobial infections are widespread in clinical settings, which potentially correlate with increased infection severity and poor clinical outcomes. Staphylococcus aureus is a formidable human pathogen that causes a variety of diseases in polymicrobial nature. Co-infection and interaction of S. aureus have been described with limited pathogens, mainly including Pseudomonas aeruginosa, Candida albicans, and influenza A virus. Thus far, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. Understanding the polymicrobial composition and interaction, from a community and genome-wide perspective, is thus crucial to shed light on S. aureus pathogenesis strategy. Here, our findings demonstrated, for the first time, that a high incidence rate and clinical relevance of co-infection was caused by S. aureus and Acinetobacter baumannii, illustrating the importance of polymicrobial nature in investigating S. aureus pathogenesis. The infection-type-specific genes likely serve as potential therapeutic targets to control S. aureus infections, either in mono- or co-infection situation, providing novel insights into the development of antimicrobial regimens to control co-infections.
Collapse
|
13
|
Ranava D, Scheidler CM, Pfanzelt M, Fiedler M, Sieber SA, Schneider S, Yap MNF. Bidirectional sequestration between a bacterial hibernation factor and a glutamate metabolizing protein. Proc Natl Acad Sci U S A 2022; 119:e2207257119. [PMID: 36122228 PMCID: PMC9522360 DOI: 10.1073/pnas.2207257119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.
Collapse
Affiliation(s)
- David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Martin Pfanzelt
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Michaela Fiedler
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mee-Ngan F. Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Zou H, Shen Y, Li C, Li Q. Two Phenotypes of Klebsiella pneumoniae ST147 Outbreak from Neonatal Sepsis with a Slight Increase in Virulence. Infect Drug Resist 2022; 15:1-12. [PMID: 35023933 PMCID: PMC8748007 DOI: 10.2147/idr.s343292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Purpose Severe infection has been the leading causes of neonatal death, especially the emergency of multidrug-resistant bacteria such as carbapenem-resistant Enterobacteriaceae. This study aimed to investigate the outbreak of carbapenem-resistant Klebsiella pneumoniae (CR-KP) in neonatal wards and to explore the possible pathogenesis of Klebsiella pneumoniae. Materials and Methods CR-KP were collected from neonatal ward of Chongqing Health Center for Women and Children between 2017 and 2019. Broth microdilution method was used to evaluate the antimicrobial activities in vitro, at the same time, the virulence of the strain was evaluated by in vitro and in vivo experiments. At last, prokaryotic chain specific transcriptome sequencing was conducted to explore the possible pathogenesis of CR-KP. Results In this study, a total of 14 carbapenem-resistant-Klebsiella pneumoniae (CR-KP) strains were isolated from Chongqing Health Center for Women and Children, among which all CR-KP isolates were identified as NDM-1-producers. Molecular epidemiological studies revealed ST147 being the most common sequence type (ST). Moreover, we first found two phenotypes of K. pneumoniae with different virulence from the same specimen. Type I, which was a white and sticky colony had a slight increase in virulence with higher biofilm formation, serum resistance and virulence than Type II with gray colony. Compared with the Type II, 10 pathways were obviously changed in Type I especially amino acid metabolism, such as arginine and proline metabolism. Conclusion Our findings revealed a new potential threat of NDM-1-positive CR-KP with higher virulence in neonatal ICU ward. We found two phenotypes of K. pneumoniae with different virulent, which may be due to the difference expression of arginine and proline metabolism.
Collapse
Affiliation(s)
- Hua Zou
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| | - Yan Shen
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| | - Chunli Li
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| | - Qiuhong Li
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| |
Collapse
|
15
|
Nogales J, Garmendia J. Bacterial metabolism and pathogenesis intimate intertwining: time for metabolic modelling to come into action. Microb Biotechnol 2022; 15:95-102. [PMID: 34672429 PMCID: PMC8719832 DOI: 10.1111/1751-7915.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022] Open
Abstract
We take a snapshot of the recent understanding of bacterial metabolism and the bacterial-host metabolic interplay during infection, and highlight key outcomes and challenges for the practical implementation of bacterial metabolic modelling computational tools in the pathogenesis field.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems BiologyCentro Nacional de BiotecnologíaCSICMadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| | - Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de NavarraMutilvaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| |
Collapse
|
16
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|