1
|
Turrini P, Chebbi A, Riggio FP, Visca P. The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives. Front Microbiol 2024; 15:1370520. [PMID: 38572233 PMCID: PMC10987966 DOI: 10.3389/fmicb.2024.1370520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Caves are ubiquitous subterranean voids, accounting for a still largely unexplored surface of the Earth underground. Due to the absence of sunlight and physical segregation, caves are naturally colonized by microorganisms that have developed distinctive capabilities to thrive under extreme conditions of darkness and oligotrophy. Here, the microbiomes colonizing three frequently studied cave types, i.e., limestone, sulfuric acid speleogenetic (SAS), and lava tubes among volcanic caves, have comparatively been reviewed. Geological configurations, nutrient availability, and energy flows in caves are key ecological drivers shaping cave microbiomes through photic, twilight, transient, and deep cave zones. Chemoheterotrophic microbial communities, whose sustenance depends on nutrients supplied from outside, are prevalent in limestone and volcanic caves, while elevated inorganic chemical energy is available in SAS caves, enabling primary production through chemolithoautotrophy. The 16S rRNA-based metataxonomic profiles of cave microbiomes were retrieved from previous studies employing the Illumina platform for sequencing the prokaryotic V3-V4 hypervariable region to compare the microbial community structures from different cave systems and environmental samples. Limestone caves and lava tubes are colonized by largely overlapping bacterial phyla, with the prevalence of Pseudomonadota and Actinomycetota, whereas the co-dominance of Pseudomonadota and Campylobacterota members characterizes SAS caves. Most of the metataxonomic profiling data have so far been collected from the twilight and transient zones, while deep cave zones remain elusive, deserving further exploration. Integrative approaches for future geomicrobiology studies are suggested to gain comprehensive insights into the different cave types and zones. This review also poses novel research questions for unveiling the metabolic and genomic capabilities of cave microorganisms, paving the way for their potential biotechnological applications.
Collapse
Affiliation(s)
- Paolo Turrini
- Department of Science, Roma Tre University, Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Schneider XT, Stroil BK, Tourapi C, Rebours C, Novoveska L, Vasquez MI, Gaudêncio SP. Improving awareness, understanding, and enforcement of responsibilities and regulations in Blue Biotechnology. Trends Biotechnol 2023; 41:1327-1331. [PMID: 37355443 DOI: 10.1016/j.tibtech.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Blue Biotechnology is developing rapidly worldwide. However, the Nagoya Protocol (NP), Responsible Research and Innovation (RRI) and other regulatory requirements in this field are falling behind. This article identifies the main RRI, NP, and regulatory gaps and provides key recommendations to mitigate these challenges.
Collapse
Affiliation(s)
| | - Belma K Stroil
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, 71000 Sarajevo, Bosnia and Herzegovina
| | - Christiana Tourapi
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Lucie Novoveska
- ScotBio, Unit 28 Shairp Business Park, Livingston, EH54 5FD, UK
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus; European University of Technology, Limassol 3036, Cyprus
| | - Susana P Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| |
Collapse
|
3
|
Hoelmer KA, Sforza RFH, Cristofaro M. Accessing biological control genetic resources: the United States perspective. BIOCONTROL (DORDRECHT, NETHERLANDS) 2023; 68:269-280. [PMID: 36741683 PMCID: PMC9891186 DOI: 10.1007/s10526-023-10179-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/24/2023] [Indexed: 06/08/2023]
Abstract
The USA has been actively involved in classical biological control projects against invasive insect pests and weeds since 1888. Classical (importation) biological control relies upon natural enemies associated through coevolution with their target species at their geographic origin to also provide long-term, self-sustaining management where the pest/weed has become invasive. Biological control agents are a form of genetic resources and fall under the purview of the 1993 Convention on Biological Diversity (CBD) and its Nagoya Protocol (NP), which entered into force in 2014 to address equitable sharing of benefits arising from utilization of genetic resources. Safe and effective classical biological control agents have historically been shared among countries experiencing problems with invasive species. However, a feature of the Nagoya Protocol is that countries are expected to develop processes governing access to their genetic resources to ensure that the benefits are shared equitably-a concept referred to as "access and benefit sharing" (ABS). Although the USA is not party to the CBD nor the NP, US biological control programs are affected by these international agreements. Surveying, collecting, exporting and importing of natural enemies may be covered by new ABS regulatory processes. Challenges of ABS have arisen as various countries enact new regulations (or not) governing access to genetic resources, and the processes for gaining access and sharing the benefits from these resources have become increasingly complex. In the absence of an overarching national US policy, individual government agencies and institutions follow their own internal procedures. Biological control practitioners in the USA have been encouraged in recent years to observe best practices developed by the biological community for insect and weed biological control.
Collapse
Affiliation(s)
- Kim A. Hoelmer
- United States Department of Agriculture – Agricultural Research Service, Beneficial Insects Introduction Research Unit, 501 S. Chapel St, Newark, Delaware 19713 USA
| | - René F. H. Sforza
- United States Department of Agriculture – Agricultural Research Service, European Biological Control Laboratory, 810 Avenue du Campus Agropolis, Campus International de Baillarguet,, 34980 Montferrier-Sur-Lez, France
| | - Massimo Cristofaro
- Biotechnology and Biological Control Agency (BBCA-Onlus), Via Angelo Signorelli 105, 00123 Rome, Italy
| |
Collapse
|
4
|
Tong G, Baker MA, Shenvi RA. Change the channel: CysLoop receptor antagonists from nature. PEST MANAGEMENT SCIENCE 2021; 77:3650-3662. [PMID: 33135373 PMCID: PMC8087819 DOI: 10.1002/ps.6166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 05/04/2023]
Abstract
Vertebrate and invertebrate ligand-gated ion channels (LGICs) exhibit significant structural homology and often share ligands. As a result, ligands with activity against one class can be brought to bear against another, including for development as insecticides. Receptor selectivity, metabolism and distribution must then be optimized using chemical synthesis. Here we review natural products (NPs) that ligate and inhibit the Cys-loop family of LGICs, which benefit from the unique physicochemical properties of natural product space but often present a high synthetic burden. Recent advances in chemical synthesis, however, have opened practical entries into these complex structures, several of which are highlighted. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanghu Tong
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Meghan A Baker
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
5
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
6
|
Gallichotte EN, Dobos KM, Ebel GD, Hagedorn M, Rasgon JL, Richardson JH, Stedman TT, Barfield JP. Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology 2021; 99:1-10. [PMID: 33556359 DOI: 10.1016/j.cryobiol.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, USA; Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Jennifer P Barfield
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
7
|
Hübner S, Kantar MB. Tapping Diversity From the Wild: From Sampling to Implementation. FRONTIERS IN PLANT SCIENCE 2021; 12:626565. [PMID: 33584776 PMCID: PMC7873362 DOI: 10.3389/fpls.2021.626565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 05/05/2023]
Abstract
The diversity observed among crop wild relatives (CWRs) and their ability to flourish in unfavorable and harsh environments have drawn the attention of plant scientists and breeders for many decades. However, it is also recognized that the benefit gained from using CWRs in breeding is a potential rose between thorns of detrimental genetic variation that is linked to the trait of interest. Despite the increased interest in CWRs, little attention was given so far to the statistical, analytical, and technical considerations that should guide the sampling design, the germplasm characterization, and later its implementation in breeding. Here, we review the entire process of sampling and identifying beneficial genetic variation in CWRs and the challenge of using it in breeding. The ability to detect beneficial genetic variation in CWRs is strongly affected by the sampling design which should be adjusted to the spatial and temporal variation of the target species, the trait of interest, and the analytical approach used. Moreover, linkage disequilibrium is a key factor that constrains the resolution of searching for beneficial alleles along the genome, and later, the ability to deplete linked deleterious genetic variation as a consequence of genetic drag. We also discuss how technological advances in genomics, phenomics, biotechnology, and data science can improve the ability to identify beneficial genetic variation in CWRs and to exploit it in strive for higher-yielding and sustainable crops.
Collapse
Affiliation(s)
- Sariel Hübner
- Galilee Research Institute (MIGAL), Tel-Hai College, Qiryat Shemona, Israel
- *Correspondence: Sariel Hübner,
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
8
|
Demeritte A, Wuest WM. A look around the West Indies: The spices of life are secondary metabolites. Bioorg Med Chem 2020; 28:115792. [PMID: 33038665 PMCID: PMC7528826 DOI: 10.1016/j.bmc.2020.115792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Natural products possess a wide range of bioactivities with potential for therapeutic usage. While the distribution of these molecules can vary greatly there is some correlation that exists between the biodiversity of an environment and the uniqueness and concentration of natural products found in that region or area. The Caribbean and pan-Caribbean area is home to thousands of species of endemic fauna and flora providing huge potential for natural product discovery and by way, potential leads for drug development. This can especially be said for marine natural products as many of are rapidly diluted through diffusion once released and therefore are highly potent to achieve long reaching effects. This review seeks to highlight a small selection of marine natural products from the Caribbean region which possess antiproliferative, anti-inflammatory and antipathogenic properties while highlighting any synthetic efforts towards bioactive analogs.
Collapse
Affiliation(s)
- Adrian Demeritte
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Verkley G, Perrone G, Piña M, Scholz AH, Overmann J, Zuzuarregui A, Perugini I, Turchetti B, Hendrickx M, Stacey G, Law S, Russell J, Smith D, Lima N. New ECCO model documents for Material Deposit and Transfer Agreements in compliance with the Nagoya Protocol. FEMS Microbiol Lett 2020; 367:5800986. [PMID: 32149346 PMCID: PMC7164777 DOI: 10.1093/femsle/fnaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/05/2020] [Indexed: 12/04/2022] Open
Abstract
The European Culture Collections’ Organisation presents two new model documents for Material Deposit Agreement (MDA) and Material Transfer Agreement (MTA) designed to enable microbial culture collection leaders to draft appropriate agreement documents for, respectively, deposit and supply of materials from a public collection. These tools provide guidance to collections seeking to draft an MDA and MTA, and are available in open access to be used, modified, and shared. The MDA model consists of a set of core fields typically included in a ‘deposit form’ to collect relevant information to facilitate assessment of the status of the material under access and benefit sharing (ABS) legislation. It also includes a set of exemplary clauses to be included in ‘terms and conditions of use’ for culture collection management and third parties. The MTA model addresses key issues including intellectual property rights, quality, safety, security and traceability. Reference is made to other important tools such as best practices and code of conduct related to ABS issues. Besides public collections, the MDA and MTA model documents can also be useful for individual researchers and microbial laboratories that collect or receive microbial cultures, keep a working collection, and wish to share their material with others.
Collapse
Affiliation(s)
- Gerard Verkley
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Mery Piña
- CRBIP-Biological Resource Centre, Department of Microbiology, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Amber Hartman Scholz
- German Collection of Microorganisms and Cell Cultures (DSMZ), Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Jörg Overmann
- German Collection of Microorganisms and Cell Cultures (DSMZ), Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Aurora Zuzuarregui
- Spanish Type Culture Collection (CECT), Edificio 3 CUE, Parc Científic Universitat de València, Catedrático Agustín Escardino 9, 46980 Paterna (Valencia), Spain
| | - Iolanda Perugini
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Benedetta Turchetti
- Industrial Yeasts Collection (DBVPG), Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
| | - Marijke Hendrickx
- BCCM/IHEM Fungal Collection, Mycology & Aerobiology, Sciensano, Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Glyn Stacey
- International Stem Cell Banking initiative, Barley, Hertfordshire, SG88HZ, UK
| | - Samantha Law
- National Collection of Industrial, Food and Marine Bacteria (NCIMB), Ferguson Building, Craibstone Estate, Bucksburn AR21 9YA, Aberdeen, UK
| | - Julie Russell
- Public Health England (PHE) Culture Collections, Porton Down, SP4 0JG Salisbury, UK
| | | | - Nelson Lima
- Micoteca da Universidade do Minho (MUM), CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Lajaunie C, Morand S. Nagoya Protocol and Infectious Diseases: Hindrance or Opportunity? Front Public Health 2020; 8:238. [PMID: 32612970 PMCID: PMC7308583 DOI: 10.3389/fpubh.2020.00238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Claire Lajaunie
- Inserm, LPED (Laboratoire Population Environnement Developpement), Marseille, France.,Strathclyde Centre for Environmental Law and Governance (SCELG), Law School, Strathclyde University, Glasgow, United Kingdom
| | - Serge Morand
- Centre National de la Recherche Scientifique (CNRS)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier Université, Montpellier, France.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Yaguchi A, Franaszek N, O'Neill K, Lee S, Sitepu I, Boundy-Mills K, Blenner M. Identification of oleaginous yeasts that metabolize aromatic compounds. J Ind Microbiol Biotechnol 2020; 47:801-813. [PMID: 32221720 DOI: 10.1007/s10295-020-02269-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
The valorization of lignin is critical for the economic viability of the bioeconomy. Microbial metabolism is advantageous for handling the myriad of aromatic compounds resulting from lignin chemical or enzymatic depolymerization. Coupling aromatic metabolism to fatty acid biosynthesis makes possible the production of biofuels, oleochemicals, and other fine/bulk chemicals derived from lignin. Our previous work identified Cutaneotrichosporon oleaginosus as a yeast that could accumulate nearly 70% of its dry cell weight as lipids using aromatics as a sole carbon source. Expanding on this, other oleaginous yeast species were investigated for the metabolism of lignin-relevant monoaromatics. Thirty-six oleaginous yeast species from the Phaff yeast collection were screened for growth on several aromatic compounds representing S-, G-, and H- type lignin. The analysis reported in this study suggests that aromatic metabolism is largely segregated to the Cutaenotrichosporon, Trichosporon, and Rhodotorula clades. Each species tested within each clade has different properties with respect to the aromatics metabolized and the concentrations of aromatics tolerated. The combined analysis suggests that Cutaneotrichosporon yeast are the best suited to broad spectrum aromatic metabolism and support its development as a model system for aromatic metabolism in yeast.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Nicole Franaszek
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Kaelyn O'Neill
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Stephen Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Irnayuli Sitepu
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd, Clemson, SC, 29634, USA.
| |
Collapse
|
12
|
Inderbitzin P, Robbertse B, Schoch CL. Species Identification in Plant-Associated Prokaryotes and Fungi Using DNA. PHYTOBIOMES JOURNAL 2020; 4:103-114. [PMID: 35265781 PMCID: PMC8903201 DOI: 10.1094/pbiomes-12-19-0067-rvw] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Species names are fundamental to managing biological information. The surge of interest in microbial diversity has resulted in an increase in the number of microbes that need to be identified and assigned a species name. This article provides an introduction to the principles of DNA-based identification of Archaea and Bacteria traditionally known as prokaryotes, and Fungi, the Oomycetes and other protists, collectively referred to as fungi. The prokaryotes and fungi are the most commonly studied microbes from plants, and we introduce the most relevant concepts of prokaryote and fungal taxonomy and nomenclature. We first explain how prokaryote and fungal species are defined, delimited, and named, and then summarize the criteria and methods used to identify prokaryote and fungal organisms to species.
Collapse
Affiliation(s)
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892
| | - Conrad L. Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892
| |
Collapse
|
13
|
Capacity of United States federal government and its partners to rapidly and accurately report the identity (taxonomy) of non-native organisms intercepted in early detection programs. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02147-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThe early detection of and rapid response to invasive species (EDRR) depends on accurate and rapid identification of non-native species. The 2016–2018 National Invasive Species Council Management Plan called for an assessment of US government (federal) capacity to report on the identity of non-native organisms intercepted through early detection programs. This paper serves as the response to that action item. Here we summarize survey-based findings and make recommendations for improving the federal government’s capacity to identify non-native species authoritatively in a timely manner. We conclude with recommendations to improve accurate identification within the context of EDRR by increasing coordination, maintaining taxonomic expertise, creating an identification tools clearinghouse, developing and using taxonomic standards for naming and identification protocols, expanding the content of DNA and DNA Barcode libraries, ensuring long-term sustainability of biological collections, and engaging and empowering citizens and citizen science groups.
Collapse
|
14
|
Boundy-Mills K, McCluskey K, Elia P, Glaeser JA, Lindner DL, Nobles DR, Normanly J, Ochoa-Corona FM, Scott JA, Ward TJ, Webb KM, Webster K, Wertz JE. Preserving US microbe collections sparks future discoveries. J Appl Microbiol 2019; 129:162-174. [PMID: 31758754 PMCID: PMC7383923 DOI: 10.1111/jam.14525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/26/2019] [Accepted: 11/20/2019] [Indexed: 11/28/2022]
Abstract
Collections of micro‐organisms are a crucial element of life science research infrastructure but are vulnerable to loss and damage caused by natural or man‐made disasters, the untimely death or retirement of personnel, or the loss of research funding. Preservation of biological collections has risen in priority due to a new appreciation for discoveries linked to preserved specimens, emerging hurdles to international collecting and decreased funding for new collecting. While many historic collections have been lost, several have been preserved, some with dramatic rescue stories. Rescued microbes have been used for discoveries in areas of health, biotechnology and basic life science. Suggestions for long‐term planning for microbial stocks are listed, as well as inducements for long‐term preservation.
Collapse
Affiliation(s)
- K Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, Davis, CA, USA
| | - K McCluskey
- Department of Plant Pathology, Fungal Genetics Stock Center, Kansas State University, Manhattan, KS, USA
| | - P Elia
- Soybean Genomics and Improvement Laboratory, USDA-ARS Rhizobium Germplasm Resource Collection, Beltsville, MD, USA
| | - J A Glaeser
- Center for Forest Mycology Research, USDA-Forest Service, Northern Research Station, Madison, WI, USA
| | - D L Lindner
- Center for Forest Mycology Research, USDA-Forest Service, Northern Research Station, Madison, WI, USA
| | - D R Nobles
- UTEX Culture Collection of Algae, The University of Texas at Austin, Austin, TX, USA
| | - J Normanly
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - F M Ochoa-Corona
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Oklahoma State University, Stillwater, OK, USA
| | - J A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T J Ward
- USDA-Agricultural Research Service, Peoria, IL, USA
| | - K M Webb
- Soil Management and Sugar Beet Research Unit, USDA-ARS, Fort Collins, CO, USA
| | - K Webster
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.,Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - J E Wertz
- E. coli Genetic Stock Center, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi JF. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Mar Drugs 2019; 17:md17110640. [PMID: 31766228 PMCID: PMC6891288 DOI: 10.3390/md17110640] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Microalgae produce a variety of compounds that are beneficial to human and animal health. Among these compounds are carotenoids, which are microalgal pigments with unique antioxidant and coloring properties. The objective of this review is to evaluate the potential of using microalgae as a commercial feedstock for carotenoid production. While microalgae can produce some of the highest concentrations of carotenoids (especially astaxanthin) in living organisms, there are challenges associated with the mass production of microalgae and downstream processing of carotenoids. This review discusses the synthesis of carotenoids within microalgae, their physiological role, large-scale cultivation of microalgae, up- and down-stream processing, commercial applications, natural versus synthetic carotenoids, and opportunities and challenges facing the carotenoid markets. We emphasize legal aspects and regulatory challenges associated with the commercial production of microalgae-based carotenoids for food/feed, nutraceutical and cosmetic industry in Europe, the USA, the People’s Republic of China, and Japan. This review provides tools and a broad overview of the regulatory processes of carotenoid production from microalgae and other novel feedstocks.
Collapse
Affiliation(s)
- Lucie Novoveská
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban PA37 1QA, UK; (M.E.R.); (M.S.S.)
- Correspondence:
| | - Michael E. Ross
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban PA37 1QA, UK; (M.E.R.); (M.S.S.)
| | - Michele S. Stanley
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban PA37 1QA, UK; (M.E.R.); (M.S.S.)
| | - Rémi Pradelles
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France; (R.P.); (V.W.)
| | - Virginie Wasiolek
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France; (R.P.); (V.W.)
| | - Jean-François Sassi
- Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre de Cadarache St Paul Lez, 13108 Durance, France;
| |
Collapse
|
16
|
Becker P, Bosschaerts M, Chaerle P, Daniel HM, Hellemans A, Olbrechts A, Rigouts L, Wilmotte A, Hendrickx M. Public Microbial Resource Centers: Key Hubs for Findable, Accessible, Interoperable, and Reusable (FAIR) Microorganisms and Genetic Materials. Appl Environ Microbiol 2019; 85:e01444-19. [PMID: 31471301 PMCID: PMC6803313 DOI: 10.1128/aem.01444-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the context of open science, the availability of research materials is essential for knowledge accumulation and to maximize the impact of scientific research. In microbiology, microbial domain biological resource centers (mBRCs) have long-standing experience in preserving and distributing authenticated microbial strains and genetic materials (e.g., recombinant plasmids and DNA libraries) to support new discoveries and follow-on studies. These culture collections play a central role in the conservation of microbial biodiversity and have expertise in cultivation, characterization, and taxonomy of microorganisms. Information associated with preserved biological resources is recorded in databases and is accessible through online catalogues. Legal expertise developed by mBRCs guarantees end users the traceability and legality of the acquired material, notably with respect to the Nagoya Protocol. However, awareness of the advantages of depositing biological materials in professional repositories remains low, and the necessity of securing strains and genetic resources for future research must be emphasized. This review describes the unique position of mBRCs in microbiology and molecular biology through their history, evolving roles, expertise, services, challenges, and international collaborations. It also calls for an increased deposit of strains and genetic resources, a responsibility shared by scientists, funding agencies, and publishers. Journal policies requesting a deposit during submission of a manuscript represent one of the measures to make more biological materials available to the broader community, hence fully releasing their potential and improving openness and reproducibility in scientific research.
Collapse
Affiliation(s)
- P Becker
- BCCM/IHEM Fungi Collection, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| | - M Bosschaerts
- BCCM Coordination Cell, Belgian Science Policy, Brussels, Belgium
| | - P Chaerle
- BCCM/DCG Diatoms Collection, Ghent University, Ghent, Belgium
| | - H-M Daniel
- BCCM/MUCL, Mycothèque de l'Université Catholique de Louvain, Earth and Life Institute, Mycology Laboratory, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A Hellemans
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - A Olbrechts
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - L Rigouts
- BCCM/ITM Mycobacteria Collection, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - M Hendrickx
- BCCM/IHEM Fungi Collection, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| |
Collapse
|
17
|
Hurtado-Ortiz R, Hébreu A, Bégaud E, Bizet-Pinson C. Implementation of the Nagoya Protocol within the Collection of Institut Pasteur. Access Microbiol 2019; 1:e000008. [PMID: 32974507 PMCID: PMC7470350 DOI: 10.1099/acmi.0.000008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/28/2019] [Indexed: 01/20/2023] Open
Abstract
The focus of the EU regulations on the Nagoya Protocol on Access and Benefit-Sharing leaves the control of access to genetic resources up to each member state. France has chosen to control access and is going to put in place regulations for it. All the materials received should have specific documentation regarding the accession of genetic resources, where there is a National Authority to issue them. The European commission will maintain a list of biological collections with registered status proposed by each country. The member states are responsible for considering inclusion and verification of these collections. In recent years, the Collection of Institut Pasteur (CIP) staff has expressed concern over how to interact with the implementation of the Nagoya Protocol in the collection but also at the national level with the aim that the CIP will be a registered collection. The advantage of accessing resources from a registered collection is that users of genetic resources will be considered as having exercised ‘due diligence’ if they source their genetic resources from these collections. This could facilitate the process for scientists when applying for research funding. The CIP organized the accession of new deposits and the distribution of micro-organisms in connection with it.
Collapse
Affiliation(s)
- Raquel Hurtado-Ortiz
- CRBIP - Biological Resource Centre, Institut Pasteur, 25-28 rue du Dr Roux 75015, Paris, France.,CNCM - Collection Nationale de Cultures de Microorganismes, Institut Pasteur, 25-28 rue du Dr Roux 75015, Paris, France
| | - Alexandra Hébreu
- CRBIP - Biological Resource Centre, Institut Pasteur, 25-28 rue du Dr Roux 75015, Paris, France
| | - Evelyne Bégaud
- BioSpeedia, Institut Pasteur, 25-28 rue du Dr Roux 75015, Paris, France
| | - Chantal Bizet-Pinson
- CRBIP - Biological Resource Centre, Institut Pasteur, 25-28 rue du Dr Roux 75015, Paris, France.,CIP - Collection of Institut Pasteur, Institut Pasteur, 25-28 rue du Dr Roux 75015, Paris, France
| |
Collapse
|
18
|
Sly LI. Historical perspectives and new opportunities for Australian collections of microorganisms in the microbiome era. MICROBIOLOGY AUSTRALIA 2019. [DOI: 10.1071/ma19038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A new microbiology support program for Australian microbial resources centres is essential to take full advantage of the exciting information and biological materials emerging from molecular studies of microbiomes. At a time when taxonomic capacity is in decline, culture collections, with the appropriate level of infrastructure support and funding, are well positioned to enhance the outcomes of microbiome research. The importance of microbial biodiversity and its contribution to life on earth have never been more appreciated in the history of science than now. This appreciation came initially through the systematic study of microbial cultures, their ecological interactions, evolution and genetics. But now in the genomics era, uncultured microorganisms and whole microbial biomes are increasingly being studied using advanced DNA sequencing and bioinformatic techniques bringing greater insight into complex microbial communities, revealing interactions between microbes and the host affecting health and wellbeing. However, it should be remembered that the inference of identity and interpretation of functions of members of these uncultured communities relies heavily on knowledge gained from the study of cultured microorganisms. Advances will be greatly enhanced by bringing novel, and other significant, species in these environments into culture for laboratory study and accession into collections for future biodiscovery.
Collapse
|
19
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363-3368. [DOI: 10.1099/ijsem.0.002974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
20
|
Abstract
Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.
Collapse
|
21
|
Sybesma W, Rohde C, Bardy P, Pirnay JP, Cooper I, Caplin J, Chanishvili N, Coffey A, De Vos D, Scholz AH, McCallin S, Püschner HM, Pantucek R, Aminov R, Doškař J, Kurtbӧke Dİ. Silk Route to the Acceptance and Re-Implementation of Bacteriophage Therapy-Part II. Antibiotics (Basel) 2018; 7:E35. [PMID: 29690620 PMCID: PMC6023077 DOI: 10.3390/antibiotics7020035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
This perspective paper follows up on earlier communications on bacteriophage therapy that we wrote as a multidisciplinary and intercontinental expert-panel when we first met at a bacteriophage conference hosted by the Eliava Institute in Tbilisi, Georgia in 2015. In the context of a society that is confronted with an ever-increasing number of antibiotic-resistant bacteria, we build on the previously made recommendations and specifically address how the Nagoya Protocol might impact the further development of bacteriophage therapy. By reviewing a number of recently conducted case studies with bacteriophages involving patients with bacterial infections that could no longer be successfully treated by regular antibiotic therapy, we again stress the urgency and significance of the development of international guidelines and frameworks that might facilitate the legal and effective application of bacteriophage therapy by physicians and the receiving patients. Additionally, we list and comment on several recently started and ongoing clinical studies, including highly desired double-blind placebo-controlled randomized clinical trials. We conclude with an outlook on how recently developed DNA editing technologies are expected to further control and enhance the efficient application of bacteriophages.
Collapse
Affiliation(s)
- Wilbert Sybesma
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, CH-8008 Zürich, Switzerland.
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne, Switzerland.
| | - Christine Rohde
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, D-38124 Braunschweig, Germany.
| | - Pavol Bardy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic.
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, B-1120 Brussels, Belgium.
| | - Ian Cooper
- School of Pharmacy and Biomolecular Sciences and School of Environment & Technology, University of Brighton, Brighton BN2 4GJ, UK.
| | - Jonathan Caplin
- School of Pharmacy and Biomolecular Sciences and School of Environment & Technology, University of Brighton, Brighton BN2 4GJ, UK.
| | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, UK.
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, B-1120 Brussels, Belgium.
| | - Amber Hartman Scholz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, D-38124 Braunschweig, Germany.
| | - Shawna McCallin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Hilke Marie Püschner
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, D-38124 Braunschweig, Germany.
| | - Roman Pantucek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic.
| | - Rustam Aminov
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic.
| | - D İpek Kurtbӧke
- GeneCology Research Centre and the Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| |
Collapse
|