1
|
Goldmann O, Lang JC, Rohde M, May T, Molinari G, Medina E. Alpha-hemolysin promotes internalization of Staphylococcus aureus into human lung epithelial cells via caveolin-1- and cholesterol-rich lipid rafts. Cell Mol Life Sci 2024; 81:435. [PMID: 39412594 PMCID: PMC11488825 DOI: 10.1007/s00018-024-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Staphylococcus aureus is a pathogen associated with severe respiratory infections. The ability of S. aureus to internalize into lung epithelial cells complicates the treatment of respiratory infections caused by this bacterium. In the intracellular environment, S. aureus can avoid elimination by the immune system and the action of circulating antibiotics. Consequently, interfering with S. aureus internalization may represent a promising adjunctive therapeutic strategy to enhance the efficacy of conventional treatments. Here, we investigated the host-pathogen molecular interactions involved in S. aureus internalization into human lung epithelial cells. Lipid raft-mediated endocytosis was identified as the main entry mechanism. Thus, bacterial internalization was significantly reduced after the disruption of lipid rafts with methyl-β-cyclodextrin. Confocal microscopy confirmed the colocalization of S. aureus with lipid raft markers such as ganglioside GM1 and caveolin-1. Adhesion of S. aureus to α5β1 integrin on lung epithelial cells via fibronectin-binding proteins (FnBPs) was a prerequisite for bacterial internalization. A mutant S. aureus strain deficient in the expression of alpha-hemolysin (Hla) was significantly impaired in its capacity to enter lung epithelial cells despite retaining its capacity to adhere. This suggests a direct involvement of Hla in the bacterial internalization process. Among the receptors for Hla located in lipid rafts, caveolin-1 was essential for S. aureus internalization, whereas ADAM10 was dispensable for this process. In conclusion, this study supports a significant role of lipid rafts in S. aureus internalization into human lung epithelial cells and highlights the interaction between bacterial Hla and host caveolin-1 as crucial for the internalization process.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Julia C Lang
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
2
|
Meng M, Li Y, Wang J, Han X, Wang X, Li H, Xiang B, Ma C. Innovative nebulization delivery of lipid nanoparticle-encapsulated siRNA: a therapeutic advance for Staphylococcus aureus-induced pneumonia. J Transl Med 2024; 22:942. [PMID: 39407291 PMCID: PMC11481290 DOI: 10.1186/s12967-024-05711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Integrin α5β1 plays a crucial role in the invasion of nonphagocytic cells by Staphylococcus aureus (S. aureus), thereby facilitating infection development. Lipid nanoparticles (LNPs) serve as an effective vehicle for delivering small interfering ribonucleic acids (siRNA) that represent a method to knockdown integrin α5β1 in the lungs through nebulization, thereby potentially mitigating the severity of S. aureus pneumonia. The aim of this study was to harness LNP-mediated targeting to precisely knockdown integrin α5β1, thus effectively addressing S. aureus-induced pneumonia. METHODS C57 mice (8 week-old females) infected with S. aureus via an intratracheal nebulizing device were utilized for the experiments. The LNPs were synthesized via microfluidic mixing and characterized by their size, polydispersity index, and encapsulation efficiency. Continuous intratracheal nebulization was employed for consistent siRNA administration, with the pulmonary function metrics affirming biosafety. The therapeutic efficacy of LNP-encapsulated siRNAs against pneumonia was assessed through western blotting, bacterial count measurement, quantitative polymerase chain reaction, and histological analyses. RESULTS LNPs, which have an onion-like structure, retained integrity post-nebulization, ensuring prolonged siRNA stability and in vivo safety. Intratracheal nebulization delivery markedly alleviated the severity of S. aureus-induced pneumonia, as indicated by reduced bacterial load and bolstered immune response, thereby localizing the infection to the lungs and averting systemic dissemination. CONCLUSIONS Intratracheal nebulization of LNP-encapsulated siRNAs targeting integrin α5β1 significantly diminished the S. aureus-mediated cellular invasion and disease progression in the lungs, presenting a viable therapeutic approach for respiratory infections.
Collapse
Affiliation(s)
- Meiqi Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xiaonan Han
- Department of Mathematics, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xuan Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Bai Xiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China.
- National Key Laboratory of New Pharmaceutical Preparations and Excipients, Shijiazhuang, 050035, People's Republic of China.
- Hebei Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, People's Republic of China.
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
3
|
Luo X, Zhang L, Xie X, Yuan L, Shi Y, Jiang Y, Ke W, Yang B. Phosphorylated vimentin-triggered fibronectin matrix disaggregation enhances the dissemination of Treponema pallidum subsp. pallidum across the microvascular endothelial barrier. PLoS Pathog 2024; 20:e1012483. [PMID: 39226326 PMCID: PMC11398692 DOI: 10.1371/journal.ppat.1012483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/13/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Fibronectin (FN) is an essential component of the extracellular matrix (ECM) that protects the integrity of the microvascular endothelial barrier (MEB). However, Treponema pallidum subsp. pallidum (Tp) breaches this barrier through elusive mechanisms and rapidly disseminates throughout the host. We aimed to understand the impact of Tp on the surrounding FN matrix of MEB and the underlying mechanisms of this effect. In this study, immunofluorescence assays (IF) were conducted to assess the integrity of the FN matrix surrounding human microvascular endothelial cell-1 (HMEC-1) with/without Tp co-culture, revealing that only live Tp exhibited the capability to mediate FN matrix disaggregation in HMEC-1. Western blotting and IF were employed to determine the protein levels associated with the FN matrix during Tp infection, which showed the unaltered protein levels of total FN and its receptor integrin α5β1, along with reduced insoluble FN and increased soluble FN. Simultaneously, the integrin α5β1-binding protein-intracellular vimentin maintained a stable total protein level while exhibiting an increase in the soluble form, specifically mediated by the phosphorylation of its 39th residue (pSer39-vimentin). Besides, this process of vimentin phosphorylation, which could be hindered by a serine-to-alanine mutation or inhibition of phosphorylated-AKT1 (pAKT1), promoted intracellular vimentin rearrangement and FN matrix disaggregation. Moreover, within the introduction of additional cellular FN rather than other Tp-adhered ECM protein, in vitro endothelial barrier traversal experiment and in vivo syphilitic infectivity test demonstrated that viable Tp was effectively prevented from penetrating the in vitro MEB or disseminating in Tp-challenged rabbits. This investigation revealed the active pAKT1/pSer39-vimentin signal triggered by live Tp to expedite the disaggregation of the FN matrix and highlighted the importance of FN matrix stability in syphilis, thereby providing a novel perspective on ECM disruption mechanisms that facilitate Tp dissemination across the MEB.
Collapse
Affiliation(s)
- Xi Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoyuan Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liyan Yuan
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanqiang Shi
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Meng M, Wang J, Li H, Wang J, Wang X, Li M, Gao X, Li W, Ma C, Wei L. Eliminating the invading extracellular and intracellular FnBp + bacteria from respiratory epithelial cells by autophagy mediated through FnBp-Fn-Integrin α5β1 axis. Front Cell Infect Microbiol 2024; 13:1324727. [PMID: 38264727 PMCID: PMC10803403 DOI: 10.3389/fcimb.2023.1324727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Background We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5β1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5β1 axis a common event in respiratory epithelial cells? Methods We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5β1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin β1 chain, is highly expressed upon activation of integrin α5β1, which in turn up-regulates autophagy. Conclusions Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5β1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5β1 in this autophagy pathway.
Collapse
Affiliation(s)
- Meiqi Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xuan Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
- Clinical Laboratory, the Second Hospital of Hebei Medical University, Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, China
| | - Miao Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Green LR, Issa R, Albaldi F, Urwin L, Thompson R, Khalid H, Turner CE, Ciani B, Partridge LJ, Monk PN. CD9 co-operation with syndecan-1 is required for a major staphylococcal adhesion pathway. mBio 2023; 14:e0148223. [PMID: 37486132 PMCID: PMC10470606 DOI: 10.1128/mbio.01482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Epithelial colonization is a critical first step in bacterial pathogenesis. Staphylococcus aureus can utilize several host factors to associate with cells, including α5β1 integrin and heparan sulfate proteoglycans, such as the syndecans. Here, we demonstrate that a partner protein of both integrins and syndecans, the host membrane adapter protein tetraspanin CD9, is essential for syndecan-mediated staphylococcal adhesion. Fibronectin is also essential in this process, while integrins are only critical for post-adhesion entry into human epithelial cells. Treatment of epithelial cells with CD9-derived peptide or heparin caused significant reductions in staphylococcal adherence, dependent on both CD9 and syndecan-1. Exogenous fibronectin caused a CD9-dependent increase in staphylococcal adhesion, whereas blockade of β1 integrins did not affect adhesion but did reduce the subsequent internalization of adhered bacteria. CD9 disruption or deletion increased β1 integrin-mediated internalization, suggesting that CD9 coordinates sequential staphylococcal adhesion and internalization. CD9 controls staphylococcal adhesion through syndecan-1, using a mechanism that likely requires CD9-mediated syndecan organization to correctly display fibronectin at the host cell surface. We propose that CD9-derived peptides or heparin analogs could be developed as anti-adhesion treatments to inhibit the initial stages of staphylococcal pathogenesis. IMPORTANCE Staphylococcus aureus infection is a significant cause of disease and morbidity. Staphylococci utilize multiple adhesion pathways to associate with epithelial cells, including interactions with proteoglycans or β1 integrins through a fibronectin bridge. Interference with another host protein, tetraspanin CD9, halves staphylococcal adherence to epithelial cells, although CD9 does not interact directly with bacteria. Here, we define the role of CD9 in staphylococcal adherence and uptake, observing that CD9 coordinates syndecan-1, fibronectin, and β1 integrins to allow efficient staphylococcal infection. Two treatments that disrupt this action are effective and may provide an alternative to antibiotics. We provide insights into the mechanisms that underlie staphylococcal infection of host cells, linking two known adhesion pathways together through CD9 for the first time.
Collapse
Affiliation(s)
- Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Rahaf Issa
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Fawzyah Albaldi
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Ruth Thompson
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Henna Khalid
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Claire E. Turner
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Ciani
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Lynda J. Partridge
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| |
Collapse
|
6
|
Nappi F, Avtaar Singh SS. Host-Bacterium Interaction Mechanisms in Staphylococcus aureus Endocarditis: A Systematic Review. Int J Mol Sci 2023; 24:11068. [PMID: 37446247 DOI: 10.3390/ijms241311068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococci sp. are the most commonly associated pathogens in infective endocarditis, especially within high-income nations. This along with the increasing burden of healthcare, aging populations, and the protracted infection courses, contribute to a significant challenge for healthcare systems. A systematic review was conducted using relevant search criteria from PubMed, Ovid's version of MEDLINE, and EMBASE, and data were tabulated from randomized controlled trials (RCT), observational cohort studies, meta-analysis, and basic research articles. The review was registered with the OSF register of systematic reviews and followed the PRISMA reporting guidelines. Thirty-five studies met the inclusion criteria and were included in the final systematic review. The role of Staphylococcus aureus and its interaction with the protective shield and host protection functions was identified and highlighted in several studies. The interaction between infective endocarditis pathogens, vascular endothelium, and blood constituents was also explored, giving rise to the potential use of antiplatelets as preventative and/or curative agents. Several factors allow Staphylococcus aureus infections to proliferate within the host with numerous promoting and perpetuating agents. The complex interaction with the hosts' innate immunity also potentiates its virulence. The goal of this study is to attain a better understanding on the molecular pathways involved in infective endocarditis supported by S. aureus and whether therapeutic avenues for the prevention and treatment of IE can be obtained. The use of antibiotic-treated allogeneic tissues have marked antibacterial action, thereby becoming the ideal substitute in native and prosthetic valvular infections. However, the development of effective vaccines against S. aureus still requires in-depth studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
7
|
Leidecker M, Bertling A, Hussain M, Bischoff M, Eble JA, Fender AC, Jurk K, Rumpf C, Herrmann M, Kehrel BE, Niemann S. Protein Disulfide Isomerase and Extracellular Adherence Protein Cooperatively Potentiate Staphylococcal Invasion into Endothelial Cells. Microbiol Spectr 2023; 11:e0388622. [PMID: 36995240 PMCID: PMC10269700 DOI: 10.1128/spectrum.03886-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Invasion of host cells is an important feature of Staphylococcus aureus. The main internalization pathway involves binding of the bacteria to host cells, e.g., endothelial cells, via a fibronectin (Fn) bridge between S. aureus Fn binding proteins and α5β1-integrin, followed by phagocytosis. The secreted extracellular adherence protein (Eap) has been shown to promote this cellular uptake pathway of not only S. aureus, but also of bacteria otherwise poorly taken up by host cells, such as Staphylococcus carnosus. The exact mechanisms are still unknown. Previously, we demonstrated that Eap induces platelet activation by stimulation of the protein disulfide isomerase (PDI), a catalyst of thiol-disulfide exchange reactions. Here, we show that Eap promotes PDI activity on the surface of endothelial cells, and that this contributes critically to Eap-driven staphylococcal invasion. PDI-stimulated β1-integrin activation followed by increased Fn binding to host cells likely accounts for the Eap-enhanced uptake of S. aureus into non-professional phagocytes. Additionally, Eap supports the binding of S. carnosus to Fn-α5β1 integrin, thereby allowing its uptake into endothelial cells. To our knowledge, this is the first demonstration that PDI is crucial for the uptake of bacteria into host cells. We describe a hitherto unknown function of Eap-the promotion of an enzymatic activity with subsequent enhancement of bacterial uptake-and thus broaden mechanistic insights into its importance as a driver of bacterial pathogenicity. IMPORTANCE Staphylococcus aureus can invade and persist in non-professional phagocytes, thereby escaping host defense mechanisms and antibiotic treatment. The intracellular lifestyle of S. aureus contributes to the development of infection, e.g., in infective endocarditis or chronic osteomyelitis. The extracellular adherence protein secreted by S. aureus promotes its own internalization as well as that of bacteria that are otherwise poorly taken up by host cells, such as Staphylococcus carnosus. In our study, we demonstrate that staphylococcal uptake by endothelial cells requires catalytic disulfide exchange activity by the cell-surface protein disulfide isomerase, and that this critical enzymatic function is enhanced by Eap. The therapeutic application of PDI inhibitors has previously been investigated in the context of thrombosis and hypercoagulability. Our results add another intriguing possibility: therapeutically targeting PDI, i.e., as a candidate approach to modulate the initiation and/or course of S. aureus infectious diseases.
Collapse
Affiliation(s)
- Marleen Leidecker
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Anne Bertling
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
| | - Muzaffar Hussain
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Anke C. Fender
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
- Institute of Pharmacology, University Hospital Essen, Essen, Germany
| | - Kerstin Jurk
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christine Rumpf
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Beate E. Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University Hospital of Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| |
Collapse
|
8
|
Maurer M, Klassert TE, Löffler B, Slevogt H, Tuchscherr L. Extraction of High-Quality RNA from S. aureus Internalized by Endothelial Cells. Microorganisms 2023; 11:microorganisms11041020. [PMID: 37110443 PMCID: PMC10143013 DOI: 10.3390/microorganisms11041020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Staphylococcus aureus evades antibiotic therapy and antimicrobial defenses by entering human host cells. Bacterial transcriptomic analysis represents an invaluable tool to unravel the complex interplay between host and pathogen. Therefore, the extraction of high-quality RNA from intracellular S. aureus lays the foundation to acquire meaningful gene expression data. In this study, we present a novel and straightforward strategy to isolate RNA from internalized S. aureus after 90 min, 24 h, and 48 h postinfection. Real-time PCR data were obtained for the target genes agrA and fnba, which play major roles during infection. The commonly used reference genes gyrB, aroE, tmRNA, gmk, and hu were analyzed under different conditions: bacteria from culture (condition I), intracellular bacteria (condition II), and across both conditions I and II. The most stable reference genes were used for the normalization of agrA and fnbA. Delta Cq (quantification cycle) values had a relatively low variability and thus demonstrated the high quality of the extracted RNA from intracellular S. aureus during the early phase of infection. The established protocol allows the extraction and purification of intracellular staphylococcal RNA while minimizing the amount of host RNA in the sample. This approach can leverage reproducible gene expression data to study host-pathogen interactions.
Collapse
Affiliation(s)
- Michelle Maurer
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Tilman E Klassert
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, 30625 Hannover, Germany
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bettina Löffler
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, 30625 Hannover, Germany
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Lorena Tuchscherr
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
9
|
Lyon LM, Doran KS, Horswill AR. Staphylococcus aureus Fibronectin-Binding Proteins Contribute to Colonization of the Female Reproductive Tract. Infect Immun 2023; 91:e0046022. [PMID: 36511703 PMCID: PMC9872658 DOI: 10.1128/iai.00460-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and frequent colonizer of human skin and mucosal membranes, including the vagina, with vaginal colonization reaching nearly 25% in some pregnant populations. MRSA vaginal colonization can lead to aerobic vaginitis (AV), and during pregnancy, bacterial ascension into the upper reproductive tract can lead to adverse birth outcomes. USA300, the most prominent MRSA lineage to colonize pregnant individuals, is a robust biofilm former and causative agent of invasive infections; however, little is known about how it colonizes and ascends in the female reproductive tract (FRT). Our previous studies showed that a MRSA mutant of seven fibrinogen-binding adhesins was deficient in FRT epithelial attachment and colonization. Using both monolayer and multilayer air-liquid interface cell culture models, we determine that one class of these adhesins, the fibronectin binding proteins (FnBPA and FnBPB), are critical for association with human vaginal epithelial cells (hVECs) and hVEC invasion through interactions with α5β1 integrin. We observe that both FnBPs are important for biofilm formation as single and double fnbAB mutants exhibit reduced biofilm formation on hVECs. Using heterologous expression of fnbA and fnbB in Staphylococcus carnosus, FnBPs are also found to be sufficient for hVEC cellular association, invasion, and biofilm formation. In addition, we found that an ΔfnbAB mutant displays attenuated ascension in our murine vaginal colonization model. Better understanding of MRSA FRT colonization and ascension can ultimately inform treatment strategies to limit MRSA vaginal burden or prevent ascension, especially during pregnancy and in those prone to AV.
Collapse
Affiliation(s)
- Laurie M. Lyon
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
10
|
Granata V, Possetti V, Parente R, Bottazzi B, Inforzato A, Sobacchi C. The osteoblast secretome in Staphylococcus aureus osteomyelitis. Front Immunol 2022; 13:1048505. [PMID: 36483565 PMCID: PMC9723341 DOI: 10.3389/fimmu.2022.1048505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Osteomyelitis (OM) is an infectious disease of the bone predominantly caused by the opportunistic bacterium Staphylococcus aureus (S. aureus). Typically established upon hematogenous spread of the pathogen to the musculoskeletal system or contamination of the bone after fracture or surgery, osteomyelitis has a complex pathogenesis with a critical involvement of both osteal and immune components. Colonization of the bone by S. aureus is traditionally proposed to induce functional inhibition and/or apoptosis of osteoblasts, alteration of the RANKL/OPG ratio in the bone microenvironment and activation of osteoclasts; all together, these events locally subvert tissue homeostasis causing pathological bone loss. However, this paradigm has been challenged in recent years, in fact osteoblasts are emerging as active players in the induction and orientation of the immune reaction that mounts in the bone during an infection. The interaction with immune cells has been mostly ascribed to osteoblast-derived soluble mediators that add on and synergize with those contributed by professional immune cells. In this respect, several preclinical and clinical observations indicate that osteomyelitis is accompanied by alterations in the local and (sometimes) systemic levels of both pro-inflammatory (e.g., IL-6, IL-1α, TNF-α, IL-1β) and anti-inflammatory (e.g., TGF-β1) cytokines. Here we revisit the role of osteoblasts in bacterial OM, with a focus on their secretome and its crosstalk with cellular and molecular components of the bone microenvironment and immune system.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Valentina Possetti
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | | | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy,*Correspondence: Cristina Sobacchi,
| |
Collapse
|
11
|
Tian J, Chen S, Liu F, Zhu Q, Shen J, Lin W, Zhu K. Equisetin Targets Intracellular Staphylococcus aureus through a Host Acting Strategy. Mar Drugs 2022; 20:656. [PMID: 36354979 PMCID: PMC9694014 DOI: 10.3390/md20110656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 09/22/2023] Open
Abstract
Mammalian cells act as reservoirs of internalized bacteria to circumvent extracellular antibacterial compounds, resulting in relapse and reinfection diseases. The intracellular persistence of Staphylococcus aureus renders most traditional antibiotics useless, due to their inadequate subcellular accumulation. To replenish our antibiotic arsenal, we found that a marine-derived compound, equisetin, efficiently eliminates intracellular S. aureus by potentiating the host autophagy and inducing mitochondrial-mediated ROS generation to clear the invading S. aureus. The remarkable anti-infection activity of equisetin was validated in a peritonitis-infected mouse model. The marine product equisetin utilizes a unique dual mechanism to modulate the host-pathogen interaction in the clearance of intracellular bacteria. Thus, equisetin is an inspiring host-acting candidate for overcoming intracellular pathogens.
Collapse
Affiliation(s)
- Jiayao Tian
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shang Chen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Fei Liu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Qian Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Infective Endocarditis in High-Income Countries. Metabolites 2022; 12:metabo12080682. [PMID: 35893249 PMCID: PMC9329978 DOI: 10.3390/metabo12080682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Infective endocarditis remains an illness that carries a significant burden to healthcare resources. In recent times, there has been a shift from Streptococcus sp. to Staphylococcus sp. as the primary organism of interest. This has significant consequences, given the virulence of Staphylococcus and its propensity to form a biofilm, rendering non-surgical therapy ineffective. In addition, antibiotic resistance has affected treatment of this organism. The cohorts at most risk for Staphylococcal endocarditis are elderly patients with multiple comorbidities. The innovation of transcatheter technologies alongside other cardiac interventions such as implantable devices has contributed to the increased risk attributable to this cohort. We examined the pathophysiology of infective endocarditis carefully. Inter alia, the determinants of Staphylococcus aureus virulence, interaction with host immunity, as well as the discovery and emergence of a potential vaccine, were investigated. Furthermore, the potential role of prophylactic antibiotics during dental procedures was also evaluated. As rates of transcatheter device implantation increase, endocarditis is expected to increase, especially in this high-risk group. A high level of suspicion is needed alongside early initiation of therapy and referral to the heart team to improve outcomes.
Collapse
|
13
|
Garcia-Moreno M, Jordan PM, Günther K, Dau T, Fritzsch C, Vermes M, Schoppa A, Ignatius A, Wildemann B, Werz O, Löffler B, Tuchscherr L. Osteocytes Serve as a Reservoir for Intracellular Persisting Staphylococcus aureus Due to the Lack of Defense Mechanisms. Front Microbiol 2022; 13:937466. [PMID: 35935196 PMCID: PMC9355688 DOI: 10.3389/fmicb.2022.937466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic staphylococcal osteomyelitis can persist for long time periods causing bone destruction. The ability of Staphylococcus aureus to develop chronic infections is linked to its capacity to invade and replicate within osteoblasts and osteocytes and to switch to a dormant phenotype called small colony variants. Recently, osteocytes were described as a main reservoir for this pathogen in bone tissue. However, the mechanisms involved in the persistence of S. aureus within these cells are still unknown. Here, we investigated the interaction between S. aureus and osteoblasts or osteocytes during infection. While osteoblasts are able to induce a strong antimicrobial response and eliminate intracellular S. aureus, osteocytes trigger signals to recruit immune cells and enhance inflammation but fail an efficient antimicrobial activity to clear the bacterial infection. Moreover, we found that extracellular signals from osteocytes enhance intracellular bacterial clearance by osteoblasts. Even though both cell types express Toll-like receptor (TLR) 2, the main TLR responsible for S. aureus detection, only osteoblasts were able to increase TLR2 expression after infection. Additionally, proteomic analysis indicates that reduced intracellular bacterial killing activity in osteocytes is related to low antimicrobial peptide expression. Nevertheless, high levels of lipid mediators and cytokines were secreted by osteocytes, suggesting that they can contribute to inflammation. Taken together, our results demonstrate that osteocytes contribute to severe inflammation observed in osteomyelitis and represent the main niche for S. aureus persistence due to their poor capacity for intracellular antimicrobial response.
Collapse
Affiliation(s)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Christian Fritzsch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Monika Vermes
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Astrid Schoppa
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- *Correspondence: Lorena Tuchscherr,
| |
Collapse
|
14
|
Wong Fok Lung T, Chan LC, Prince A, Yeaman MR, Archer NK, Aman MJ, Proctor RA. Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Front Cell Infect Microbiol 2022; 12:1060810. [PMID: 36636720 PMCID: PMC9831658 DOI: 10.3389/fcimb.2022.1060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite meritorious attempts, a S. aureus vaccine that prevents infection or mitigates severity has not yet achieved efficacy endpoints in prospective, randomized clinical trials. This experience underscores the complexity of host-S. aureus interactions, which appear to be greater than many other bacterial pathogens against which successful vaccines have been developed. It is increasingly evident that S. aureus employs strategic countermeasures to evade or exploit human immune responses. From entering host cells to persist in stealthy intracellular reservoirs, to sensing the environmental milieu and leveraging bacterial or host metabolic products to reprogram host immune responses, S. aureus poses considerable challenges for the development of effective vaccines. The fact that this pathogen causes distinct types of infections and can undergo transient genetic, transcriptional or metabolic adaptations in vivo that do not occur in vitro compounds challenges in vaccine development. Notably, the metabolic versatility of both bacterial and host immune cells as they compete for available substrates within specific tissues inevitably impacts the variable repertoire of gene products that may or may not be vaccine antigens. In this respect, S. aureus has chameleon phenotypes that have alluded vaccine strategies thus far. Nonetheless, a number of recent studies have also revealed important new insights into pathogenesis vulnerabilities of S. aureus. A more detailed understanding of host protective immune defenses versus S. aureus adaptive immune evasion mechanisms may offer breakthroughs in the development of effective vaccines, but at present this goal remains a very high bar. Coupled with the recent advances in human genetics and epigenetics, newer vaccine technologies may enable such a goal. If so, future vaccines that protect against or mitigate the severity of S. aureus infections are likely to emerge at the intersection of precision and personalized medicine. For now, the development of S. aureus vaccines or alternative therapies that reduce mortality and morbidity must continue to be pursued.
Collapse
Affiliation(s)
| | - Liana C Chan
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Richard A Proctor
- Department of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|