1
|
Tolman LE, Mantis NJ. Inflammatory Profiles Induced by Intranasal Immunization with Ricin Toxin-immune Complexes. Immunohorizons 2024; 8:457-463. [PMID: 38922287 PMCID: PMC11220739 DOI: 10.4049/immunohorizons.2400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The underlying contribution of immune complexes in modulating adaptive immunity in mucosal tissues remains poorly understood. In this report, we examined, in mice, the proinflammatory response elicited by intranasal delivery of the biothreat agent ricin toxin (RT) in association with two toxin-neutralizing mAbs, SylH3 and PB10. We previously demonstrated that ricin-immune complexes (RICs) induce the rapid onset of high-titer toxin-neutralizing Abs that persist for months. We now demonstrate that such responses are dependent on CD4+ T cell help, because treatment of mice with an anti-CD4 mAb abrogated the onset of RT-specific Abs following intranasal RICs exposure. To define the inflammatory environment associated with RIC exposure, we collected bronchoalveolar lavage fluid (BALF) and sera from mice 6, 12, and 18 h after they had received RT or RICs by the intranasal route. A 32-plex cytometric bead array revealed an inflammatory profile elicited by RT that was dominated by IL-6 (>1500-fold increase in BALF) and secondarily by KC (CXCL1), G-CSF, GM-CSF, and MCP-1. RICs induced inflammatory profiles in both BALF and serum response that were similar to RT, albeit at markedly reduced levels. These results demonstrate that RICs retain the capacity to induce local and systemic inflammatory cytokines/chemokines that, in turn, may influence Ag sampling and presentation in the lung mucosa and draining lymph nodes. A better understanding of the fate of immune complexes following intranasal delivery has implications for the development of mucosal vaccines for biothreats and emerging infectious diseases.
Collapse
Affiliation(s)
- Lindsey E. Tolman
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY
| | - Nicholas J. Mantis
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
| |
Collapse
|
2
|
Vance DJ, Rudolph MJ, Davis SA, Mantis NJ. Structural Basis of Antibody-Mediated Inhibition of Ricin Toxin Attachment to Host Cells. Biochemistry 2023; 62:3181-3187. [PMID: 37903428 DOI: 10.1021/acs.biochem.3c00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Monoclonal antibodies, JB4 and SylH3, neutralize ricin toxin (RT) by inhibiting the galactose-specific lectin activity of the B subunit of the toxin (RTB), which is required for cell attachment and entry. It is not immediately apparent how the antibodies accomplish this feat, considering that RTB consists of two globular domains (D1, D2) each divided into three homologous subdomains (α, β, γ) with the two functional galactosyl-specific carbohydrate recognition domains (CRDs) situated on opposite poles (subdomains 1α and 2γ). Here, we report the X-ray crystal structures of JB4 and SylH3 Fab fragments bound to RTB in the context of RT. The structures revealed that neither Fab obstructed nor induced detectable conformational alterations in subdomains 1α or 2γ. Rather, JB4 and SylH3 Fabs recognize nearly identical epitopes within an ancillary carbohydrate recognition pocket located in subdomain 1β. Despite limited amino acid sequence similarity between SylH3 and JB4 Fabs, each paratope inserts a Phe side chain from the heavy (H) chain complementarity determining region (CDR3) into the 1β CRD pocket, resulting in local aromatic stacking interactions that potentially mimic a ligand interaction. Reconciling the fact that stoichiometric amounts of SylH3 and JB4 are sufficient to disarm RTB's lectin activity without evidence of allostery, we propose that subdomain 1β functions as a "coreceptor" required to stabilize glycan interactions principally mediated by subdomains 1α and 2γ. Further investigation into subdomain 1β will yield fundamental insights into the large family of R-type lectins and open novel avenues for countermeasures aimed at preventing toxin uptake into vulnerable tissues and cells.
Collapse
Affiliation(s)
- David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Michael J Rudolph
- New York Structural Biology Center, New York, New York 10027, United States
| | - Simon A Davis
- New York Structural Biology Center, New York, New York 10027, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| |
Collapse
|
3
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
4
|
Chaurasia R, Marroquin AS, Vinetz JM, Matthias MA. Pathogenic Leptospira Evolved a Unique Gene Family Comprised of Ricin B-Like Lectin Domain-Containing Cytotoxins. Front Microbiol 2022; 13:859680. [PMID: 35422779 PMCID: PMC9002632 DOI: 10.3389/fmicb.2022.859680] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Leptospirosis is a globally important neglected zoonotic disease. Previous data suggest that a family of virulence-modifying (VM) proteins (PF07598) is a distinctive feature of group I pathogenic Leptospira that evolved as important virulence determinants. Here, we show that one such VM protein, LA3490 (also known as Q8F0K3), is expressed by Leptospira interrogans serovar Lai, as a secreted genotoxin that is potently cytotoxic to human cells. Structural homology searches using Phyre2 suggested that VM proteins are novel R-type lectins containing tandem N-terminal ricin B-chain-like β-trefoil domains. Recombinant LA3490 (rLA3490) and an N-terminal fragment, t3490, containing only the predicted ricin B domain, bound to the terminal galactose and N-acetyl-galactosamine residues, asialofetuin, and directly competed for asialofetuin-binding sites with recombinant ricin B chain. t3490 alone was sufficient for binding, both to immobilized asialofetuin and to the HeLa cell surface but was neither internalized nor cytotoxic. Treatment of HeLa cells with rLA3490 led to cytoskeleton disassembly, caspase-3 activation, and nuclear fragmentation, and was rapidly cytolethal. rLA3490 had DNase activity on mammalian and bacterial plasmid DNA. The combination of cell surface binding, internalization, nuclear translocation, and DNase functions indicate that LA3490 and other VM proteins evolved as novel forms of the bacterial AB domain-containing toxin paradigm.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Alan S Marroquin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Michael A Matthias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Rudolph MJ, Poon AY, Kavaliauskiene S, Myrann AG, Reynolds-Peterson C, Davis SA, Sandvig K, Vance DJ, Mantis NJ. Structural Analysis of Toxin-Neutralizing, Single-Domain Antibodies that Bridge Ricin's A-B Subunit Interface. J Mol Biol 2021; 433:167086. [PMID: 34089718 DOI: 10.1016/j.jmb.2021.167086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023]
Abstract
Ricin toxin kills mammalian cells with notorious efficiency. The toxin's B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin's A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin's individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA's F-G loop (mode 1), RTB's subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin's cytotoxic pathway.
Collapse
Affiliation(s)
| | - Amanda Y Poon
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anne Grethe Myrann
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | - Claire Reynolds-Peterson
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Simon A Davis
- New York Structural Biology Center, New York, NY, USA
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
6
|
Orsini Delgado ML, Avril A, Prigent J, Dano J, Rouaix A, Worbs S, Dorner BG, Rougeaux C, Becher F, Fenaille F, Livet S, Volland H, Tournier JN, Simon S. Ricin Antibodies' Neutralizing Capacity against Different Ricin Isoforms and Cultivars. Toxins (Basel) 2021; 13:100. [PMID: 33573016 PMCID: PMC7911099 DOI: 10.3390/toxins13020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Ricin, a highly toxic protein from Ricinus communis, is considered a potential biowarfare agent. Despite the many data available, no specific treatment has yet been approved. Due to their ability to provide immediate protection, antibodies (Abs) are an approach of choice. However, their high specificity might compromise their capacity to protect against the different ricin isoforms (D and E) found in the different cultivars. In previous work, we have shown the neutralizing potential of different Abs (43RCA-G1 (anti ricin A-chain) and RB34 and RB37 (anti ricin B-chain)) against ricin D. In this study, we evaluated their protective capacity against both ricin isoforms. We show that: (i) RB34 and RB37 recognize exclusively ricin D, whereas 43RCA-G1 recognizes both isoforms, (ii) their neutralizing capacity in vitro varies depending on the cultivar, and (iii) there is a synergistic effect when combining RB34 and 43RCA-G1. This effect is also demonstrated in vivo in a mouse model of intranasal intoxication with ricin D/E (1:1), where approximately 60% and 40% of mice treated 0 and 6 h after intoxication, respectively, are protected. Our results highlight the importance of evaluating the effectiveness of the Abs against different ricin isoforms to identify the treatment with the broadest spectrum neutralizing effect.
Collapse
Affiliation(s)
- Maria Lucia Orsini Delgado
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Arnaud Avril
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Julie Prigent
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Julie Dano
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Audrey Rouaix
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Clémence Rougeaux
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - François Becher
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - François Fenaille
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sandrine Livet
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Hervé Volland
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| |
Collapse
|
7
|
Vance DJ, Poon AY, Mantis NJ. Sites of vulnerability on ricin B chain revealed through epitope mapping of toxin-neutralizing monoclonal antibodies. PLoS One 2020; 15:e0236538. [PMID: 33166282 PMCID: PMC7652295 DOI: 10.1371/journal.pone.0236538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Ricin toxin's B subunit (RTB) is a multifunctional galactose (Gal)-/N-acetylgalactosamine (GalNac)-specific lectin that promotes uptake and intracellular trafficking of ricin's ribosome-inactivating subunit (RTA) into mammalian cells. Structurally, RTB consists of two globular domains (RTB-D1, RTB-D2), each divided into three homologous sub-domains (α, β, γ). The two carbohydrate recognition domains (CRDs) are situated on opposite sides of RTB (sub-domains 1α and 2γ) and function non-cooperatively. Previous studies have revealed two distinct classes of toxin-neutralizing, anti-RTB monoclonal antibodies (mAbs). Type I mAbs, exemplified by SylH3, inhibit (~90%) toxin attachment to cell surfaces, while type II mAbs, epitomized by 24B11, interfere with intracellular toxin transport between the plasma membrane and the trans-Golgi network (TGN). Localizing the epitopes recognized by these two classes of mAbs has proven difficult, in part because of RTB's duplicative structure. To circumvent this problem, RTB-D1 and RTB-D2 were expressed as pIII fusion proteins on the surface of filamentous phage M13 and subsequently used as "bait" in mAb capture assays. We found that SylH3 captured RTB-D1 (but not RTB-D2) in a dose-dependent manner, while 24B11 captured RTB-D2 (but not RTB-D1) in a dose-dependent manner. We confirmed these domain assignments by competition studies with an additional 8 RTB-specific mAbs along with a dozen a single chain antibodies (VHHs). Collectively, these results demonstrate that type I and type II mAbs segregate on the basis of domain specificity and suggest that RTB's two domains may contribute to distinct steps in the intoxication pathway.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Disease, New York State Department of Health,Wadsworth Center, Albany, NY, United States of America
| | - Amanda Y. Poon
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, New York State Department of Health,Wadsworth Center, Albany, NY, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States of America
| |
Collapse
|
8
|
Generation and Characterization of Typhoid Toxin-Neutralizing Human Monoclonal Antibodies. Infect Immun 2020; 88:IAI.00292-20. [PMID: 32661121 DOI: 10.1128/iai.00292-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Typhoid toxin is a virulence factor of Salmonella enterica serovar Typhi, the causative agent of typhoid fever, and is thought to be responsible for the symptoms of severe disease. This toxin has a unique A2B5 architecture with two active subunits, the ADP ribosyl transferase PltA and the DNase CdtB, linked to a pentameric B subunit, which is alternatively made of PltB or PltC. Here, we describe the generation and characterization of typhoid toxin-neutralizing human monoclonal antibodies by immunizing genetically engineered mice that have a full set of human immunoglobulin variable region genes. We identified several monoclonal antibodies with strong in vitro and in vivo toxin-neutralizing activity and different mechanisms of toxin neutralization. These antibodies could serve as the basis for the development of novel therapeutic strategies against typhoid fever.
Collapse
|
9
|
Rong Y, Pauly M, Guthals A, Pham H, Ehrbar D, Zeitlin L, Mantis NJ. A Humanized Monoclonal Antibody Cocktail to Prevent Pulmonary Ricin Intoxication. Toxins (Basel) 2020. [PMID: 32235318 DOI: 10.3390/toxins1204215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
PB10 IgG1, a monoclonal antibody (MAb) directed against an immunodominant epitope on the enzymatic subunit (RTA) of ricin toxin (RT), has been shown to passively protect mice and non-human primates from an aerosolized lethal-dose RT challenge. However, it was recently demonstrated that the therapeutic efficacy of PB10 IgG1 is significantly improved when co-administered with a second MAb, SylH3, targeting RT's binding subunit (RTB). Here we report that the PB10/SylH3 cocktail is also superior to PB10 alone when used as a pre-exposure prophylactic (PrEP) in a mouse model of intranasal RT challenge. The benefit of the PB10/SylH3 cocktail prompted us to engineer a humanized IgG1 version of SylH3 (huSylH3). The huPB10/huSylH3 cocktail proved highly efficacious in the mouse model, thereby opening the door to future testing in non-human primates.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/pharmacology
- Antidotes/administration & dosage
- Antidotes/pharmacology
- Chlorocebus aethiops
- Disease Models, Animal
- Drug Therapy, Combination
- Female
- Lung Diseases/chemically induced
- Lung Diseases/prevention & control
- Mice, Inbred BALB C
- Pre-Exposure Prophylaxis
- Ricin/antagonists & inhibitors
- Ricin/immunology
- Vero Cells
Collapse
Affiliation(s)
- Yinghui Rong
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Michael Pauly
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Adrian Guthals
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Henry Pham
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Dylan Ehrbar
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
10
|
A Humanized Monoclonal Antibody Cocktail to Prevent Pulmonary Ricin Intoxication. Toxins (Basel) 2020; 12:toxins12040215. [PMID: 32235318 PMCID: PMC7232472 DOI: 10.3390/toxins12040215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
PB10 IgG1, a monoclonal antibody (MAb) directed against an immunodominant epitope on the enzymatic subunit (RTA) of ricin toxin (RT), has been shown to passively protect mice and non-human primates from an aerosolized lethal-dose RT challenge. However, it was recently demonstrated that the therapeutic efficacy of PB10 IgG1 is significantly improved when co-administered with a second MAb, SylH3, targeting RT’s binding subunit (RTB). Here we report that the PB10/SylH3 cocktail is also superior to PB10 alone when used as a pre-exposure prophylactic (PrEP) in a mouse model of intranasal RT challenge. The benefit of the PB10/SylH3 cocktail prompted us to engineer a humanized IgG1 version of SylH3 (huSylH3). The huPB10/huSylH3 cocktail proved highly efficacious in the mouse model, thereby opening the door to future testing in non-human primates.
Collapse
|
11
|
Bimodal Response to Shiga Toxin 2 Subtypes Results from Relatively Weak Binding to the Target Cell. Infect Immun 2019; 87:IAI.00428-19. [PMID: 31527121 DOI: 10.1128/iai.00428-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023] Open
Abstract
There are two major antigenic forms of Shiga toxin (Stx), Stx1 and Stx2, which bind the same receptor and act on the same target but nonetheless differ in potency. Stx1a is more toxic to cultured cells, but Stx2 subtypes are more potent in animal models. To understand this phenomenon in cultured cells, we used a system that combines flow cytometry with a fluorescent reporter to monitor the Stx-induced inhibition of protein synthesis in single cells. We observed that Vero cells intoxicated with Stx1a behave differently than those intoxicated with Stx2 subtypes: cells challenged with Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Cells challenged with a hybrid toxin containing the catalytic subunit of Stx1a and the cell-binding subunit of Stx2a also exhibited a bimodal response to intoxication, while cells challenged with a hybrid toxin containing the catalytic subunit of Stx2a and the cell-binding subunit of Stx1a exhibited a population-wide loss of protein synthesis. Other experiments further supported a primary role for the subtype of the B subunit in the outcome of host-Stx interactions. Our collective observations indicate that the bimodal response to Stx2 subtypes is due to relatively weak binding between Stx2 and the host cell that reduces the total functional pool of Stx2 in comparison to that of Stx1a. This explains, in part, the molecular basis for the differential cellular toxicity between Stx1a and Stx2 subtypes.
Collapse
|
12
|
Mooney B, Torres‐Velez FJ, Doering J, Ehrbar DJ, Mantis NJ. Sensitivity of Kupffer cells and liver sinusoidal endothelial cells to ricin toxin and ricin toxin-Ab complexes. J Leukoc Biol 2019; 106:1161-1176. [PMID: 31313388 PMCID: PMC7008010 DOI: 10.1002/jlb.4a0419-123r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ricin toxin is a plant-derived, ribosome-inactivating protein that is rapidly cleared from circulation by Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs)-with fatal consequences. Rather than being inactivated, ricin evades normal degradative pathways and kills both KCs and LSECs with remarkable efficiency. Uptake of ricin by these 2 specialized cell types in the liver occurs by 2 parallel routes: a "lactose-sensitive" pathway mediated by ricin's galactose/N-acetylgalactosamine-specific lectin subunit (RTB), and a "mannose-sensitive" pathway mediated by the mannose receptor (MR; CD206) or other C-type lectins capable of recognizing the mannose-side chains displayed on ricin's A (RTA) and B subunits. In this report, we investigated the capacity of a collection of ricin-specific mouse MAb and camelid single-domain (VH H) antibodies to protect KCs and LSECs from ricin-induced killing. In the case of KCs, individual MAbs against RTA or RTB afforded near complete protection against ricin in ex vivo and in vivo challenge studies. In contrast, individual MAbs or VH Hs afforded little (<40%) or even no protection to LSECs against ricin-induced death. Complete protection of LSECs was only achieved with MAb or VH H cocktails, with the most effective mixtures targeting RTA and RTB simultaneously. Although the exact mechanisms of protection of LSECs remain unknown, evidence indicates that the Ab cocktails exert their effects on the mannose-sensitive uptake pathway without the need for Fcγ receptor involvement. In addition to advancing our understanding of how toxins and small immune complexes are processed by KCs and LSECs, our study has important implications for the development of Ab-based therapies designed to prevent or treat ricin exposure should the toxin be weaponized.
Collapse
Affiliation(s)
- Bridget Mooney
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Fernando J. Torres‐Velez
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Jennifer Doering
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Dylan J. Ehrbar
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Nicholas J. Mantis
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| |
Collapse
|
13
|
Rong Y, Torres-Velez FJ, Ehrbar D, Doering J, Song R, Mantis NJ. An intranasally administered monoclonal antibody cocktail abrogates ricin toxin-induced pulmonary tissue damage and inflammation. Hum Vaccin Immunother 2019; 16:793-807. [PMID: 31589555 DOI: 10.1080/21645515.2019.1664243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ricin toxin, a plant-derived, mannosylated glycoprotein, elicits an incapacitating and potentially lethal inflammatory response in the airways following inhalation. Uptake of ricin by alveolar macrophages (AM) and other pulmonary cell types occurs via two parallel pathways: one mediated by ricin's B subunit (RTB), a galactose-specific lectin, and one mediated by the mannose receptor (MR;CD206). Ricin's A subunit (RTA) is a ribosome-inactivating protein that triggers apoptosis in mammalian cells. It was recently reported that a single monoclonal antibody (MAb), PB10, directed against an immunodominant epitope on RTA and administered intravenously, was able to rescue Rhesus macaques from lethal aerosol dose of ricin. In this study, we now demonstrate in mice that the effectiveness PB10 is significantly improved when combined with a second MAb, SylH3, against RTB. Mice treated with PB10 alone survived lethal-dose intranasal ricin challenge, but experienced significant weight loss, moderate pulmonary inflammation (e.g., elevated IL-1 and IL-6 levels, PMN influx), and apoptosis of lung macrophages. In contrast, mice treated with the PB10/SylH3 cocktail were essentially impervious to pulmonary ricin toxin exposure, as evidenced by no weight loss, no change in local IL-1 and IL-6 levels, retention of lung macrophages, and a significant dampening of PMN recruitment into the bronchoalveolar lavage (BAL) fluids. The PB10/SylH3 cocktail only marginally reduced ricin binding to target cells in the BAL, suggesting that the antibody mixture neutralizes ricin by interfering with one or more steps in the RTB- and MR-dependent uptake pathways.
Collapse
Affiliation(s)
- Yinghui Rong
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Fernando J Torres-Velez
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Dylan Ehrbar
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Jennifer Doering
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Renjie Song
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Nicholas J Mantis
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
14
|
Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins (Basel) 2019; 11:toxins11060350. [PMID: 31216687 PMCID: PMC6628406 DOI: 10.3390/toxins11060350] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin.
Collapse
|
15
|
Janik E, Ceremuga M, Saluk-Bijak J, Bijak M. Biological Toxins as the Potential Tools for Bioterrorism. Int J Mol Sci 2019; 20:E1181. [PMID: 30857127 PMCID: PMC6429496 DOI: 10.3390/ijms20051181] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022] Open
Abstract
Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as "Chemicals produced by living organisms that have toxic properties for another organism". Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins. In this paper we focused on six most danger toxins: botulinum toxin, staphylococcal enterotoxins, Clostridium perfringens toxins, ricin, abrin and T-2 toxin. We hope that this paper will help in understanding the problem of availability and potential of biological toxins.
Collapse
Affiliation(s)
- Edyta Janik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Ceremuga
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
16
|
Acquaye-Seedah E, Huang Y, Sutherland JN, DiVenere AM, Maynard JA. Humanised monoclonal antibodies neutralise pertussis toxin by receptor blockade and reduced retrograde trafficking. Cell Microbiol 2018; 20:e12948. [PMID: 30152075 PMCID: PMC6519169 DOI: 10.1111/cmi.12948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Pertussis toxin (PTx) is a major protective antigen produced by Bordetella pertussis that is included in all current acellular vaccines. Of several well‐characterized monoclonal antibodies binding this toxin, the humanised hu1B7 and hu11E6 antibodies are highly protective in multiple in vitro and in vivo assays. In this study, we determine the molecular mechanisms of protection mediated by these antibodies. Neither antibody directly binds the B. pertussis bacterium nor supports antibody‐dependent complement cytotoxicity. Both antibodies, either individually or as a cocktail, form multivalent complexes with soluble PTx that bind the FcγRIIb receptor more tightly than antibody alone, suggesting that the antibodies may accelerate PTx clearance via immune complex formation. However, a receptor binding assay and cellular imaging indicate that the main mechanism used by hu11E6 is competitive inhibition of PTx binding to its cellular receptor. In contrast, the main hu1B7 neutralising mechanism appears to be inhibition of PTx internalisation and retrograde trafficking. We assessed the effects of hu1B7 on PTx retrograde trafficking in CHO‐K1 cells using quantitative immunofluorescence microscopy. In the absence of hu1B7 or after incubation with an isotype control antibody, PTx colocalizes to organelles in a manner consistent with retrograde transport. However, after preincubation with hu1B7, PTx appears restricted to the membrane surface with colocalization to organelles associated with retrograde transport significantly reduced. Together, these data support a model whereby hu11E6 and hu1B7 interfere with PTx receptor binding and PTx retrograde trafficking, respectively.
Collapse
Affiliation(s)
- Edith Acquaye-Seedah
- Department of Biochemistry, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Yimin Huang
- Department of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Jamie N Sutherland
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Jennifer A Maynard
- Department of Biochemistry, The University of Texas at Austin, Austin, Texas.,Department of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
17
|
Wagner EK, Maynard JA. Engineering therapeutic antibodies to combat infectious diseases. Curr Opin Chem Eng 2018; 19:131-141. [PMID: 29911002 DOI: 10.1016/j.coche.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serum therapy fell out of favor 80 years ago, but antibodies against infectious diseases are now experiencing a renaissance. With the evolution of antibiotic-resistant bacteria, the emergence of new pathogens, and a growing population of immunocompromised individuals coupled with improvements in antibody manufacturing and biological efficacy, antibodies are an increasingly attractive therapeutic option. In this review, we highlight successful clinical strategies and discuss recent applications of advanced antibody engineering approaches to combat infectious diseases. Case studies include antibody mixtures to neutralize Staphylococcus aureus; bispecific antibodies promoting Pseudomonas aeruginosa clearance; antibody-antibiotic conjugates to eradicate S. aureus from protected intracellular niches; and novel anti-RSV antibodies with extended serum half-life. These new designs are powerful strategies for targeting infectious diseases due to their abilities to target multiple antigens and induce novel clearance mechanisms.
Collapse
Affiliation(s)
- Ellen K Wagner
- Department of Chemical Engineering, The University of Texas at Austin, Austin TX USA, 78712
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin TX USA, 78712
| |
Collapse
|
18
|
An imaging flow cytometry method to assess ricin trafficking in A549 human lung epithelial cells. Methods 2018; 134-135:41-49. [DOI: 10.1016/j.ymeth.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 11/18/2022] Open
|
19
|
Vance DJ, Tremblay JM, Rong Y, Angalakurthi SK, Volkin DB, Middaugh CR, Weis DD, Shoemaker CB, Mantis NJ. High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00236-17. [PMID: 29021300 PMCID: PMC5717184 DOI: 10.1128/cvi.00236-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Abstract
We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538-36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.
Collapse
Affiliation(s)
- David J Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Yinghui Rong
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Siva Krishna Angalakurthi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, USA
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, USA
| |
Collapse
|
20
|
A Supercluster of Neutralizing Epitopes at the Interface of Ricin's Enzymatic (RTA) and Binding (RTB) Subunits. Toxins (Basel) 2017; 9:toxins9120378. [PMID: 29168727 PMCID: PMC5744098 DOI: 10.3390/toxins9120378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 12/29/2022] Open
Abstract
As part of an effort to engineer ricin antitoxins and immunotherapies, we previously produced and characterized a collection of phage-displayed, heavy chain-only antibodies (VHHs) from alpacas that had been immunized with ricin antigens. In our initial screens, we identified nine VHHs directed against ricin toxin’s binding subunit (RTB), but only one, JIZ-B7, had toxin-neutralizing activity. Linking JIZ-B7 to different VHHs against ricin’s enzymatic subunit (RTA) resulted in several bispecific antibodies with potent toxin-neutralizing activity in vitro and in vivo. JIZ-B7 may therefore be an integral component of a future VHH-based neutralizing agent (VNA) for ricin toxin. In this study, we now localize, using competitive ELISA, JIZ-B7’s epitope to a region of RTB’s domain 2 sandwiched between the high-affinity galactose/N-acetylgalactosamine (Gal/GalNAc)-binding site and the boundary of a neutralizing hotspot on RTA known as cluster II. Analysis of additional RTB (n = 8)- and holotoxin (n = 4)-specific VHHs from a recent series of screens identified a “supercluster” of neutralizing epitopes at the RTA-RTB interface. Among the VHHs tested, toxin-neutralizing activity was most closely associated with epitope proximity to RTA, and not interference with RTB’s ability to engage Gal/GalNAc receptors. We conclude that JIZ-B7 is representative of a larger group of potent toxin-neutralizing antibodies, possibly including many described in the literature dating back several decades, that recognize tertiary and possibly quaternary epitopes located at the RTA-RTB interface and that target a region of vulnerability on ricin toxin.
Collapse
|
21
|
Whitfield SJC, Griffiths GD, Jenner DC, Gwyther RJ, Stahl FM, Cork LJ, Holley JL, Green AC, Clark GC. Production, Characterisation and Testing of an Ovine Antitoxin against Ricin; Efficacy, Potency and Mechanisms of Action. Toxins (Basel) 2017; 9:E329. [PMID: 29057798 PMCID: PMC5666376 DOI: 10.3390/toxins9100329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
Ricin is a type II ribosome-inactivating toxin that catalytically inactivates ribosomes ultimately leading to cell death. The toxicity of ricin along with the prevalence of castor beans (its natural source) has led to its increased notoriety and incidences of nefarious use. Despite these concerns, there are no licensed therapies available for treating ricin intoxication. Here, we describe the development of a F(ab')₂ polyclonal ovine antitoxin against ricin and demonstrate the efficacy of a single, post-exposure, administration in an in vivo murine model of intoxication against aerosolised ricin. We found that a single dose of antitoxin afforded a wide window of opportunity for effective treatment with 100% protection observed in mice challenged with aerosolised ricin when given 24 h after exposure to the toxin and 75% protection when given at 30 h. Treated mice had reduced weight loss and clinical signs of intoxication compared to the untreated control group. Finally, using imaging flow cytometry, it was found that both cellular uptake and intracellular trafficking of ricin toxin to the Golgi apparatus was reduced in the presence of the antitoxin suggesting both actions can contribute to the therapeutic mechanism of a polyclonal antitoxin. Collectively, the research highlights the significant potential of the ovine F(ab')₂ antitoxin as a treatment for ricin intoxication.
Collapse
Affiliation(s)
- Sarah J C Whitfield
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Gareth D Griffiths
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Dominic C Jenner
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Robert J Gwyther
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Fiona M Stahl
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Lucy J Cork
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Jane L Holley
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Graeme C Clark
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| |
Collapse
|
22
|
Rong Y, Van Slyke G, Vance DJ, Westfall J, Ehrbar D, Mantis NJ. Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin's binding subunit. PLoS One 2017; 12:e0180999. [PMID: 28700745 PMCID: PMC5507285 DOI: 10.1371/journal.pone.0180999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Ricin toxin’s binding subunit (RTB) is a galactose-/N-acetylgalactosamine (Gal/GalNac)-specific lectin that mediates uptake and intracellular trafficking of ricin within mammalian cells. Structurally, RTB consists of two globular domains, each divided into three homologous sub-domains (α, β, γ). In this report, we describe five new murine IgG monoclonal antibodies (mAbs) against RTB: MH3, 8A1, 8B3, LF1, and LC5. The mAbs have similar binding affinities (KD) for ricin holotoxin, but displayed a wide range of in vitro toxin-neutralizing activities. Competition ELISAs indicate that the two most potent toxin-neutralizing mAbs (MH3, 8A1), as well as one of the moderate toxin-neutralizing mAbs (LF1), recognize distinct epitopes near the low affinity Gal recognition domain in RTB subdomain 1α. Evaluated in a mouse model of systemic ricin challenge, all five mAbs afforded some benefit against intoxication, but only MH3 was protective. However, neither MH3 nor 24B11, another well-characterized mAb against RTB subdomain 1α, could passively protect mice against a mucosal (intranasal) ricin challenge. This is in contrast to SylH3, a previously characterized mAb directed against an epitope near RTB’s high affinity Gal/GalNac recognition element in sub-domain 2γ, which protected animals against systemic and mucosal ricin exposure. SylH3 was significantly more effective than MH3 and 24B11 at blocking ricin attachment to host cell receptors, suggesting that mucosal immunity to ricin is best imparted by antibodies that target RTB’s high affinity Gal/GalNac recognition element in subdomain 2γ, not the low affinity Gal recognition domain in subdomain 1α.
Collapse
Affiliation(s)
- Yinghui Rong
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - David J. Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jennifer Westfall
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Dylan Ehrbar
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rudolph MJ, Vance DJ, Cassidy MS, Rong Y, Mantis NJ. Structural Analysis of Single Domain Antibodies Bound to a Second Neutralizing Hot Spot on Ricin Toxin's Enzymatic Subunit. J Biol Chem 2017; 292:872-883. [PMID: 27903650 PMCID: PMC5247660 DOI: 10.1074/jbc.m116.758102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Ricin toxin is a heterodimer consisting of RTA, a ribosome-inactivating protein, and RTB, a lectin that facilitates receptor-mediated uptake into mammalian cells. In previous studies, we demonstrated that toxin-neutralizing antibodies target four spatially distinct hot spots on RTA, which we refer to as epitope clusters I-IV. In this report, we identified and characterized three single domain camelid antibodies (VHH) against cluster II. One of these VHHs, V5E1, ranks as one of the most potent ricin-neutralizing antibodies described to date. We solved the X-ray crystal structures of each of the three VHHs (E1, V1C7, and V5E1) in complex with RTA. V5E1 buries a total of 1,133 Å2 of surface area on RTA and makes primary contacts with α-helix A (residues 18-32), α-helix F (182-194), as well as the F-G loop. V5E1, by virtue of complementarity determining region 3 (CDR3), may also engage with RTB and potentially interfere with the high affinity galactose-recognition element that plays a critical role in toxin attachment to cell surfaces and intracellular trafficking. The two other VHHs, E1 and V1C7, bind epitopes adjacent to V5E1 but display only weak toxin neutralizing activity, thereby providing structural insights into specific residues within cluster II that may be critical contact points for toxin inactivation.
Collapse
Affiliation(s)
- Michael J Rudolph
- From the New York Structural Biology Center, New York, New York 10027,
| | - David J Vance
- the Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Michael S Cassidy
- From the New York Structural Biology Center, New York, New York 10027
| | - Yinghui Rong
- the Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Nicholas J Mantis
- the Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
- the Department of Biomedical Sciences, University at Albany, Albany, New York 12201
| |
Collapse
|
24
|
Herrera C, Mantis NJ, Cole R. Applications in Stimulated Emission Depletion Microscopy: Localization of a Protein Toxin in the Endoplasmic Reticulum Following Retrograde Transport. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1113-1119. [PMID: 27804914 DOI: 10.1017/s1431927616011879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Retrograde transport is a process in which proteins are trafficked from the plasma membrane and endosomes to biosynthetic and secretory organelles, namely the Golgi apparatus and endoplasmic reticulum (ER). A number of plant and bacterial toxins, including cholera toxin and ricin toxin, exploit retrograde transport to gain entry into host cells, although the specifics of this process have remained difficult to probe by laser scanning confocal microscopy (LSCM). Here we demonstrate the use of super-resolution and live-cell imaging [stimulated emission depletion (STED)] to visualize exogenously applied ricin toxin within the ER. The improved resolution obtained by STED, as compared with LSCM (0.09 versus 0.19 μm), provides a more accurate determination of the amount of ricin that had trafficked to the ER.
Collapse
Affiliation(s)
- Cristina Herrera
- 1Wadsworth Center,Division of Infectious Disease,New York State Department of Health,Albany,NY 12208,USA
| | - Nicholas J Mantis
- 1Wadsworth Center,Division of Infectious Disease,New York State Department of Health,Albany,NY 12208,USA
| | - Richard Cole
- 2Department of Biomedical Sciences,University at Albany School of Public Health,Albany,NY 12201,USA
| |
Collapse
|
25
|
Dyer PD, Kotha AK, Gollings AS, Shorter SA, Shepherd TR, Pettit MW, Alexander BD, Getti GT, El-Daher S, Baillie L, Richardson SC. An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin. Biochim Biophys Acta Gen Subj 2016; 1860:1541-50. [DOI: 10.1016/j.bbagen.2016.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
26
|
Herrera C, Klokk TI, Cole R, Sandvig K, Mantis NJ. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking. PLoS One 2016; 11:e0156893. [PMID: 27300140 PMCID: PMC4907443 DOI: 10.1371/journal.pone.0156893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/21/2016] [Indexed: 11/19/2022] Open
Abstract
JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin's enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin's bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells.
Collapse
Affiliation(s)
- Cristina Herrera
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Tove Irene Klokk
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard Cole
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Kirsten Sandvig
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| |
Collapse
|
27
|
Neutralizing Monoclonal Antibodies against Disparate Epitopes on Ricin Toxin's Enzymatic Subunit Interfere with Intracellular Toxin Transport. Sci Rep 2016; 6:22721. [PMID: 26949061 PMCID: PMC4779987 DOI: 10.1038/srep22721] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
Ricin is a member of the A-B family of bacterial and plant toxins that exploit retrograde trafficking to the Golgi apparatus and endoplasmic reticulum (ER) as a means to deliver their cytotoxic enzymatic subunits into the cytoplasm of mammalian cells. In this study we demonstrate that R70 and SyH7, two well-characterized monoclonal antibodies (mAbs) directed against distinct epitopes on the surface of ricin’s enzymatic subunit (RTA), interfere with toxin transport from the plasma membrane to the trans Golgi network. Toxin-mAb complexes formed on the cell surface delayed ricin’s egress from EEA-1+ and Rab7+ vesicles and enhanced toxin accumulation in LAMP-1+ vesicles, suggesting the complexes were destined for degradation in lysosomes. Three other RTA-specific neutralizing mAbs against different epitopes were similar to R70 and SyH7 in terms of their effects on ricin retrograde transport. We conclude that interference with toxin retrograde transport may be a hallmark of toxin-neutralizing antibodies directed against disparate epitopes on RTA.
Collapse
|
28
|
Brey RN, Mantis NJ, Pincus SH, Vitetta ES, Smith LA, Roy CJ. Recent advances in the development of vaccines against ricin. Hum Vaccin Immunother 2016; 12:1196-201. [PMID: 26810367 DOI: 10.1080/21645515.2015.1124202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Several promising subunit vaccines against ricin toxin (RT) have been developed during the last decade and are now being tested for safety and immunogenicity in humans and for efficacy in nonhuman primates. The incentive to develop a preventive vaccine as a countermeasure against RT use as a bioweapon is based on the high toxicity of RT after aerosol exposure, its environmental stability, abundance, and ease of purification. RT is the second most lethal biological toxin and is considered a "universal toxin" because it can kill all eukaryotic cells through binding to ubiquitous cell surface galactosyl residues. RT has two subunits conjoined by a single disulfide linkage: RTB, which binds galactosyl residues and RTA which enzymatically inactivates ribosomes intracellularly by cleavage ribosomal RNA. Attenuation of toxicity by elimination of the active site or introduction of other structural mutations of RTA has generated two similar clinical subunit vaccine candidates which induce antibodies in both humans and nonhuman primates. In rhesus macaques, inhaled RT causes rapid lung necrosis and fibrosis followed by death. After parenteral vaccination with RTA vaccine, macaques can be protected against aerosol RT exposure, suggesting that circulating antibodies can protect lung mucosa. Vaccination induces RT-neutralizing antibodies, the most likely correlate of protection. Macaques responded to conformational determinants in an RTA vaccine formulation, indicating preservation of RTA structure during initial manufacture. Comparative mapping studies have also demonstrated that macaques and humans recognize the same epitopes, significant in the study of macaques as a model during development of vaccines which cannot be tested for efficacy in humans.
Collapse
Affiliation(s)
| | - Nicholas J Mantis
- b Division of Infectious Disease , Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Biomedical Sciences, University of Albany School of Public Health , Albany , NY , USA
| | - Seth H Pincus
- c Departments of Pediatrics and Microbiology , Louisiana State University School of Medicine, Children's Hospital , New Orleans , LA , USA
| | - Ellen S Vitetta
- d Departments of Immunology and Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Leonard A Smith
- e Medical Countermeasures Technology, US Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Chad J Roy
- f Division of Microbiology, Tulane National Primate Research Center , Covington , LA , USA.,g Department of Microbiology and Immunology , Tulane School of Medicine , New Orleans , LA , USA
| |
Collapse
|
29
|
Herrera C, Tremblay JM, Shoemaker CB, Mantis NJ. Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies. J Biol Chem 2015; 290:27880-9. [PMID: 26396190 DOI: 10.1074/jbc.m115.658070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors.
Collapse
Affiliation(s)
- Cristina Herrera
- From the Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12208, the Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York 12201, and
| | - Jacqueline M Tremblay
- the Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachuetts 01536
| | - Charles B Shoemaker
- the Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachuetts 01536
| | - Nicholas J Mantis
- From the Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12208, the Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York 12201, and
| |
Collapse
|
30
|
Kumar MS, Karande AA. A monoclonal antibody to an abrin chimera recognizing a unique epitope on abrin A chain confers protection from abrin-induced lethality. Hum Vaccin Immunother 2015; 12:124-31. [PMID: 26379120 PMCID: PMC4962719 DOI: 10.1080/21645515.2015.1067741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/22/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022] Open
Abstract
Abrin, obtained from the seeds of Abrus precatorius plant, is a potent toxin belonging to the family of type II ribosome-inactivating proteins. Recently, a recombinant vaccine consisting of the A subunits of abrin and its homolog Abrus precatorius agglutinin (APA) was demonstrated to protect mice from abrin lethality. Toward identifying neutralizing epitopes recognized during this response, we generated monoclonal antibodies against the proposed vaccine candidate. One antibody, namely A7C4, the corresponding epitope of which was found to be distal to the active site of the enzymatic A chain, prevented abrin-mediated toxicity on cells and abrin-induced lethality in mice but did not inhibit the catalytic activity of the A chain. The in vivo protection conferred by monoclonal antibody A7C4 highlights the potential use of this antibody as a promising immunotherapeutic.
Collapse
Affiliation(s)
- Meenakshi Sundaram Kumar
- Undergraduate Studies and Department of Biochemistry; Indian Institute of Science; Bangalore, Karnataka, India
| | - Anjali A Karande
- Department of Biochemistry; Indian Institute of Science; Bangalore, Karnataka, India
| |
Collapse
|
31
|
Dutta K, Varshney AK, Franklin MC, Goger M, Wang X, Fries BC. Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies. J Biol Chem 2015; 290:6715-30. [PMID: 25572397 DOI: 10.1074/jbc.m114.630715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.
Collapse
Affiliation(s)
- Kaushik Dutta
- From the New York Structural Biology Center, New York, New York 10027,
| | - Avanish K Varshney
- the Department of Medicine and Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11790, and the Department of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Michael Goger
- From the New York Structural Biology Center, New York, New York 10027
| | - Xiaobo Wang
- the Department of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Bettina C Fries
- the Department of Medicine and Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11790, and the Department of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
32
|
Antisecretory factor peptide AF-16 inhibits the secreted autotransporter toxin-stimulated transcellular and paracellular passages of fluid in cultured human enterocyte-like cells. Infect Immun 2014; 83:907-22. [PMID: 25534938 DOI: 10.1128/iai.02759-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Both the endogenous antisecretory factor (AF) protein and peptide AF-16, which has a sequence that matches that of the active N-terminal region of AF, inhibit the increase in the epithelial transport of fluid and electrolytes induced by bacterial toxins in animal and ex vivo models. We conducted a study to investigate the inhibitory effect of peptide AF-16 against the increase of transcellular passage and paracellular permeability promoted by the secreted autotransporter toxin (Sat) in a cultured cellular model of the human intestinal epithelial barrier. Peptide AF-16 produced a concentration-dependent inhibition of the Sat-induced increase in the formation of fluid domes, in the mucosal-to-serosal passage of D-[1-(14)C]mannitol, and in the rearrangements in the distribution and protein expression of the tight junction (TJ)-associated proteins ZO-1 and occludin in cultured human enterocyte-like Caco-2/TC7 cell monolayers. In addition, we show that peptide AF-16 also inhibits the cholera toxin-induced increase of transcellular passage and the Clostridium difficile toxin-induced effects on paracellular permeability and TJ protein organization in Caco-2/TC7 cell monolayers. Treatment of cell monolayers by the lipid raft disorganizer methyl-β-cyclodextrin abolished the inhibitory activity of peptide AF-16 at the transcellular passage level and did not modify the effect of the peptide at the paracellular level.
Collapse
|
33
|
Herrera C, Vance DJ, Eisele LE, Shoemaker CB, Mantis NJ. Differential neutralizing activities of a single domain camelid antibody (VHH) specific for ricin toxin's binding subunit (RTB). PLoS One 2014; 9:e99788. [PMID: 24918772 PMCID: PMC4053406 DOI: 10.1371/journal.pone.0099788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/17/2014] [Indexed: 11/18/2022] Open
Abstract
Ricin, a member of the A-B family of ribosome-inactivating proteins, is classified as a Select Toxin by the Centers for Disease Control and Prevention because of its potential use as a biothreat agent. In an effort to engineer therapeutics for ricin, we recently produced a collection of alpaca-derived, heavy-chain only antibody VH domains (VHH or “nanobody”) specific for ricin’s enzymatic (RTA) and binding (RTB) subunits. We reported that one particular RTB-specific VHH, RTB-B7, when covalently linked via a peptide spacer to different RTA-specific VHHs, resulted in heterodimers like VHH D10/B7 that were capable of passively protecting mice against a lethal dose challenge with ricin. However, RTB-B7 itself, when mixed with ricin at a 1∶10 toxin:antibody ratio did not afford any protection in vivo, even though it had demonstrable toxin-neutralizing activity in vitro. To better define the specific attributes of antibodies associated with ricin neutralization in vitro and in vivo, we undertook a more thorough characterization of RTB-B7. We report that RTB-B7, even at 100-fold molar excess (toxin:antibody) was unable to alter the toxicity of ricin in a mouse model. On the other hand, in two well-established cytotoxicity assays, RTB-B7 neutralized ricin with a 50% inhibitory concentration (IC50) that was equivalent to that of 24B11, a well-characterized and potent RTB-specific murine monoclonal antibody. In fact, RTB-B7 and 24B11 were virtually identical when compared across a series of in vitro assays, including adherence to and neutralization of ricin after the toxin was pre-bound to cell surface receptors. RTB-B7 differed from both 24B11 and VHH D10/B7 in that it was relatively less effective at blocking ricin attachment to receptors on host cells and was not able to form high molecular weight toxin:antibody complexes in solution. Whether either of these activities is important in ricin toxin neutralizing activity in vivo remains to be determined.
Collapse
Affiliation(s)
- Cristina Herrera
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - David J. Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Leslie E. Eisele
- Scientific Cores, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|