1
|
Zhu Y, Zeng Y, Liu M, Lu T, Pang X. Rescue of morphological defects in Streptomyces venezuelae by the alkaline volatile compound trimethylamine. Microbiol Spectr 2024; 12:e0119524. [PMID: 39166853 PMCID: PMC11448094 DOI: 10.1128/spectrum.01195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Microorganisms can produce a vast diversity of volatile organic compounds of different chemical classes that are capable of mediating intra- and inter-kingdom interactions. In this study, we showed that the soil-dwelling bacterium Streptomyces venezuelae can produce alkaline volatiles under multiple growth conditions, which we discovered through investigation of the S. venezuelae mutant strain MU-1. Strain MU-1 has a defective morphology and exhibits a bald phenotype due to the lack of aerial mycelia and spores, as confirmed by scanning electron microscopy. Using physical barriers to separate the strains on culture plates, we determined that volatile compounds produced by wild-type S. venezuelae could rescue the phenotype of strain MU-1, and pH analysis of the growth medium indicated that these volatile compounds were alkaline. Ultra-high-performance liquid chromatography, combined with mass spectrometry analysis, showed that wild-type S. venezuelae produced abundant levels of the alkaline volatile trimethylamine (TMA) and the oxide form TMAO; however, the levels of these compounds were much lower in strain MU-1. Notably, exposure to TMA alone could rescue the phenotype of this mutant strain, restoring the production of aerial mycelia and spores. We also showed that the rescue effect by alkaline volatiles is mostly species-specific, suggesting that the volatiles may aid particular mutants or other less-fit variants of closely related species to resume normal physiological status and to compete more effectively in complex communities such as soil. Our study reveals a new and intriguing role for bacterial volatiles, including volatiles that may have toxic effects on other species. IMPORTANCE Bacterial volatiles have a wide range of biological roles at intra- or inter-kingdom levels. The impact of volatiles has mainly been observed between producing bacteria and recipient bacteria, mostly of different species. In this study, we report that the wild-type, soil-dwelling bacterium Streptomyces venezuelae, which forms aerial hypha and spores as part of its normal developmental cycle, also produces the alkaline volatile compound trimethylamine (TMA) under multiple growth conditions. We showed that the environmental dispersion of TMA produced by S. venezuelae promotes the growth and differentiation of growth-deficient mutants of the same species or other slowly growing Streptomyces bacteria, and thus aids in their survival and their ability to compete in complex environmental communities such as soil. Our novel findings suggest a potentially profound biological role for volatile compounds in the growth and survival of communities of volatile-producing Streptomyces species.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanhong Zeng
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Meng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ting Lu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Zheng Y, Li F, Zhao C, Zhu J, Fang Y, Hang Y, Hu L. Analysis and application of volatile metabolic profiles of Escherichia coli: a preliminary GC-IMS-based study. RSC Adv 2024; 14:25316-25328. [PMID: 39139224 PMCID: PMC11320052 DOI: 10.1039/d4ra03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Nosocomial infections caused by Escherichia coli (E. coli) may pose serious risks to patients, and early identification of pathogenic bacteria and drug sensitivity results can improve patient prognosis. In this study, we clarified the composition and relative content of volatile organic compounds (VOCs) generated by E. coli in tryptic soy broth (TSB) using gas chromatography-ion mobility spectrometry (GC-IMS). We explored whether imipenem (IPM) could be utilized to differentiate between carbapenem-sensitive E. coli (CSEC) and carbapenem-resistant E. coli (CREC). The results revealed that 36 VOCs (alcohols, aldehydes, acids, esters, ketones, pyrazines, heterocyclic compounds, and unknown compounds) were detected using GC-IMS. Besides, the results indicated that changes in the relative content of VOCs as well as changes in the signal intensity of fingerprints were able to assess the growth state of bacteria during bacterial growth and help identify E. coli. Lastly, under selective pressure of IPM, volatile fingerprints of E. coli could be employed as a model to distinguish CSEC from CREC strains.
Collapse
Affiliation(s)
- Yunwei Zheng
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Minde Road No. 1 Nanchang 330006 Jiangxi China
| | - Fuxing Li
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Minde Road No. 1 Nanchang 330006 Jiangxi China
| | - Chuwen Zhao
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Minde Road No. 1 Nanchang 330006 Jiangxi China
- School of Public Health, Nanchang University Nanchang Jiangxi China
| | - Junqi Zhu
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Minde Road No. 1 Nanchang 330006 Jiangxi China
- School of Public Health, Nanchang University Nanchang Jiangxi China
| | - Youling Fang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Minde Road No. 1 Nanchang 330006 Jiangxi China
- School of Public Health, Nanchang University Nanchang Jiangxi China
| | - Yaping Hang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Minde Road No. 1 Nanchang 330006 Jiangxi China
| | - Longhua Hu
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Minde Road No. 1 Nanchang 330006 Jiangxi China
| |
Collapse
|
3
|
Zhou G, Liu Y, Dong P, Mao Y, Zhu L, Luo X, Zhang Y. Airborne signals of Pseudomonas fluorescens modulate swimming motility and biofilm formation of Listeria monocytogenes in a contactless coculture system. Food Microbiol 2024; 120:104494. [PMID: 38431335 DOI: 10.1016/j.fm.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Bacterial volatile compounds (BVCs) facilitate interspecies communication in socio-microbiology across physical barriers, thereby influencing interactions between diverse species. The impact of BVCs emitted from Pseudomonas on the biofilm formation characteristics of Listeria monocytogenes within the same ecological niche has been scarcely investigated under practical conditions of food processing. The objective of this study was to explore the motility and biofilm formation characteristics of L. monocytogenes under the impact of Pseudomonas BVCs. It was revealed that BVCs of P. fluorescens, P. lundensis, and P. fragi significantly promoted swimming motility of L. monocytogenes (P < 0.05). As evidenced by crystal violet staining, the L. monocytogenes biofilms reached a maximum OD570 value of approximately 3.78 at 4 d, which was 0.65 units markedly higher than that of the control group (P < 0.05). Despite a decrease in adherent cells of L. monocytogenes biofilms among the BVCs groups, there was a remarkable increase in the abundance of extracellular polysaccharides and proteins with 3.58 and 4.90 μg/cm2, respectively (P < 0.05), contributing to more compact matrix architectures, which suggested that the BVCs of P. fluorescens enhanced L. monocytogenes biofilm formation through promoting the secretion of extracellular polymers. Moreover, the prominent up-regulated expression of virulence genes further revealed the positive regulation of L. monocytogenes under the influence of BVCs. Additionally, the presence of BVCs significantly elevated the pH and TVB-N levels in both the swimming medium and biofilm broth, thereby exhibiting a strong positive correlation with increased motility and biofilm formation of L. monocytogenes. It highlighted the crucial signaling regulatory role of BVCs in bacterial interactions, while also emphasizing the potential food safety risk associated with the hitchhiking behavior of L. monocytogenes, thereby shedding light on advancements in control strategies for food processing.
Collapse
Affiliation(s)
- Guanghui Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yunge Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Pengcheng Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China.
| |
Collapse
|
4
|
Cabrera-Aguas M, Chidi-Egboka N, Kandel H, Watson SL. Antimicrobial resistance in ocular infection: A review. Clin Exp Ophthalmol 2024; 52:258-275. [PMID: 38494451 DOI: 10.1111/ceo.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
Antimicrobial resistance (AMR) is a global public health threat with significant impact on treatment outcomes. The World Health Organization's Global Action Plan on AMR recommended strengthening the evidence base through surveillance programs and research. Comprehensive, timely data on AMR for organisms isolated from ocular infections are needed to guide treatment decisions and inform researchers and microbiologists of emerging trends. This article aims to provide an update on the development of AMR in ocular organisms, AMR in bacterial ocular infections and on AMR stewardship programs globally. The most common ocular pathogens are Pseudomonas aeruginosa, Staphylococcus spp., Streptococcus pneumoniae, and Haemophilus influenzae in ocular infections. A variety of studies and a few surveillance programs worldwide have reported on AMR in these infections over time. Fluoroquinolone resistance has increased particularly in Asia and North America. For conjunctivitis, the ARMOR cumulative study in the USA reported a slight decrease in resistance to ciprofloxacin. For keratitis, resistance to methicillin has remained stable for S. aureus and CoNS, while resistance to ciprofloxacin has decreased for MRSA globally. Methicillin-resistance and multidrug resistance are also emerging, requiring ongoing monitoring. Antimicrobial stewardship (AMS) programmes have a critical role in reducing the threat of AMR and improving treatment outcomes. To be successful AMS must be informed by up-to-date AMR surveillance data. As a profession it is timely for ophthalmology to act to prevent AMR leading to greater visual loss through supporting surveillance programmes and establishing AMS.
Collapse
Affiliation(s)
- Maria Cabrera-Aguas
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Ngozi Chidi-Egboka
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Himal Kandel
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie L Watson
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Veiga FF, Marcomini EK, Salvador A, Chiavelli LUR, Barros ILE, de Castro LV, Lucca DL, Ochikubo LMK, Baesso ML, Pomini AM, Svidzinski TIE, Negri M. Detection of 2-ethyl-1-hexanol and its modulating effect in biofilm of Fusarium oxysporum. Mol Microbiol 2023. [PMID: 38038143 DOI: 10.1111/mmi.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
In immunocompetent individuals, Fusarium spp. stands out as the causative agent of onychomycosis, among the non-dermatophyte molds. Despite evidence indicating that Fusarium oxysporum organizes itself in the form of a biofilm causing onychomycosis, there is little literature on the etiopathogenesis of the biofilm on the nail, specifically the signaling molecules present, known as quorum sensing (QS). Thus, this study detected the presence of a molecule related to QS from the ex vivo biofilm of F. oxysporum on human nail and investigated its effect on preformed biofilm in vitro. The detection and physicochemical characterization of a QS molecule, from the extracellular matrix (ECM), was carried out by Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflectance (ATR) accessory and by headspace gas chromatography coupled to mass spectrometry (GC-MS) analyses. Determination of viable cells, cell activity, total biomass, ECM components and scanning electron microscopy (SEM) were performed to evaluate the influence of the QS molecule on the in vitro biofilm of F. oxysporum. The beginning, in the ex vivo biofilm of F. oxysporum on human nails, the volatile organic compound 2-ethyl-1-hexanol (2EH) was detected as a component of QS. Thereafter in vitro analyses, synthetic 2EH was able to modulate the biofilm by stimulating its filament, increasing total biomass and ECM production in terms of total carbohydrates, but with a reduction in total proteins and nucleic acids. We thus evidence, for the first time, the presence of 2EH in the biofilm of F. oxysporum, developed on the human nail, and the in vitro action of this compound as a QS molecule.
Collapse
Affiliation(s)
- Flavia Franco Veiga
- Clinical Analysis Department, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Alana Salvador
- Clinical Analysis Department, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | - Diego Luis Lucca
- Department of Chemistry, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | | | - Melyssa Negri
- Clinical Analysis Department, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
6
|
Dupont CA, Bourigault Y, Osmond T, Nier M, Barbey C, Latour X, Konto-Ghiorghi Y, Verdon J, Merieau A. Pseudomonas fluorescens MFE01 uses 1-undecene as aerial communication molecule. Front Microbiol 2023; 14:1264801. [PMID: 37908545 PMCID: PMC10614000 DOI: 10.3389/fmicb.2023.1264801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial communication is a fundamental process used to synchronize gene expression and collective behavior among the bacterial population. The most studied bacterial communication system is quorum sensing, a cell density system, in which the concentration of inductors increases to a threshold level allowing detection by specific receptors. As a result, bacteria can change their behavior in a coordinated way. While in Pseudomonas quorum sensing based on the synthesis of N-acyl homoserine lactone molecules is well studied, volatile organic compounds, although considered to be communication signals in the rhizosphere, are understudied. The Pseudomonas fluorescens MFE01 strain has a very active type six secretion system that can kill some competitive bacteria. Furthermore, MFE01 emits numerous volatile organic compounds, including 1-undecene, which contributes to the aerial inhibition of Legionella pneumophila growth. Finally, MFE01 appears to be deprived of N-acyl homoserine lactone synthase. The main objective of this study was to explore the role of 1-undecene in the communication of MFE01. We constructed a mutant affected in undA gene encoding the enzyme responsible for 1-undecene synthesis to provide further insight into the role of 1-undecene in MFE01. First, we studied the impacts of this mutation both on volatile organic compounds emission, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and on L. pneumophila long-range inhibition. Then, we analyzed influence of 1-undecene on MFE01 coordinated phenotypes, including type six secretion system activity and biofilm formation. Next, to test the ability of MFE01 to synthesize N-acyl homoserine lactones in our conditions, we investigated in silico the presence of corresponding genes across the MFE01 genome and we exposed its biofilms to an N-acyl homoserine lactone-degrading enzyme. Finally, we examined the effects of 1-undecene emission on MFE01 biofilm maturation and aerial communication using an original experimental set-up. This study demonstrated that the ΔundA mutant is impaired in biofilm maturation. An exposure of the ΔundA mutant to the volatile compounds emitted by MFE01 during the biofilm development restored the biofilm maturation process. These findings indicate that P. fluorescens MFE01 uses 1-undecene emission for aerial communication, reporting for the first time this volatile organic compound as bacterial intraspecific communication signal.
Collapse
Affiliation(s)
- Charly A. Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Théo Osmond
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Maëva Nier
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| |
Collapse
|
7
|
Zhu C, Zhou Y, Kang J, Yang H, Lin J, Fang B. Alkaline arginine promotes the gentamicin-mediated killing of drug-resistant Salmonella by increasing NADH concentration and proton motive force. Front Microbiol 2023; 14:1237825. [PMID: 37795291 PMCID: PMC10546041 DOI: 10.3389/fmicb.2023.1237825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Antimicrobial resistance, especially the development of multidrug-resistant strains, is an urgent public health threat. Antibiotic adjuvants have been shown to improve the treatment of resistant bacterial infections. Methods We verified that exogenous L-arginine promoted the killing effect of gentamicin against Salmonella in vitro and in vivo, and measured intracellular ATP, NADH, and PMF of bacteria. Gene expression was determined using real-time quantitative PCR. Results This study found that alkaline arginine significantly increased gentamicin, tobramycin, kanamycin, and apramycin-mediated killing of drug-resistant Salmonella, including multidrug-resistant strains. Mechanistic studies showed that exogenous arginine was shown to increase the proton motive force, increasing the uptake of gentamicin and ultimately inducing bacterial cell death. Furthermore, in mouse infection model, arginine effectively improved gentamicin activity against Salmonella typhimurium. Discussion These findings confirm that arginine is a highly effective and harmless aminoglycoside adjuvant and provide important evidence for its use in combination with antimicrobial agents to treat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chunyang Zhu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yanhong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jian Kang
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jinglin Lin
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Binghu Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Rani A, Rana A, Dhaka RK, Singh AP, Chahar M, Singh S, Nain L, Singh KP, Minz D. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnol Adv 2023; 63:108078. [PMID: 36513315 DOI: 10.1016/j.biotechadv.2022.108078] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Bacteria emit a large number of volatile organic compounds (VOCs) into the environment. VOCs are species-specific and their emission depends on environmental conditions, such as growth medium, pH, temperature, incubation time and interaction with other microorganisms. These VOCs can enhance plant growth, suppress pathogens and act as signaling molecules during plant-microorganism interactions. Some bacterial VOCs have been reported to show strong antimicrobial, nematicidal, pesticidal, plant defense, induced tolerance and plant-growth-promoting activities under controlled conditions. Commonly produced antifungal VOCs include dimethyl trisulfide, dimethyl disulfide, benzothiazole, nonane, decanone and 1-butanol. Species of Bacillus, Pseudomonas, Arthrobacter, Enterobacter and Burkholderia produce plant growth promoting VOCs, such as acetoin and 2,3-butenediol. These VOCs affect expression of genes involved in defense and development in plant species (i.e., Arabidopsis, tobacco, tomato, potato, millet and maize). VOCs are also implicated in altering pathogenesis-related genes, inducing systemic resistance, modulating plant metabolic pathways and acquiring nutrients. However, detailed mechanisms of action of VOCs need to be further explored. This review summarizes the bioactive VOCs produced by diverse bacterial species as an alternative to agrochemicals, their mechanism of action and challenges for employment of bacterial VOCs for sustainable agricultural practices. Future studies on technological improvements for bacterial VOCs application under greenhouse and open field conditions are warranted.
Collapse
Affiliation(s)
- Annu Rani
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India; Centre for Bio-Nanotechnology, CCS HAU, Hisar, India.
| | - Rahul Kumar Dhaka
- Centre for Bio-Nanotechnology, CCS HAU, Hisar, India; Department of Chemistry, College of Basic Science & Humanities, CCS HAU, Hisar, India
| | - Arvind Pratap Singh
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Madhvi Chahar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh, India
| | - Lata Nain
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar, India; Vice Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, UP, India
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
9
|
Zhou Y, Zhao X, Jiang Y, Ding C, Liu J, Zhu C. Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160649. [PMID: 36473657 DOI: 10.1016/j.scitotenv.2022.160649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pb(II) is extreme toxic to biological cells, which limits the restoration of Pb(II) by functional strains. This study examined a Pb(II)-tolerant phosphate solubilizing bacteria(PSB) Ochrobactrum sp. J023 combined with corn stover biochar to enhance the immobilization of Pb(II). The results showed that the removal rate of Pb(II) by biochar combined with phosphate-solubilizing bacteria was as high as 71.30 %. SEM-EDS showed that more disordered crystals appeared on the surface of biochar treated with bacteria. XRD analysis indicated that the mineralization products of Pb(II) in biochar combined strain system were mainly in Pb5(PO4)3OH and Pb5(PO4)3Cl. FT-IR analysis revealed that there were more phosphate groups involved in the mineralization process when biochar was added. XPS verified the formation of PbO or lead-containing precipitates in this system, and the amount of lead precipitates was larger. The mechanism of lead fixation by strain combined with biochar can be regarded that the strain regulates the microenvironment of the biochar surface, enhances the release of phosphate and promotes the generation of stable pyroxite. Moreover, biochar composition and porous structure not only provide nutrient elements for strains, but also protect and promote the metabolism of strains. Biochar adsorption also reduces the loss of available phosphorus, which helps PSB to fix Pb sustainably and effectively. This suggests that the synergistic effect of PSB-biochar can not only effectively reduce the mobility and bioavailability of Pb(II), but also increase the sustainability of remediation. Therefore, the combination of phosphate solubilizing bacteria and biochar is a promising approach to the remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Yucheng Zhou
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xingqing Zhao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Yi Jiang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Congcong Ding
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jianguo Liu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Chen Zhu
- Hua Lookeng Honors College, Changzhou University, Changzhou 213164, PR China
| |
Collapse
|
10
|
Probst M, Telagathoti A, Siewert B, Khomenko I, Betta E, Biasioli F, Peintner U. Co-cultivation of Mortierellaceae with Pseudomonas helmanticensis affects both their growth and volatilome. Sci Rep 2023; 13:2213. [PMID: 36750680 PMCID: PMC9905594 DOI: 10.1038/s41598-023-29134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Volatile organic compounds (VOCs) might mediate microbial interactions, especially in spatially structured environments, such as soil. However, the variety and specificity of VOC production are poorly understood. Here, we studied 25 Mortierellaceae strains belonging to the genera Linnemannia and Entomortierella in both pure and co-culture with Pseudomonas helmanticensis under laboratory conditions. We analysed both the fungal growth depending on co-cultivation and the cultures' volatilomes applying proton-transfer-reaction time-of-flight and gas chromatography-mass spectrometry (PTR-ToF-MS and GC-MS). In a strain-specific manner, we found the fungi's radial growth rate and colony morphology affected by the presence of P. helmanticensis. The fungus seemed to generally reduce the bacterial growth. The volatilomes of the fungal and bacterial pure and co-cultures were diverse. While the fungi frequently consumed VOCs, P. helmanticensis produced a higher diversity and amount of VOCs than any fungal strain. Our results support that both the pure and co-culture volatilomes are taxonomically conserved. Taken together, our data supports the relevance of VOCs in Mortierellaceae-P. helmanticensis interaction. We also discuss individual VOCs that appear relevant in the interaction.
Collapse
Affiliation(s)
- Maraike Probst
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Anusha Telagathoti
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Bianka Siewert
- Institute of Pharmacy, Center for Chemistry and Biomedicine, Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Innrain 80 - 82/IV, 6020, Innsbruck, Austria
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, Italy
| | - Emanuela Betta
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, Italy
| | - Ursula Peintner
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
11
|
Shen B, Li W, Wang Y, Cheng S, Wang X, Zhu L, Zhang Y, Gao L, Jiang L. Rapid capture and killing of bacteria by lyophilized nFeS-Hydrogel for improved healing of infected wounds. BIOMATERIALS ADVANCES 2022; 144:213207. [PMID: 36446252 DOI: 10.1016/j.bioadv.2022.213207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Due to their antibacterial activity, sulfur-containing nanomaterials are increasingly being developed into nanodrugs against bacterial infection. Nano iron sulfide (nFeS) is a new nanomaterial that can convert organic sulfur into inorganic sulfur, which has excellent antibacterial activity. However, the inorganic sulfur produced by nFeS can easily change its form or volatilize in aqueous solution, which may affect the efficacy of nFeS. We propose a new strategy to encapsulate nFeS in a hydrogel to preserve inorganic sulfides, and the macroporous structure of the hydrogel can capture bacteria to increase their interaction with nFeS. The in-depth characterization conducted in this study demonstrate that the water swelling characteristics of the lyophilized nFeS-Hydrogel and the ability to effectively maintain the antibacterial active ingredients in nFeS results in more effective killing of harmful bacteria than pure nFeS, while also prolonging the shelf life of antibacterial activity. We discovered that bacteria exhibit a unique mode of cell death when nFeS contained in hydrogels interacts with the cells by producing hydrogen polysulfanes, which increased intracellular ROS levels and reduced GSH levels. Furthermore, the nFeS-Hydrogel was found to reduce inflammation and exhibited excellent biocompatibility. Accordingly, the nFeS-Hydrogel has great application prospects as a fast excipient for clearing infection, reducing inflammation, and accelerating wound healing.
Collapse
Affiliation(s)
- Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
| | - Wenhan Li
- Yixing Hospital of Traditional Chinese Medicine, Department of Pharmacy, Yixing, China
| | - Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
| | - Shuyu Cheng
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaonan Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
12
|
Mira P, Lozano‐Huntelman N, Johnson A, Savage VM, Yeh P. Evolution of antibiotic resistance impacts optimal temperature and growth rate in
Escherichia coli
and
Staphylococcus epidermidis. J Appl Microbiol 2022; 133:2655-2667. [DOI: 10.1111/jam.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Portia Mira
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | | | - Adrienne Johnson
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | - Van M. Savage
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Department of Computational Medicine, David Geffen School of Medicine University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| |
Collapse
|
13
|
Biwer P, Neumann-Schaal M, Henke P, Jahn D, Schulz S. Thiol Metabolism and Volatile Metabolome of Clostridioides difficile. Front Microbiol 2022; 13:864587. [PMID: 35783419 PMCID: PMC9243749 DOI: 10.3389/fmicb.2022.864587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridioides difficile (previously Clostridium difficile) causes life-threatening gut infections. The central metabolism of the bacterium is strongly influencing toxin production and consequently the infection progress. In this context, the composition and potential origin of the volatile metabolome was investigated, showing a large number of sulfur-containing volatile metabolites. Gas chromatography/mass spectrometry (GC/MS)-based headspace analyses of growing C. difficile 630Δerm cultures identified 105 mainly sulfur-containing compounds responsible of the typical C. difficile odor. Major components were identified to be 2-methyl-1-propanol, 2-methyl-1-propanethiol, 2-methyl-1-butanethiol, 4-methyl-1-pentanethiol, and as well as their disulfides. Structurally identified were 64 sulfur containing volatiles. In order to determine their biosynthetic origin, the concentrations of the sulfur-containing amino acids methionine and cysteine were varied in the growth medium. The changes observed in the volatile metabolome profile indicated that cysteine plays an essential role in the formation of the sulfur-containing volatiles. We propose that disulfides are derived from cysteine via formation of cystathionine analogs, which lead to corresponding thiols. These thiols may then be oxidized to disulfides. Moreover, methionine may contribute to the formation of short-chain disulfides through integration of methanethiol into the disulfide biosynthesis. In summary, the causative agents of the typical C. difficile odor were identified and first hypotheses for their biosynthesis were proposed.
Collapse
Affiliation(s)
- Peter Biwer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
| | - Petra Henke
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Stefan Schulz,
| |
Collapse
|
14
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
15
|
Shi X, Li X, Li X, He Z, Chen X, Song J, Zeng L, Liang Q, Li J, Xu G, Zheng J. Antibacterial Properties of TMA against Escherichia coli and Effect of Temperature and Storage Duration on TMA Content, Lysozyme Activity and Content in Eggs. Foods 2022; 11:foods11040527. [PMID: 35206004 PMCID: PMC8870930 DOI: 10.3390/foods11040527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Studies on trimethylamine (TMA) in egg yolk have focused on how it impacts the flavor of eggs, but there has been little focus on its other functions. We designed an in vitro antibacterial test of TMA according to TMA concentrations that covered the TMA contents typically found in egg yolk. The change in TMA content in yolk was analyzed at different storage temperatures and for different storage durations. The known antibacterial components of eggs, including the cuticle quality of the eggshell and the lysozyme activity and content in egg white, were also assessed. The total bacterial count (TBC) of different parts of eggs were detected. The results showed that the inhibitory effect of TMA on Escherichia coli (E. coli) growth increased with increasing TMA concentration, and the yolk TMA content significantly increased with storage duration (p < 0.05). The cuticle quality and lysozyme content and activity significantly decreased with storage time and increasing temperature, accompanied by a significant increase in the TBC on the eggshell surface and in the egg white (p < 0.05). This work reveals a new role for trace TMA in yolks because it reduces the risk of bacterial colonization, especially when the antibacterial function of eggs is gradually weakened during storage.
Collapse
Affiliation(s)
- Xuefeng Shi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Xingzheng Li
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agriculture Sciences, Shenzhen 440307, China;
| | - Xianyu Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Zhaoxiang He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China;
| | - Jianlou Song
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Lingsen Zeng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Qianni Liang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Junying Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
- Correspondence: ; Tel.: +86-10-6273-2741; Fax: +86-10-6273-1080
| |
Collapse
|
16
|
Lammers A, Lalk M, Garbeva P. Air Ambulance: Antimicrobial Power of Bacterial Volatiles. Antibiotics (Basel) 2022; 11:antibiotics11010109. [PMID: 35052986 PMCID: PMC8772769 DOI: 10.3390/antibiotics11010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential roles in intra- and interspecies interactions like communication and antimicrobial defense. In the last years, an increasing number of studies showed bioactivities of bacterial volatiles, including antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting source for novel antimicrobial compounds. In this review we introduce the chemical diversity of bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Alexander Lammers
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| |
Collapse
|
17
|
Song GC, Jeon JS, Sim HJ, Lee S, Jung J, Kim SG, Moon SY, Ryu CM. Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:571-583. [PMID: 34679179 DOI: 10.1093/jxb/erab466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Bacteria emit volatile compounds that modulate plant growth. Previous studies reported the impacts of bacterial volatile compounds on plant growth; however, the results varied depending on bacterial nutrient availability. We investigated whether the effects of plant growth-inhibiting volatiles (PGIVs) and plant growth-promoting volatiles (PGPVs) depended on the perceived dose by evaluating the growth of Arabidopsis thaliana seedlings placed at 7, 14, and 21 cm away from Bacillus amyloliquefaciens GB03 colonies growing in rich medium. A large bacterial colony (500 μl inoculum) inhibited plant growth at 7 cm and promoted growth at 21 cm, whereas a small bacterial colony (100 μl inoculum) induced the opposite pattern of response. We identified pyrazine and 2,5-dimethylpyrazine as candidate PGIVs that significantly reduced plant growth at a distance of 7 cm. PGIV effects were validated by exposing plants to synthetic 2,5-dimethylpyrazine and bacteria emitting PGPVs, which showed that PGIVs overwhelm PGPVs to rapidly increase salicylic acid content and related gene expression. This is referred to as the defence-growth trade-off. Our results indicate that high PGIV concentrations suppress plant growth and promote immunity, whereas low PGPV concentrations promote growth. This study provides novel insights into the complex effects of bacterial volatile mixtures and fine-tuning of bacteria-plant interactions.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon 34126, S. Korea
- Environmental Safety Assessment Center, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju 52834, South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
| | - Jihye Jung
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon 34126, S. Korea
| | - Sun Young Moon
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon 34126, S. Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, S. Korea
| |
Collapse
|
18
|
Mohamed Salleh NAB, Tanaka Y, Sutarlie L, Su X. Detecting bacterial infections in wounds: a review of biosensors and wearable sensors in comparison with conventional laboratory methods. Analyst 2022; 147:1756-1776. [DOI: 10.1039/d2an00157h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Review on laboratory-based methods and biosensors and wearable sensors for detecting wound infection by aerobic and anaerobic bacteria.
Collapse
Affiliation(s)
- Nur Asinah binte Mohamed Salleh
- Institute of Materials Research and Engineering, A* Star (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Yuki Tanaka
- Institute of Materials Research and Engineering, A* Star (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Laura Sutarlie
- Institute of Materials Research and Engineering, A* Star (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Xiaodi Su
- Institute of Materials Research and Engineering, A* Star (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
19
|
Peng J, Liu H, Shen M, Chen R, Li J, Dong Y. The inhibitory effects of different types of Brassica seed meals on the virulence of Ralstonia solanacearum. PEST MANAGEMENT SCIENCE 2021; 77:5129-5138. [PMID: 34251090 DOI: 10.1002/ps.6552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Understanding the specific inhibitory effects of different Brassica seed meals (BSMs) on soilborne pathogens is important for their application as biocontrol agents for controlling plant disease. In this study, the seed meals of Brassica napus L. (BnSM), Brassica campestris L. (BcSM), and Brassica juncea L. (BjSM), and the combined seed meal of BcSM and BjSM (CSM, 1:1), were selected for investigation. The inhibitory effects of these seed meals on the plant pathogen Ralstonia solanacearum (Smith) and tomato bacterial wilt, were assessed and compared. RESULTS All the BSMs significantly inhibited the growth of R. solanacearum in vitro. Furthermore, the BSMs could effectively suppress R. solanacearum virulence traits, including motility, exopolysaccharide production, dehydrogenase activity, virulence-related gene expression, and colonization in the soil. Among them, BjSM showed the best inhibiting effects, and CSM displayed synergic toxicity against R. solanacearum. In addition, the predominant antibacterial compounds in BcSM and BjSM were identified as the volatile compounds, 3-butenyl isothiocyanate and allyl isothiocyanate, respectively. Finally, pot experiment verified that the control effects of BjSM and CSM on tomato wilt reached more than 90%. CONCLUSION This is the first study to report on the ability of different kinds of BSMs to suppress the virulence of R. solanacearum and biocontrol efficiencies against bacterial wilt in tomato plants. Furtherly, the main antibacterial compounds in the BSMs were identified. The results demonstrated that CSM may possess potential for controlling bacterial wilt caused by R. solanacearum. The results provide a fresh perspective for comprehending the mechanism underlying BSM suppression of pathogens and plant disease.
Collapse
Affiliation(s)
- Junwei Peng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minchong Shen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruihuan Chen
- University of Chinese Academy of Sciences, Beijing, China
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jiangang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
20
|
Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens. Microbiol Spectr 2021; 9:e0040421. [PMID: 34378969 PMCID: PMC8552673 DOI: 10.1128/spectrum.00404-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.
Collapse
|
21
|
Huang L, Ahmed S, Gu Y, Huang J, An B, Wu C, Zhou Y, Cheng G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021; 26:molecules26144277. [PMID: 34299552 PMCID: PMC8303546 DOI: 10.3390/molecules26144277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the extensive application of antibiotics in medical and farming practices, the continued diversification and development of antimicrobial resistance (AMR) has attracted serious public concern. With the emergence of AMR and the failure to treat bacterial infections, it has led to an increased interest in searching for novel antibacterial substances such as natural antimicrobial substances, including microbial volatile compounds (MVCs), plant-derived compounds, and antimicrobial peptides. However, increasing observations have revealed that AMR is associated not only with the use of antibacterial substances but also with tolerance to heavy metals existing in nature and being used in agriculture practice. Additionally, bacteria respond to environmental stresses, e.g., nutrients, oxidative stress, envelope stress, by employing various adaptive strategies that contribute to the development of AMR and the survival of bacteria. Therefore, we need to elucidate thoroughly the factors and conditions affecting AMR to take comprehensive measures to control the development of AMR.
Collapse
Affiliation(s)
- Lulu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Yufeng Gu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Junhong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Boyu An
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Cuirong Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Yujie Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
- Correspondence:
| |
Collapse
|
22
|
Prigigallo MI, De Stradis A, Anand A, Mannerucci F, L'Haridon F, Weisskopf L, Bubici G. Basidiomycetes Are Particularly Sensitive to Bacterial Volatile Compounds: Mechanistic Insight Into the Case Study of Pseudomonas protegens Volatilome Against Heterobasidion abietinum. Front Microbiol 2021; 12:684664. [PMID: 34220771 PMCID: PMC8248679 DOI: 10.3389/fmicb.2021.684664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
Volatile organic compounds (VOCs) play an important role in the communication among organisms, including plants, beneficial or pathogenic microbes, and pests. In vitro, we observed that the growth of seven out of eight Basidiomycete species tested was inhibited by the VOCs of the biocontrol agent Pseudomonas protegens strain CHA0. In the Ascomycota phylum, only some species were sensitive (e.g., Sclerotinia sclerotiorum, Botrytis cinerea, etc.) but others were resistant (e.g., Fusarium oxysporum f. sp. cubense, Verticillium dahliae, etc.). We further discovered that CHA0 as well as other ten beneficial or phytopathogenic bacterial strains were all able to inhibit Heterobasidion abietinum, which was used in this research as a model species. Moreover, such an inhibition occurred only when bacteria grew on media containing digested proteins like peptone or tryptone (e.g., Luria-Bertani agar or LBA). Also, the inhibition co-occurred with a pH increase of the agar medium where the fungus grew. Therefore, biogenic ammonia originating from protein degradation by bacteria was hypothesized to play a major role in fungus inhibition. Indeed, when tested as a synthetic compound, it was highly toxic to H. abietinum (effective concentration 50% or EC50 = 1.18 M; minimum inhibitory concentration or MIC = 2.14 M). Using gas chromatography coupled to mass spectrometry (GC/MS), eight VOCs were found specifically emitted by CHA0 grown on LBA compared to the bacterium grown on potato dextrose agar (PDA). Among them, two compounds were even more toxic than ammonia against H. abietinum: dimethyl trisulfide had EC50 = 0.02 M and MIC = 0.2 M, and 2-ethylhexanol had EC50 = 0.33 M and MIC = 0.77 M. The fungus growth inhibition was the result of severe cellular and sub-cellular alterations of hyphae occurring as early as 15 min of exposure to VOCs, as evidenced by transmission and scanning electron microscopy observations. Transcriptome reprogramming of H. abietinum induced by CHA0’s VOCs pointed out that detrimental effects occurred on ribosomes and protein synthesis while the cells tried to react by activating defense mechanisms, which required a lot of energy diverted from the growth and development (fitness cost).
Collapse
Affiliation(s)
- Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Angelo De Stradis
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Francesco Mannerucci
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
23
|
Monedeiro F, Railean-Plugaru V, Monedeiro-Milanowski M, Pomastowski P, Buszewski B. Metabolic Profiling of VOCs Emitted by Bacteria Isolated from Pressure Ulcers and Treated with Different Concentrations of Bio-AgNPs. Int J Mol Sci 2021; 22:4696. [PMID: 33946710 PMCID: PMC8124631 DOI: 10.3390/ijms22094696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL-1. Headspace solid phase microextraction associated to gas chromatography-mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Maciej Monedeiro-Milanowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
24
|
Bacterial-induced pH shifts link individual cell physiology to macroscale collective behavior. Proc Natl Acad Sci U S A 2021; 118:2014346118. [PMID: 33795512 DOI: 10.1073/pnas.2014346118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria have evolved a diverse array of signaling pathways that enable them to quickly respond to environmental changes. Understanding how these pathways reflect environmental conditions and produce an orchestrated response is an ongoing challenge. Herein, we present a role for collective modifications of environmental pH carried out by microbial colonies living on a surface. We show that by collectively adjusting the local pH value, Paenibacillus spp., specifically, regulate their swarming motility. Moreover, we show that such pH-dependent regulation can converge with the carbon repression pathway to down-regulate flagellin expression and inhibit swarming in the presence of glucose. Interestingly, our results demonstrate that the observed glucose-dependent swarming repression is not mediated by the glucose molecule per se, as commonly thought to occur in carbon repression pathways, but rather is governed by a decrease in pH due to glucose metabolism. In fact, modification of the environmental pH by neighboring bacterial species could override this glucose-dependent repression and induce swarming of Paenibacillus spp. away from a glucose-rich area. Our results suggest that bacteria can use local pH modulations to reflect nutrient availability and link individual bacterial physiology to macroscale collective behavior.
Collapse
|
25
|
Weisskopf L, Schulz S, Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol 2021; 19:391-404. [PMID: 33526910 DOI: 10.1038/s41579-020-00508-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Microorganisms produce and excrete a versatile array of metabolites with different physico-chemical properties and biological activities. However, the ability of microorganisms to release volatile compounds has only attracted research attention in the past decade. Recent research has revealed that microbial volatiles are chemically very diverse and have important roles in distant interactions and communication. Microbial volatiles can diffuse fast in both gas and water phases, and thus can mediate swift chemical interactions. As well as constitutively emitted volatiles, microorganisms can emit induced volatiles that are triggered by biological interactions or environmental cues. In this Review, we highlight recent discoveries concerning microbial volatile compounds and their roles in intra-kingdom microbial interactions and inter-kingdom interactions with plants and insects. Furthermore, we indicate the potential biotechnological applications of microbial volatiles and discuss challenges and perspectives in this emerging research field.
Collapse
Affiliation(s)
- Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universitat Braunschweig, Braunschweig, Germany
| | - Paolina Garbeva
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, The Netherlands. .,Department of Plant and Environmental Sciences, Faculty of Natural and Life Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Su M, Han F, Wang M, Ma J, Wang X, Wang Z, Hu S, Li Z. Clay-assisted protection of Enterobacter sp. from Pb (II) stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111704. [PMID: 33396035 DOI: 10.1016/j.ecoenv.2020.111704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Clay minerals can adsorb both microorganisms and heavy metals. In this study, typical soil bacterium, Enterobacter sp. was applied to investigate the potential protection of the bacterial cells from Pb2+ stress by clay minerals. The sorption by two representative types of montmorillonite (Mt) were contrasted, i.e., Mts/Mtw with strong/weak CEC. There was no significant difference between the two clay minerals regarding their adsorption of Pb2+ cations in water (i.e., ~55 mg L-1). However, the sorption of bacterial cells on the two clay minerals showed evident contrasts, which resulted in the different capacity of Pb sorption. Mts with high CEC preferentially adsorbed abundant bacterial cells (rather than Pb2+) on its surface. The residual Pb2+ concentration in solution actually raised by 7.5% after the addition of Enterobacter sp. In addition, both the Pb-contaminated cells and "healthy" cells (with low Pb contamination) could be adsorbed onto Mt surface, whereas the latter dominated the adsorbents on Mts. This was due to that the Mts with high CEC could provide more exchangeable cations, building more cation bridging ligands between the microbial cells (whatever the types of cells) and clay surface. Furthermore, the adsorbed "healthy" bacterial cells might escape from clay surface via "self-liberating" mechanism, i.e., increasing electrostatic repulsion between the bacteria and clay during microbial decomposition of the medium. This study hence elucidated the protection of microorganisms from Pb2+ stress by Mt.
Collapse
Affiliation(s)
- Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feiyu Han
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mengxiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jingxuan Ma
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuewei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Hou Q, Keren-Paz A, Korenblum E, Oved R, Malitsky S, Kolodkin-Gal I. Weaponizing volatiles to inhibit competitor biofilms from a distance. NPJ Biofilms Microbiomes 2021; 7:2. [PMID: 33402677 PMCID: PMC7785731 DOI: 10.1038/s41522-020-00174-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
The soil bacterium Bacillus subtilis forms beneficial biofilms that induce plant defences and prevent the growth of pathogens. It is naturally found in the rhizosphere, where microorganisms coexist in an extremely competitive environment, and thus have evolved a diverse arsenal of defence mechanisms. In this work, we found that volatile compounds produced by B. subtilis biofilms inhibited the development of competing biofilm colonies, by reducing extracellular matrix gene expression, both within and across species. This effect was dose-dependent, with the structural defects becoming more pronounced as the number of volatile-producing colonies increased. This inhibition was mostly mediated by organic volatiles, and we identified the active molecules as 3-methyl-1-butanol and 1-butanol. Similar results were obtained with biofilms formed by phylogenetically distinct bacterium sharing the same niche, Escherichia coli, which produced the biofilm-inhibiting 3-methyl-1-butanol and 2-nonanon. The ability of established biofilms to inhibit the development and spreading of new biofilms from afar might be a general mechanism utilized by bacterial biofilms to protect an occupied niche from the invasion of competing bacteria.
Collapse
Affiliation(s)
- Qihui Hou
- grid.13992.300000 0004 0604 7563Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alona Keren-Paz
- grid.13992.300000 0004 0604 7563Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elisa Korenblum
- grid.13992.300000 0004 0604 7563Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rela Oved
- grid.13992.300000 0004 0604 7563Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- grid.13992.300000 0004 0604 7563Metabolic Profiling Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- grid.13992.300000 0004 0604 7563Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78. Microorganisms 2020; 8:microorganisms8111761. [PMID: 33182371 PMCID: PMC7695267 DOI: 10.3390/microorganisms8111761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Plant beneficial rhizobacteria may antagonize soilborne plant pathogens by producing a vast array of volatile organic compounds (VOCs). The production of these compounds depends on the medium composition used for bacterial cell growth. Accordingly, Lysobacter capsici AZ78 (AZ78) grown on a protein-rich medium was previously found to emit volatile pyrazines with toxic activity against soilborne phypathogenic fungi and oomycetes. However, the discrepancy between the quantity of pyrazines in the gaseous phase and the minimum quantity needed to achieve inhibition of plant pathogens observed, lead us to further investigate the volatile-mediated inhibitory activity of AZ78. Here, we show that, besides VOCs, AZ78 cells produce ammonia in increased amounts when a protein-rich medium is used for bacterial growth. The production of this volatile compound caused the alkalinization of the physically separated culture medium where Rhizoctonia solani was inoculated subsequently. Results achieved in this work clearly demonstrate that VOC, ammonia and the growth medium alkalinization contribute to the overall inhibitory activity of AZ78 against R. solani. Thus, our findings suggest that the volatile-mediated inhibitory activity of rhizobacteria in protein-rich substrates can be regarded as a result of multiple factors interaction, rather than exclusively VOCs production.
Collapse
|
29
|
Poh WH, Lin J, Colley B, Müller N, Goh BC, Schleheck D, El Sahili A, Marquardt A, Liang Y, Kjelleberg S, Lescar J, Rice SA, Klebensberger J. The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa. PLoS One 2020; 15:e0241019. [PMID: 33156827 PMCID: PMC7647112 DOI: 10.1371/journal.pone.0241019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, we demonstrate that the SiaABC proteins represent a signal response pathway that functions through a partner switch mechanism to control biofilm formation. We also demonstrate that SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, physiological and crystallographic data reveals that the phosphatase SiaA and its kinase counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In conclusion, the present work improves our understanding of how P. aeuruginosa integrates specific environmental conditions, such as carbon availability and surfactant stress, to regulate cellular aggregation and biofilm formation. With the biochemical and structural characterization of SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, our study identifies promising targets for the development of biofilm-interference drugs to combat infections of this aggressive opportunistic pathogen.
Collapse
Affiliation(s)
- Wee-Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jianqing Lin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Brendan Colley
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolai Müller
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - David Schleheck
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Abbas El Sahili
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andreas Marquardt
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Yang Liang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- The ithree Institute, The University of Technology Sydney, Sydney, Australia
| | - Janosch Klebensberger
- University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
| |
Collapse
|
30
|
Chen H, Tang L, Wang Z, Su M, Tian D, Zhang L, Li Z. Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114483. [PMID: 32283462 DOI: 10.1016/j.envpol.2020.114483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
Collapse
Affiliation(s)
- Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Adamowicz EM, Muza M, Chacón JM, Harcombe WR. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog 2020; 16:e1008700. [PMID: 32687537 PMCID: PMC7392344 DOI: 10.1371/journal.ppat.1008700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/30/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
With antibiotic resistance rates on the rise, it is critical to understand how microbial species interactions influence the evolution of resistance. In obligate mutualisms, the survival of any one species (regardless of its intrinsic resistance) is contingent on the resistance of its cross-feeding partners. This sets the community antibiotic sensitivity at that of the 'weakest link' species. In this study, we tested the hypothesis that weakest link dynamics in an obligate cross-feeding relationship would limit the extent and mechanisms of antibiotic resistance evolution. We experimentally evolved an obligate co-culture and monoculture controls along gradients of two different antibiotics. We measured the rate at which each treatment increased antibiotic resistance, and sequenced terminal populations to question whether mutations differed between mono- and co-cultures. In both rifampicin and ampicillin treatments, we observed that resistance evolved more slowly in obligate co-cultures of E. coli and S. enterica than in monocultures. While we observed similar mechanisms of resistance arising under rifampicin selection, under ampicillin selection different resistance mechanisms arose in co-cultures and monocultures. In particular, mutations in an essential cell division protein, ftsI, arose in S. enterica only in co-culture. A simple mathematical model demonstrated that reliance on a partner is sufficient to slow the rate of adaptation, and can change the distribution of adaptive mutations that are acquired. Our results demonstrate that cooperative metabolic interactions can be an important modulator of resistance evolution in microbial communities.
Collapse
Affiliation(s)
- Elizabeth M. Adamowicz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michaela Muza
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jeremy M. Chacón
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Netzker T, Shepherdson EMF, Zambri MP, Elliot MA. Bacterial Volatile Compounds: Functions in Communication, Cooperation, and Competition. Annu Rev Microbiol 2020; 74:409-430. [PMID: 32667838 DOI: 10.1146/annurev-micro-011320-015542] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria produce a multitude of volatile compounds. While the biological functions of these deceptively simple molecules are unknown in many cases, for compounds that have been characterized, it is clear that they serve impressively diverse purposes. Here, we highlight recent studies that are uncovering the volatile repertoire of bacteria, and the functional relevance and impact of these molecules. We present work showing the ability of volatile compounds to modulate nutrient availability in the environment; alter the growth, development, and motility of bacteria and fungi; influence protist and arthropod behavior; and impact plant and animal health. We further discuss the benefits associated with using volatile compounds for communication and competition, alongside the challenges of studying these molecules and their functional roles. Finally, we address the opportunities these compounds present from commercial, clinical, and agricultural perspectives.
Collapse
Affiliation(s)
- Tina Netzker
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Evan M F Shepherdson
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Matthew P Zambri
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Marie A Elliot
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| |
Collapse
|
33
|
Anthocyanin Colorimetric Strip for Volatile Amine Determination. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:1672851. [PMID: 32656261 PMCID: PMC7320287 DOI: 10.1155/2020/1672851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/17/2020] [Indexed: 11/18/2022]
Abstract
Food freshness is one of the main concerns of consumers. Food spoilage is mainly caused by contamination and microbial growth in which the latter produces volatile amines in the process. Several methods have been used to determine volatile amines to indicate food freshness, and indicator films are deemed as the most time-efficient and economical. In this study, anthocyanin was extracted from mangosteen rind as a natural dye indicator and was incorporated in a chitosan/PVA polymer matrix. The film with different concentrations of anthocyanin extract (5%, 15%, and 25%) was prepared and tested for their sensitivity to 136 ppm ammonia vapor followed by colorimetric analysis using ImageJ software. The film with 25% anthocyanin yielded the most visible color change upon exposure to ammonia vapor. The color changed from pink to yellowish-brown within 14 minutes of exposure. The RGB-converted images of the film with 25% anthocyanin extract showed gradual loss of red coloration being replaced by cyan spots. FTIR spectra showed incorporation of anthocyanin to the chitosan/PVA matrix with the decrease in the intensity of the C-N stretching peak. Thermogravimetric analysis showed that the film has high thermal stability with onset temperature of 310.43°C. Thus, the film developed is an excellent candidate for optimization and production of a thermally stable amine detector for food products.
Collapse
|
34
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
35
|
Su G, Wang H, Bai J, Chen G, Pei Y. A Metabonomics Approach to Drug Toxicology in Liver Disease and its Application in Traditional Chinese Medicine. Curr Drug Metab 2019; 20:292-300. [PMID: 30599107 DOI: 10.2174/1389200220666181231124439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The progression of liver disease causes metabolic transformation in vivo and thus affects corresponding endogenous small molecular compounds. Metabonomics is a powerful technology which is able to assess global low-molecular-weight endogenous metabolites in a biological system. This review is intended to provide an overview of a metabonomics approach to the drug toxicology of diseases of the liver. METHODS The regulation of, and relationship between, endogenous metabolites and diseases of the liver is discussed in detail. Furthermore, the metabolic pathways involved in drug interventions of liver diseases are reviewed. Evaluation of the protective mechanisms of traditional Chinese medicine in liver diseases using metabonomics is also reviewed. Examples of applications of metabolite profiling concerning biomarker discovery are highlighted. In addition, new developments and future prospects are described. RESULTS Metabonomics can measure changes in metabolism relating to different stages of liver disease, so metabolic differences can provide a basis for the diagnosis, treatment and prognosis of various diseases. CONCLUSION Metabonomics has great advantages in all aspects of the therapy of liver diseases, with good prospects for clinical application.
Collapse
Affiliation(s)
- Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Bai
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuehu Pei
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
36
|
Jenkins CL, Bean HD. Influence of media on the differentiation of Staphylococcus spp. by volatile compounds. J Breath Res 2019; 14:016007. [PMID: 31461416 DOI: 10.1088/1752-7163/ab3e9d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus asymptomatically colonizes a third of the world's population, and it is an opportunistic pathogen that can cause life threatening diseases. To diagnose S. aureus infections, it is necessary to differentiate S. aureus from the ubiquitous human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all humans. Efforts are underway to identify volatile biomarkers for diagnosing S. aureus infections, but to date no studies have investigated whether S. aureus and S. epidermidis can be reliably differentiated under a variety of growth conditions. The overall goal of this study was to evaluate the influence of growth medium on the ability to differentiate S. aureus and S. epidermidis based on their volatile profiles. We used headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) to examine the headspace volatiles of S. aureus and S. epidermidis when aerobically grown in four different complex media. We detected 337 volatile features when culturing S. aureus and S. epidermidis in four complex media, termed the staph volatiles, and found only 20%-40% concurrence in the volatiles produced by these two species in any single medium. Using principal components analysis and hierarchical clustering analysis on the staph volatiles, we observed that S. aureus and S. epidermidis clustered independently from each other, and distinctly clustered by growth medium within species. Removing volatiles that are species and/or media-specific from the analysis reduced the resolution between species clusters, but in all models clustering by species overrode clustering by media type. These analyses suggest that, while volatile profiles are media-specific, species differences dominate the staph volatilome. These data enable future investigations into the identification of volatile biomarkers to discriminate staphylococcal pathogens versus commensals, which will improve staph diagnoses and provide insights into the biochemistry of staph infections and immunity.
Collapse
Affiliation(s)
- Carrie L Jenkins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America. Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Tempe, AZ 85287, United States of America
| | | |
Collapse
|
37
|
Avalos M, Garbeva P, Raaijmakers JM, van Wezel GP. Production of ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces species. ISME JOURNAL 2019; 14:569-583. [PMID: 31700119 DOI: 10.1038/s41396-019-0537-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Soil-inhabiting streptomycetes are nature's medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatiles, molecules that disperse through the soil matrix and may impact other (micro)organisms from a distance. Here, we show that soil- and surface-grown streptomycetes have the ability to kill bacteria over long distances via air-borne antibiosis. Our research shows that streptomycetes do so by producing surprisingly high amounts of the low-cost volatile ammonia, dispersing over long distances to inhibit the growth of Gram-positive and Gram-negative bacteria. Glycine is required as precursor to produce ammonia, and inactivation of the glycine cleavage system nullified ammonia biosynthesis and concomitantly air-borne antibiosis. Reduced expression of the porin master regulator OmpR and its cognate kinase EnvZ is used as a resistance strategy by E. coli cells to survive ammonia-mediated antibiosis. Finally, ammonia was shown to enhance the activity of canonical antibiotics, suggesting that streptomycetes adopt a low-cost strategy to sensitize competitors for antibiosis from a distance.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Jiang Z, Jiang L, Zhang L, Su M, Tian D, Wang T, Sun Y, Nong Y, Hu S, Wang S, Li Z. Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses. Environ Microbiol 2019; 22:1507-1516. [PMID: 31215728 DOI: 10.1111/1462-2920.14719] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 11/29/2022]
Abstract
Successful application of microorganisms to heavy metal remediation depends on their resistance to toxic metals. This study contrasted the differences of tolerant mechanisms between Pb2+ and Cd2+ in Enterobacter sp. Microbial respiration and production of formic acid showed that Enterobacter sp. had a higher tolerant concentration of Pb (>1000 mg l-1 ) than Cd (about 200 mg l-1 ). Additionally, SEM confirmed that most of Pb and Cd nanoparticles (NPs) were adsorbed onto cell membrane. The Cd stress, even at low concentration (50 mg l-1 ), significantly enlarged the sizes of cells. The cellular size raised from 0.4 × 1.0 to 0.9 × 1.6 μm on average, inducing a platelet-like shape. In contrast, Pb cations did not stimulate such enlargement even up to 1000 mg l-1 . Moreover, Cd NPs were adsorbed homogeneously by almost all the bacterial cells under TEM. However, only a few cells work as 'hot spots' on the sorption of Pb NPs. The heterogeneous sorption might result from a 'self-sacrifice' mechanism, i.e., some cells at a special life stage contributed mostly to Pb sorption. This mechanism, together with the lower mobility of Pb cations, caused higher microbial tolerance and removal efficiency towards Pb2+ . This study sheds evident contrasts of bacterial resistance to the two most common heavy metals.
Collapse
Affiliation(s)
- Zhongquan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Liu Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yalin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ying Nong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
39
|
Veselova MA, Plyuta VA, Khmel IA. Volatile Compounds of Bacterial Origin: Structure, Biosynthesis, and Biological Activity. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Chen H, Zhang J, Tang L, Su M, Tian D, Zhang L, Li Z, Hu S. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. ENVIRONMENT INTERNATIONAL 2019; 127:395-401. [PMID: 30954726 DOI: 10.1016/j.envint.2019.03.068] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 05/22/2023]
Abstract
Application of biochar in heavy metal remediation suffers from lack of long-term stability. Phosphate-solubilizing bacteria (PSB) are able to elevate P release and the subsequent reaction with Pb to form stable pyromorphite. This study investigated the feasibility of applying PSB modified biochar to enhance immobilization of Pb2+. An alkaline biochar produced from rice husk (RB) and a slightly acidic biochar produced from sludge (SB) were selected. It showed that the biochars can effectively remove Pb2+ via adsorption, i.e., aqueous Pb concentrations after RB and SB addition were reduced by 18.61 and 53.89% respectively. The addition of PSB increased the Pb2+ removal for both biochars (to 24.11 and 60.85%, respectively). In particular, PSB significantly enhanced the formation of stable pyromorphite on surface of SB. This is due to that the evenly distributed PSB enhanced P release and regulated pH on the biochar surface. Moreover, small particles (<0.074 mm) showed their higher ability to induce the formation of pyromorphite, for both RB and SB. Nevertheless, SB demonstrated higher capability of sorption, together with its more abundant P content, which provided a more suitable platform to attract PSB to immobilize heavy metals. Therefore, the combination of biochar and PSB is a promising candidate material for heavy metal remediation. However, the types and particle size distribution of biochar should be addressed.
Collapse
Affiliation(s)
- Haoming Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiawen Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
41
|
Drabińska N, de Lacy Costello B, Hewett K, Smart A, Ratcliffe N. From fast identification to resistance testing: Volatile compound profiling as a novel diagnostic tool for detection of antibiotic susceptibility. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Kalantari-Dehaghi S, Hatamian-Zarmi A, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB, Nojoki F, Hamedi J, Hosseinkhani S. Effects of microbial volatile organic compounds on Ganoderma lucidum growth and ganoderic acids production in Co-v-cultures (volatile co-cultures). Prep Biochem Biotechnol 2019; 49:286-297. [DOI: 10.1080/10826068.2018.1541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Saeid Kalantari-Dehaghi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Zahra-Beagom Mokhtari-Hosseini
- Department of Chemical Engineering, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Fahimeh Nojoki
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
43
|
Liss MA, Leach RJ, Rourke E, Sherrill A, Johnson-Pais T, Lai Z, Basler J, White JR, Patterson JE. Microbiome diversity in carriers of fluoroquinolone resistant Escherichia coli. Investig Clin Urol 2019; 60:75-83. [PMID: 30838339 PMCID: PMC6397931 DOI: 10.4111/icu.2019.60.2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose Fluoroquinolone-resistant (FQR) Escherichia coli causes transrectal prostate biopsy infections. In order to reduce colonization of these bacteria in carriers, we would like to understand the surrounding microbiome to determine targets for decolonization. Materials and Methods We perform an observational study to investigate the microbiome differences in men with and without FQR organisms found on rectal culture. A rectal swab with two culturettes was performed on men before an upcoming prostate biopsy procedure as standard of care to perform “targeted prophylaxis.” Detection of FQR was performed by the standard microbiology lab inoculates the swab onto MacConkey agar containing ciprofloxacin. The extra swab was sent for 16S rRNA amplicon sequencing (MiSeq paired-end) using the V1V2 primer. Alpha and beta-diversity analysis were performed using QIIME. We used PERMANOVA to evaluate the statistical significance of beta-diversity distances within and between groups of interest. Results We collected 116 rectal swab samples before biopsy for 16S rRNA amplicon sequencing. We identified 18 isolates (15.5%, 18/116) that were positive and had relative reduced diversity profiles (p<0.05). Enterobacteriaceae were significantly over-represented in the FQR subjects (adjusted p=0.03). Conclusions Microbiome analysis determined that men colonized with FQR bacteria have less diverse bacterial communities (dysbiosis), higher levels of Enterobacteriaceae and reduced levels of Prevotella disiens. These results may have implications in pre/probiotic intervention studies.
Collapse
Affiliation(s)
- Michael A Liss
- Department of Urology, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA.,South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Robin J Leach
- Department of Urology, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA.,Department of Cell Systems and Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA
| | - Elizabeth Rourke
- Department of Urology, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA
| | - Allison Sherrill
- Department of Urology, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA
| | - Teresa Johnson-Pais
- Department of Urology, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA.,Department of Cell Systems and Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA
| | - Zhao Lai
- Genome Sequencing Facility (GSF) in the Greehey Children's Cancer Research Institute (Greehey CCRI), San Antonio, TX, USA
| | - Joseph Basler
- Department of Urology, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA
| | | | - Jan E Patterson
- Department of Medicine, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA
| |
Collapse
|
44
|
Corre MH, Delafont V, Legrand A, Berjeaud JM, Verdon J. Exploiting the Richness of Environmental Waterborne Bacterial Species to Find Natural Legionella pneumophila Competitors. Front Microbiol 2019; 9:3360. [PMID: 30697209 PMCID: PMC6340971 DOI: 10.3389/fmicb.2018.03360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is one of the most tracked waterborne pathogens and remains an important threat to human health. Despite the use of biocides, L. pneumophila is able to persist in engineered water systems with the help of multispecies biofilms and phagocytic protists. For few years now, high-throughput sequencing methods have enabled a better understanding of microbial communities in freshwater environments. Those unexplored and complex communities compete for nutrients using antagonistic molecules as war weapons. Up to now, few of these molecules were characterized in regards of L. pneumophila sensitivity. In this context, we established, from five freshwater environments, a vast collection of culturable bacteria and investigated their ability to inhibit the growth of L. pneumophila. All bacterial isolates were classified within 4 phyla, namely Proteobacteria (179/273), Bacteroidetes (48/273), Firmicutes (43/273), and Actinobacteria (3/273) according to 16S rRNA coding sequences. Aeromonas, Bacillus, Flavobacterium, and Pseudomonas were the most abundant genera (154/273). Among the 273 isolates, 178 (65.2%) were shown to be active against L. pneumophila including 137 isolates of the four previously cited main genera. Additionally, other less represented genera depicted anti-Legionella activity such as Acinetobacter, Kluyvera, Rahnella, or Sphingobacterium. Furthermore, various inhibition diameters were observed among active isolates, ranging from 0.4 to 9 cm. Such variability suggests the presence of numerous and diverse natural compounds in the microenvironment of L. pneumophila. These molecules include both diffusible secreted compounds and volatile organic compounds, the latter being mainly produced by Pseudomonas strains. Altogether, this work sheds light on unexplored freshwater bacterial communities that could be relevant for the biological control of L. pneumophila in manmade water systems.
Collapse
Affiliation(s)
- Marie-Hélène Corre
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Anasthasia Legrand
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Verdon
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
45
|
Li H, Xu M, Zhu J. Headspace Gas Monitoring of Gut Microbiota Using Targeted and Globally Optimized Targeted Secondary Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 91:854-863. [DOI: 10.1021/acs.analchem.8b03517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haorong Li
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
46
|
Interspecific formation of the antimicrobial volatile schleiferon. Sci Rep 2018; 8:16852. [PMID: 30442919 PMCID: PMC6237861 DOI: 10.1038/s41598-018-35341-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
Microorganisms release a plethora of volatile secondary metabolites. Up to now, it has been widely accepted that these volatile organic compounds are produced and emitted as a final product by a single organism e.g. a bacterial cell. We questioned this commonly assumed perspective and hypothesized that in diversely colonized microbial communities, bacterial cells can passively interact by emitting precursors which non-enzymatically react to form the active final compound. This hypothesis was inspired by the discovery of the bacterial metabolite schleiferon A. This bactericidal volatile compound is formed by a non-enzymatic reaction between acetoin and 2-phenylethylamine. Both precursors are released by Staphylococcus schleiferi cells. In order to provide evidence for our hypothesis that these precursors could also be released by bacterial cells of different species, we simultaneously but separately cultivated Serratia plymuthica 4Rx13 and Staphylococcus delphini 20771 which held responsible for only one precursor necessary for schleiferon A formation, respectively. By mixing their headspace, we demonstrated that these two species were able to deliver the active principle schleiferon A. Such a joint formation of a volatile secondary metabolite by different bacterial species has not been described yet. This highlights a new aspect of interpreting multispecies interactions in microbial communities as not only direct interactions between species might determine and influence the dynamics of the community. Events outside the cell could lead to the appearance of new compounds which could possess new community shaping properties.
Collapse
|
47
|
Modeling of concentric pattern of Serratia marcescens colony. Arch Microbiol 2018; 201:87-92. [PMID: 30255199 DOI: 10.1007/s00203-018-1575-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
Serratia marcescens forms different colony patterns under distinct conditions. One of them is the concentric fountain-shaped pattern with pigmented center followed by unpigmented ring and pigmented rim. In this work, we study this pattern formation by construction of the mathematical model able to display this pattern based on putative metabolical traits, supported by series of experiments and by references. A pattern formation of such colony type depends on the disposition of glucose and amino acids, and is accompanied by a pH change in the agar medium. In this paper, we confirm that a metabolic activity of growing colony alters its environment which subsequently changes the colony formation. Presented model corresponds well with the real colony behaviour.
Collapse
|
48
|
Sharifi R, Ryu CM. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. ANNALS OF BOTANY 2018; 122:349-358. [PMID: 29982345 PMCID: PMC6110341 DOI: 10.1093/aob/mcy108] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bacterial volatile compounds (BVCs) are important mediators of beneficial plant-bacteria interactions. BVCs promote above-ground plant growth by stimulating photosynthesis and sugar accumulation and by modulating phytohormone signalling. These compounds also improve below-ground mineral uptake and modify root system architecture. SCOPE We review advances in our understanding of the mode of action and practical applications of BVCs since the discovery of BVC-mediated plant growth promotion in 2003. We also discuss unanswered questions about the identity of plant receptors, the effectiveness of combination of two or more BVCs on plant growth, and the potential side effects of these compounds for human and animal health. CONCLUSION BVCs have good potential for use as biostimulants and protectants to improve plant health. Further advances in the development of suitable technologies and preparing standards and guidelines will help in the application of BVCs in crop protection and health.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, South Korea
- For correspondence. E-mail
| |
Collapse
|
49
|
Persi E, Duran-Frigola M, Damaghi M, Roush WR, Aloy P, Cleveland JL, Gillies RJ, Ruppin E. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun 2018; 9:2997. [PMID: 30065243 PMCID: PMC6068141 DOI: 10.1038/s41467-018-05261-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
A reverse pH gradient is a hallmark of cancer metabolism, manifested by extracellular acidosis and intracellular alkalization. While consequences of extracellular acidosis are known, the roles of intracellular alkalization are incompletely understood. By reconstructing and integrating enzymatic pH-dependent activity profiles into cell-specific genome-scale metabolic models, we develop a computational methodology that explores how intracellular pH (pHi) can modulate metabolism. We show that in silico, alkaline pHi maximizes cancer cell proliferation coupled to increased glycolysis and adaptation to hypoxia (i.e., the Warburg effect), whereas acidic pHi disables these adaptations and compromises tumor cell growth. We then systematically identify metabolic targets (GAPDH and GPI) with predicted amplified anti-cancer effects at acidic pHi, forming a novel therapeutic strategy. Experimental testing of this strategy in breast cancer cells reveals that it is particularly effective against aggressive phenotypes. Hence, this study suggests essential roles of pHi in cancer metabolism and provides a conceptual and computational framework for exploring pHi roles in other biomedical domains.
Collapse
Affiliation(s)
- Erez Persi
- School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel.
- Center for Bioinformatics and Computational Biology, Institute of Advanced Computer Studies, Department of Computer Science, University of Maryland, College Park, MD, 20742, USA.
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Catalonia, Spain
| | - Mehdi Damaghi
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, 33612, FL, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, 33458, USA
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Catalonia, Spain
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Robert J Gillies
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20894, USA.
| |
Collapse
|
50
|
Avalos M, van Wezel GP, Raaijmakers JM, Garbeva P. Healthy scents: microbial volatiles as new frontier in antibiotic research? Curr Opin Microbiol 2018; 45:84-91. [PMID: 29544125 DOI: 10.1016/j.mib.2018.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Microorganisms represent a large and still resourceful pool for the discovery of novel compounds to combat antibiotic resistance in human and animal pathogens. The ability of microorganisms to produce structurally diverse volatile compounds has been known for decades, yet their biological functions and antimicrobial activities have only recently attracted attention. Various studies revealed that microbial volatiles can act as infochemicals in long-distance cross-kingdom communication as well as antimicrobials in competition and predation. Here, we review recent insights into the natural functions and modes of action of microbial volatiles and discuss their potential as a new class of antimicrobials and modulators of antibiotic resistance.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|