1
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Singh G, Pasinato A, Yriarte ALC, Pizarro D, Divakar PK, Schmitt I, Dal Grande F. Are there conserved biosynthetic genes in lichens? Genome-wide assessment of terpene biosynthetic genes suggests ubiquitous distribution of the squalene synthase cluster. BMC Genomics 2024; 25:936. [PMID: 39375591 PMCID: PMC11457338 DOI: 10.1186/s12864-024-10806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Lichen-forming fungi (LFF) are prolific producers of functionally and structurally diverse secondary metabolites, most of which are taxonomically exclusive and play lineage-specific roles. To date, widely distributed, evolutionarily conserved biosynthetic pathways in LFF are not known. However, this idea stems from polyketide derivatives, since most biochemical research on lichens has concentrated on polyketide synthases (PKSs). Here, we present the first systematic identification and comparison of terpene biosynthetic genes of LFF using all the available Lecanoromycete reference genomes and 22 de novo sequenced ones (111 in total, representing 60 genera and 23 families). We implemented genome mining and gene networking approaches to identify and group the biosynthetic gene clusters (BGCs) into networks of similar BGCs. Our large-scale analysis led to the identification of 724 terpene BGCs with varying degrees of pairwise similarity. Most BGCs in the dataset were unique with no similarity to a previously known fungal or bacterial BGC or among each other. Remarkably, we found two BGCs that were widely distributed in LFF. Interestingly, both conserved BGCs contain the same core gene, i.e., putatively a squalene/phytoene synthase (SQS), involved in sterol biosynthesis. This indicates that early gene duplications, followed by gene losses/gains and gene rearrangement are the major evolutionary factors shaping the composition of these widely distributed SQS BGCs across LFF. We provide an in-depth overview of these BGCs, including the transmembrane, conserved, variable and LFF-specific regions. Our study revealed that lichenized fungi do have a highly conserved BGC, providing the first evidence that a biosynthetic gene may constitute essential genes in lichens.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy.
- Botanical Garden of Padova, University of Padova, Padua, Italy.
| | - Anna Pasinato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
| | | | - David Pizarro
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Pradeep K Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt Am Main, 60325, Germany
- Department of Biosciences, Institute of Ecology Evolution and Diversity, Goethe UniversityFrankfurt,, Max-Von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt Am Main, 60325, Germany
| | - Francesco Dal Grande
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
- Botanical Garden of Padova, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Paguirigan JAG, Jeong E, Kang KB, Hur JS, Kim W. Investigation of Antimicrobial Compounds Produced by Endolichenic Fungi in Different Culture Media. THE PLANT PATHOLOGY JOURNAL 2024; 40:559-567. [PMID: 39397309 PMCID: PMC11471934 DOI: 10.5423/ppj.nt.06.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024]
Abstract
Continuous use of synthetic fungicides has led to explosive emergence of fungicide-resistant microbes. Therefore, there are urgent needs for environmentally friendly antimicrobial agents with novel modes of action. This study investigated endolichenic fungi (ELF) as a source of antimicrobial compounds against various plant pathogens. We utilized an One Strain MAny Compounds (OSMAC) approach to enhance the chemical diversity of fourteen ELF. This involved cultivation of ELF in four growth media and subsequently assessing antimicrobial activities of culture extracts. Nearly half of the culture extracts exhibited antimicrobial activity against a Gram-positive bacterium, but showed minimal activity against Gram-negative bacteria tested. Notably, culture extracts from two ELF, Chaetomium globosum and Nodulisporium sp., demonstrated significant inhibitory effects against plant pathogenic fungi. LC-MS/MS-based metabolome profiling confirmed the presence of known bioactive compounds like cyclic dipeptides and chaetoglobosins. These findings highlight the effectiveness of combining OSMAC and metabolomics for identifying antimicrobial agents for agricultural use.
Collapse
Affiliation(s)
- Jaycee Augusto G. Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
| | - Eunah Jeong
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyo Bin Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
4
|
Iacovelli R, He S, Sokolova N, Lokhorst I, Borg M, Fodran P, Haslinger K. Discovery and Heterologous Expression of Functional 4- O-Dimethylallyl-l-tyrosine Synthases from Lichen-Forming Fungi. JOURNAL OF NATURAL PRODUCTS 2024; 87:2243-2254. [PMID: 39255066 PMCID: PMC11443524 DOI: 10.1021/acs.jnatprod.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Fungal aromatic prenyltransferases are a family of biosynthetic enzymes that catalyze the prenylation of a range of aromatic substrates during the biosynthesis of bioactive indole alkaloids, diketopiperazines, and meroterpenoids. Their broad substrate scope and soluble nature make these enzymes particularly adept for applications in biocatalysis; for example, the enzymatic derivatization of aromatic drugs improves their bioactivity. Here, we investigated four putative aromatic prenyltransferases from lichen-forming fungi, an underexplored group of organisms that produce more than 1,000 unique metabolites. We successfully expressed two enzymes, annotated as dimethylallyltryptophan synthases, from two lichen species in the heterologous host A. oryzae. Based on their in vivo activity, we hypothesize that these enzymes are in fact 4-O-dimethylallyl-l-tyrosine synthases. Our extensive bioinformatic analysis further confirmed that these and related lichen aromatic prenyltransferases are likely not active on indoles but rather on aromatic polyketides and phenylpropanoids, major metabolites in lichens. Overall, our work provides new insights into fungal aromatic prenyltransferases at the family level and enables future efforts aimed at identifying new candidates for biocatalytic transformations of aromatic compounds.
Collapse
Affiliation(s)
| | | | | | - Iris Lokhorst
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Maikel Borg
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Peter Fodran
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Leksin I, Shelyakin M, Zakhozhiy I, Kozlova O, Beckett R, Minibayeva F. Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile. PHYSIOLOGIA PLANTARUM 2024; 176:e14512. [PMID: 39221518 DOI: 10.1111/ppl.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.
Collapse
Affiliation(s)
- Ilya Leksin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Mikhail Shelyakin
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Ilya Zakhozhiy
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Olga Kozlova
- Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Richard Beckett
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- University of KwaZulu-Natal, Scottsville, South Africa
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
6
|
Rosabal D, Pino-Bodas R. A Review of Laboratory Requirements to Culture Lichen Mycobiont Species. J Fungi (Basel) 2024; 10:621. [PMID: 39330381 PMCID: PMC11433509 DOI: 10.3390/jof10090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Lichens are symbiotic associations between fungi (the mycobiont) and algae or cyanobacteria (the photobionts). They synthesize a large number of secondary metabolites, many of which are potential sources of novel molecules with pharmacological and industrial applications. The advancement of in vitro culture methods of lichen-forming fungi would allow the comprehensive application of these compounds at large scales, enable improvements in the synthesis, facilitate understanding of the role of the partners in the synthesis of these compounds and increase our knowledge about the genes associated with secondary metabolites production. The aim of this work is to summarize the nutritional and physicochemical requirements that have been used to date to culture different lichen-forming fungi species. In total, the requirements for the cultivation of 110 species are presented. This review can provide a starting point for future experiments and help advance the methods of culturing lichenized fungi. The type of diaspore selected to isolate the mycobiont, the composition of the isolation and culture media and the corresponding physicochemical parameters are essential in designing an efficient lichen culture system, allowing the achievement of a suitable growth of lichen-forming fungi and the subsequent production of secondary metabolites.
Collapse
Affiliation(s)
- Dania Rosabal
- Medical Science Faculty, Saint Joseph University, Roseau ZC 00109-8000, Dominica
| | - Raquel Pino-Bodas
- Biologia, Geologia, Fisica and Quimica Department, Universidad Rey Juan Carlos, 28008 Madrid, Spain;
- Instituto de Investigación en Cambio Global de la Universidad Rey Juan Carlos (IICG-URJC), 28008 Madrid, Spain
| |
Collapse
|
7
|
Zhou R, Liu R, Kang KB, Kim W, Hur JS, Kim H. The Depside Derivative Pericodepside Inhibits Cancer Cell Metastasis and Proliferation by Suppressing Epithelial-Mesenchymal Transition. ACS OMEGA 2024; 9:6828-6836. [PMID: 38371795 PMCID: PMC10870356 DOI: 10.1021/acsomega.3c08136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
A depside derivative, named pericodepside (2), along with the known depside proatranorin III (1), was isolated from the solid cultivation of an Ascochyta rabiei strain that heterologously expresses atr1 and atr2 that are involved in the biosynthesis of atranorin in a fruticose lichen, Stereocaulon alpinum. The structure of 2 was determined by 1D and 2D NMR and MS spectroscopic data. The structure of 2 consisted of a depside-pericosine conjugate, with the depside moiety being identical to that found in 1, suggesting that 1 acted as an intermediate during the formation of 2 through the esterification process. Pericodepside (2) strongly suppressed cell invasion and proliferation by inhibiting epithelial-mesenchymal transition and the transcriptional activities of β-catenin, STAT, and NF-κB in U87 (glioma cancer), MCF-7 (breast cancer), and PC3 (prostate cancer) cell lines.
Collapse
Affiliation(s)
- Rui Zhou
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Rundong Liu
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Kyo Bin Kang
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Wonyong Kim
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
- Department
of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Seoun Hur
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| |
Collapse
|
8
|
Liu R, Paguirigan JA, Hur JS, Kim W. Cercosporamide, a polyketide-derived fungal metabolite, serves as an antifungal agent against phytopathogenic fungi. MYCOSCIENCE 2024; 65:19-27. [PMID: 39239118 PMCID: PMC11371548 DOI: 10.47371/mycosci.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 09/07/2024]
Abstract
An endophytic fungus, Phoma sp. NG-25, produces a set of structurally related polyketides including cercosporamide, phomodione, and usnic acid, among which, cercosporamide has been reported to have strong antifungal and anticancer activities. In this study, Phoma sp. NG-25 was grown in seven growth media to determine the optimal culture condition conducive for cercosporamide production. Cercosporamide production peaked on the eighteenth day of incubation in beef peptone dextrose (BPD) broth media. The cercosporamide titer reached to an average of 77.5 µg/mL in BPD. Paper disk diffusion assay revealed that culture filtrate containing cercosporamide as a major constituent inhibited the growth of taxonomically diverse plant pathogens, including ascomycetous, basidiomycetous, and oomycete fungi. Cercosporamide exhibited strong antifungal activities against two pepper anthracnose pathogens, Colletotrichum gloeosporioides and C. scovillei with EC50 values of 3.8 and 7.0 µg/mL, respectively. This study suggests the potential application of cercosporamide as an effective antifungal agent in controlling anthracnose in pepper.
Collapse
Affiliation(s)
- Rundong Liu
- a Korean Lichen Research Institute, Sunchon National University
| | - Jaycee Augusto Paguirigan
- a Korean Lichen Research Institute, Sunchon National University
- b Department of Biological Sciences, College of Science, University of Santo Tomas
| | - Jae-Seoun Hur
- a Korean Lichen Research Institute, Sunchon National University
| | - Wonyong Kim
- a Korean Lichen Research Institute, Sunchon National University
- c Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University
| |
Collapse
|
9
|
Mlambo G, Padayachee T, Nelson DR, Syed K. Genome-Wide Analysis of the Cytochrome P450 Monooxygenases in the Lichenized Fungi of the Class Lecanoromycetes. Microorganisms 2023; 11:2590. [PMID: 37894248 PMCID: PMC10608907 DOI: 10.3390/microorganisms11102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Lichens are unique organisms that exhibit a permanent symbiosis between fungi and algae or fungi and photosynthetic bacteria. Lichens have been found to produce biotechnologically valuable secondary metabolites. A handful of studies showed that tailoring enzymes such as cytochrome P450 monooxygenases (CYPs/P450s) play a key role in synthesizing these metabolites. Despite the critical role of P450s in the biosynthesis of secondary metabolites, the systematic analysis of P450s in lichens has yet to be reported. This study is aimed to address this research gap. A genome-wide analysis of P450s in five lichens from the fungal class Lecanoromycetes revealed the presence of 434 P450s that are grouped into 178 P450 families and 345 P450 subfamilies. The study indicated that none of the P450 families bloomed, and 15 P450 families were conserved in all five Lecanoromycetes. Lecanoromycetes have more P450s and higher P450 family diversity compared to Pezizomycetes. A total of 73 P450s were found to be part of secondary metabolite gene clusters, indicating their potential involvement in the biosynthesis of secondary metabolites. Annotation of P450s revealed that CYP682BG1 and CYP682BG2 from Cladonia grayi and Pseudevernia furfuracea (physodic acid chemotype) are involved in the synthesis of grayanic acid and physodic acid, CYP65FQ2 from Stereocaulon alpinum is involved in the synthesis of atranorin, and CYP6309A2 from Cladonia uncialis is involved in the synthesis of usnic acid. This study serves as a reference for future annotation of P450s in lichens.
Collapse
Affiliation(s)
- Gugulethu Mlambo
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Vulindlela, KwaDlangezwa 3886, South Africa; (G.M.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Vulindlela, KwaDlangezwa 3886, South Africa; (G.M.); (T.P.)
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Vulindlela, KwaDlangezwa 3886, South Africa; (G.M.); (T.P.)
| |
Collapse
|
10
|
Zhao X, Chen Y, Long T, Liu Z, Zhang Q, Zhang H, Yan Y, Zhang C, Zhu Y. Genome Mining and Biosynthetic Reconstitution of Fungal Depsidone Mollicellins Reveal a Dual Functional Cytochrome P450 for Ether Formation. JOURNAL OF NATURAL PRODUCTS 2023; 86:2046-2053. [PMID: 37566707 DOI: 10.1021/acs.jnatprod.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Depsidones are significant in structural diversity and broad in biological activities; however, their biosynthetic pathways have not been well understood and have attracted considerable attention. Herein, we heterologously reconstituted a depsidone encoding gene cluster from Ovatospora sp. SCSIO SY280D in Aspergillus nidulans A1145, leading to production of mollicellins, a representative family of depsidones, and discovering a bifunctional P450 monooxygenase that catalyzes both ether formation and hydroxylation in the biosynthesis of the mollicellins. The functions of a decarboxylase and an aromatic prenyltransferase are also characterized to understand the tailoring modification steps. This work provides important insights into the biosynthesis of mollicellins.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youzhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ting Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yan Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
11
|
Löhr NA, Rakhmanov M, Wurlitzer JM, Lackner G, Gressler M, Hoffmeister D. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biol Biotechnol 2023; 10:17. [PMID: 37542286 PMCID: PMC10401856 DOI: 10.1186/s40694-023-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Malik Rakhmanov
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
12
|
Paguirigan JAG, Kim JA, Hur JS, Kim W. Identification of a biosynthetic gene cluster for a red pigment cristazarin produced by a lichen-forming fungus Cladonia metacorallifera. PLoS One 2023; 18:e0287559. [PMID: 37352186 PMCID: PMC10289310 DOI: 10.1371/journal.pone.0287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Lichens are known to produce many novel bioactive metabolites. To date, approximately 1,000 secondary metabolites have been discovered, which are predominantly produced by the lichen mycobionts. However, despite the extensive studies on production of lichen secondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs). Here, we identified a putative BGC that is implicated in production of a red pigment, cristazarin (a naphthazarin derivative), in Cladonia metacorallifera. Previously, cristazarin was shown to be specifically induced in growth media containing fructose as a sole carbon source. Thus, we performed transcriptome analysis of C. metacorallifera growing on different carbon sources including fructose to identify the BGC for cristazarin. Among 39 polyketide synthase (PKS) genes found in the genome of C. metacorallifera, a non-reducing PKS (coined crz7) was highly expressed in growth media containing either fructose or glucose. The borders of a cristazarin gene cluster were delimited by co-expression patterns of neighboring genes of the crz7. BGCs highly conserved to the cristazarin BGC were also found in C. borealis and C. macilenta, indicating that these related species also have metabolic potentials to produce cristazarin. Phylogenetic analysis revealed that the Crz7 is sister to fungal PKSs that biosynthesize an acetylated tetrahydoxynaphthalene as a precursor of melanin pigment. Based on the phylogenetic placement of the Crz7 and putative functions of its neighboring genes, we proposed a plausible biosynthetic route for cristazarin. In this study, we identified a lichen-specific BGC that is likely involved in the biosynthesis of a naphthazarin derivative, cristazarin, and confirmed that transcriptome profiling under inducing and non-inducing conditions is an effective strategy for linking metabolites of interest to biosynthetic genes.
Collapse
Affiliation(s)
- Jaycee Augusto Gumiran Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Jung A. Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
13
|
Ahmad N, Ritz M, Calchera A, Otte J, Schmitt I, Brueck T, Mehlmer N. Biosynthetic Potential of Hypogymnia Holobionts: Insights into Secondary Metabolite Pathways. J Fungi (Basel) 2023; 9:546. [PMID: 37233257 PMCID: PMC10219277 DOI: 10.3390/jof9050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus). They are known to produce a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here we provide a comprehensive view of the biosynthetic gene clusters of all organisms comprising a lichen thallus: fungi, green algae, and bacteria. We present two high-quality PacBio metagenomes, in which we identified a total of 460 biosynthetic gene clusters. Lichen mycobionts yielded 73-114 clusters, other lichen associated ascomycetes 8-40, green algae of the genus Trebouxia 14-19, and lichen-associated bacteria 101-105 clusters. The mycobionts contained mainly T1PKSs, followed by NRPSs, and terpenes; Trebouxia reads harbored mainly clusters linked to terpenes, followed by NRPSs and T3PKSs. Other lichen-associated ascomycetes and bacteria contained a mix of diverse biosynthetic gene clusters. In this study, we identified for the first time the biosynthetic gene clusters of entire lichen holobionts. The yet untapped biosynthetic potential of two species of the genus Hypogymnia is made accessible for further research.
Collapse
Affiliation(s)
- Nadim Ahmad
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Manfred Ritz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Thomas Brueck
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
14
|
Norouzi H, Sohrabi M, Yousefi M, Boustie J. Tridepsides as potential bioactives: a review on their chemistry and the global distribution of their lichenic and non-lichenic natural sources. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1088966. [PMID: 37746133 PMCID: PMC10512237 DOI: 10.3389/ffunb.2023.1088966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 09/26/2023]
Abstract
Tridepsides, as fully oxidized polyketides, have been known to exist in lichens for more than a century. Recent studies have showed that these possible defensive lichenochemicals possess various biological activities. Also, a candidate biosynthetic gene cluster was recently reported for gyrophoric acid (GA), an important tridepside. The present study focused on biosynthesis, natural sources, biological activities, and bioanalytical methods of tridepside molecules. Our survey shows that, so far, lichenic tridepsides have been reported from 37 families, 111 genera, and 526 species of lichen. Because many of their species contain tridepsides, the families Parmeliaceae, Lobariaceae, and Peltigeraceae can be considered critical lichenic sources of tridepsides. Furthermore, several species of Hypotrachyna in Parmeliaceae family showed lichenic tridepsides, suggesting that this genus is a viable source of tridepsides. This research also explored tridepsides from non-lichenic sources, such as non-lichenized fungi, lichenicolous fungi, endophytes, parasites, and liverworts, which offer substantial potential as biotechnological sources to produce tridepsides, which are produced in small amounts in lichen thalli. Two lichenic tridepsides have also been detected in non-lichenic sources: GA and tenuiorin (TE). Additionally, no significant correlation was found between tridepside biosynthesis and geographical distribution patterns for several potentially tridepside-producing lichens. We further showed that GA is the most studied tridepside with various reported biological activities, including anticancer, wound healing, photoprotection, anti-aging, antioxidant, cardiovascular effect, DNA interaction, anti-diabetes, anti-Alzheimer's, anti-bacterial, and antifungal. Last but not least, this study provides an overview of some bioanalytical methods used to analyze tridepsides over the past few years.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Horticultural Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Sohrabi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Masoud Yousefi
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Joel Boustie
- Univ Rennes, Centre National de la Recherche Scientifique (CNRS), ISCR (Institut des Sciences Chimiques de Rennes) - Mixed Research Unit (MRU) 6226, Rennes, France
| |
Collapse
|
15
|
Ren M, Jiang S, Wang Y, Pan X, Pan F, Wei X. Discovery and excavation of lichen bioactive natural products. Front Microbiol 2023; 14:1177123. [PMID: 37138611 PMCID: PMC10149937 DOI: 10.3389/fmicb.2023.1177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Lichen natural products are a tremendous source of new bioactive chemical entities for drug discovery. The ability to survive in harsh conditions can be directly correlated with the production of some unique lichen metabolites. Despite the potential applications, these unique metabolites have been underutilized by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability, and technical challenges involved in their artificial cultivation. At the same time, DNA sequence data have revealed that the number of encoded biosynthetic gene clusters in a lichen is much higher than in natural products, and the majority of them are silent or poorly expressed. To meet these challenges, the one strain many compounds (OSMAC) strategy, as a comprehensive and powerful tool, has been developed to stimulate the activation of silent or cryptic biosynthetic gene clusters and exploit interesting lichen compounds for industrial applications. Furthermore, the development of molecular network techniques, modern bioinformatics, and genetic tools is opening up a new opportunity for the mining, modification, and production of lichen metabolites, rather than merely using traditional separation and purification techniques to obtain small amounts of chemical compounds. Heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offer a promising means for a sustainable supply of specialized metabolites. In this review, we summarized the known lichen bioactive metabolites and highlighted the application of OSMAC, molecular network, and genome mining-based strategies in lichen-forming fungi for the discovery of new cryptic lichen compounds.
Collapse
Affiliation(s)
- Meirong Ren
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Shuhua Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Yuan X, Li Y, Luo T, Bi W, Yu J, Wang Y. Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome. MYCOBIOLOGY 2023; 51:36-48. [PMID: 36846628 PMCID: PMC9946308 DOI: 10.1080/12298093.2023.2175428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, Hubei, People’ Republic of China
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Yunqing Li
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Ting Luo
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Wei Bi
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Jiaojun Yu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, Hubei, People’ Republic of China
| | - Yi Wang
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| |
Collapse
|
17
|
Singh G. Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics. J Fungi (Basel) 2023; 9:160. [PMID: 36836275 PMCID: PMC9964704 DOI: 10.3390/jof9020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Lichen secondary metabolites have tremendous pharmaceutical and industrial potential. Although more than 1000 metabolites have been reported from lichens, less than 10 have been linked to the genes coding them. The current biosynthetic research focuses strongly on linking molecules to genes as this is fundamental to adapting the molecule for industrial application. Metagenomic-based gene discovery, which bypasses the challenges associated with culturing an organism, is a promising way forward to link secondary metabolites to genes in non-model, difficult-to-culture organisms. This approach is based on the amalgamation of the knowledge of the evolutionary relationships of the biosynthetic genes, the structure of the target molecule, and the biosynthetic machinery required for its synthesis. So far, metagenomic-based gene discovery is the predominant approach by which lichen metabolites have been linked to their genes. Although the structures of most of the lichen secondary metabolites are well-documented, a comprehensive review of the metabolites linked to their genes, strategies implemented to establish this link, and crucial takeaways from these studies is not available. In this review, I address the following knowledge gaps and, additionally, provide critical insights into the results of these studies, elaborating on the direct and serendipitous lessons that we have learned from them.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, 35122 Padova, Italy
| |
Collapse
|
18
|
Llewellyn T, Nowell RW, Aptroot A, Temina M, Prescott TAK, Barraclough TG, Gaya E. Metagenomics Shines Light on the Evolution of "Sunscreen" Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota). Genome Biol Evol 2023; 15:6986375. [PMID: 36634008 PMCID: PMC9907504 DOI: 10.1093/gbe/evad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Fungi produce a vast number of secondary metabolites that shape their interactions with other organisms and the environment. Characterizing the genes underpinning metabolite synthesis is therefore key to understanding fungal evolution and adaptation. Lichenized fungi represent almost one-third of Ascomycota diversity and boast impressive secondary metabolites repertoires. However, most lichen biosynthetic genes have not been linked to their metabolite products. Here we used metagenomic sequencing to survey gene families associated with production of anthraquinones, UV-protectant secondary metabolites present in various fungi, but especially abundant in a diverse order of lichens, the Teloschistales (class Lecanoromycetes, phylum Ascomycota). We successfully assembled 24 new, high-quality lichenized-fungal genomes de novo and combined them with publicly available Lecanoromycetes genomes from taxa with diverse secondary chemistry to produce a whole-genome tree. Secondary metabolite biosynthetic gene cluster (BGC) analysis showed that whilst lichen BGCs are numerous and highly dissimilar, core enzyme genes are generally conserved across taxa. This suggests metabolite diversification occurs via re-shuffling existing enzyme genes with novel accessory genes rather than BGC gains/losses or de novo gene evolution. We identified putative anthraquinone BGCs in our lichen dataset that appear homologous to anthraquinone clusters from non-lichenized fungi, suggesting these genes were present in the common ancestor of the subphylum Pezizomycotina. Finally, we identified unique transporter genes in Teloschistales anthraquinone BGCs that may explain why these metabolites are so abundant and ubiquitous in these lichens. Our results support the importance of metagenomics for understanding the secondary metabolism of non-model fungi such as lichens.
Collapse
Affiliation(s)
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Andre Aptroot
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Marina Temina
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Mount Carmel, Haifa, 3498838, Israel
| | - Thomas A K Prescott
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| |
Collapse
|
19
|
Kalra R, Conlan XA, Goel M. Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnol Adv 2023; 62:108072. [PMID: 36464145 DOI: 10.1016/j.biotechadv.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Several research studies have shown that lichens are productive organisms for the synthesis of a broad range of secondary metabolites. Lichens are a self-sustainable stable microbial ecosystem comprising an exhabitant fungal partner (mycobiont) and at least one or more photosynthetic partners (photobiont). The successful symbiosis is responsible for their persistence throughout time and allows all the partners (holobionts) to thrive in many extreme habitats, where without the synergistic relationship they would be rare or non-existent. The ability to survive in harsh conditions can be directly correlated with the production of some unique metabolites. Despite the potential applications, these unique metabolites have been underutilised by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability and technical challenges involved in their artificial cultivation. However, recent development of biotechnological tools such as molecular phylogenetics, modern tissue culture techniques, metabolomics and molecular engineering are opening up a new opportunity to exploit these compounds within the lichen holobiome for industrial applications. This review also highlights the recent advances in culturing the symbionts and the computational and molecular genetics approaches of lichen gene regulation recognized for the enhanced production of target metabolites. The recent development of multi-omics novel biodiscovery strategies aided by synthetic biology in order to study the heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offers a promising means for a sustainable supply of specialized metabolites.
Collapse
Affiliation(s)
- Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India.
| |
Collapse
|
20
|
Egbert S, Hoffman JR, McMullin RT, Lendemer JC, Sorensen JL. Unraveling usnic acid: a comparison of biosynthetic gene clusters between two reindeer lichen (Cladonia rangiferina and C. uncialis). Fungal Biol 2022; 126:697-706. [PMID: 36517138 DOI: 10.1016/j.funbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Lichenized fungi are known for their production of a diversity of secondary metabolites, many of which have broad biological and pharmacological applications. By far the most well-studied of these metabolites is usnic acid. While this metabolite has been well-known and researched for decades, the gene cluster responsible for its production was only recently identified from the species Cladonia uncialis. Usnic acid production varies considerably in the genus Cladonia, even among closely related taxa, and many species, such as C. rangiferina, have been inferred to be incapable of producing the metabolite based on analysis by thin-layer chromatography (TLC). We sequenced and examined the usnic acid biosynthetic gene clusters, or lack thereof, from four closely related Cladonia species (C. oricola, C. rangiferina, C. stygia, and C. subtenuis), and compare them against those of C. uncialis. We complement this comparison with tiered chemical profile analyses to confirm the presence or absence of usnic acid in select samples, using both HPLC and LC-MS. Despite long-standing reporting that C. rangiferina lacks the ability to produce usnic acid, we observed functional gene clusters from the species and detected usnic acid when extracts were examined by LC-MS. By contrast, C. stygia and C. oricola, have been previously described as lacking the ability to produce usnic acid, lacked the gene cluster entirely, and no usnic acid could be detected in C. oricola extracts via HPLC or LC-MS. This work suggests that chemical profiles attained through inexpensive and low-sensitivity methods like TLC may fail to detect low abundance metabolites that can be taxonomically informative. This study also bolsters understanding of the usnic acid gene cluster in lichens, revealing differences among domains of the polyketide synthase which may explain observed differences in expression. These results reinforce the need for comprehensive characterization of lichen secondary metabolite profiles with sensitive LC-MS methods.
Collapse
Affiliation(s)
- Susan Egbert
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jordan R Hoffman
- Department of Biology, Graduate Center, City University of New York, The New York, USA; Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - R Troy McMullin
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario, K1P 6P4, Canada
| | - James C Lendemer
- Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA.
| | - John L Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
21
|
Chen L, Wei X, Matsuda Y. Depside Bond Formation by the Starter-Unit Acyltransferase Domain of a Fungal Polyketide Synthase. J Am Chem Soc 2022; 144:19225-19230. [PMID: 36223511 DOI: 10.1021/jacs.2c08585] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Depsides are polyphenolic molecules comprising two or more phenolic acid derivatives linked by an ester bond, which is called a depside bond in these molecules. Despite more than a century of intensive research on depsides, the biosynthetic mechanism of depside bond formation remains unclear. In this study, we discovered a polyketide synthase, DrcA, from the fungus Aspergillus duricaulis CBS 481.65 and found that DrcA synthesizes CJ-20,557 (1), a heterodimeric depside composed of 3-methylorsellinic acid and 3,5-dimethylorsellinic acid. Moreover, we determined that depside bond formation is catalyzed by the starter-unit acyltransferase (SAT) domain of DrcA. Remarkably, this is a previously undescribed form of SAT domain chemistry. Further investigation revealed that 1 is transformed into duricamidepside (2), a depside-amino acid conjugate, by the single-module nonribosomal peptide synthetase DrcB.
Collapse
Affiliation(s)
- Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
22
|
Singh G, Dal Grande F, Schmitt I. Genome mining as a biotechnological tool for the discovery of novel biosynthetic genes in lichens. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:993171. [PMID: 37746187 PMCID: PMC10512267 DOI: 10.3389/ffunb.2022.993171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 09/26/2023]
Abstract
Natural products (NPs) and their derivatives are a major contributor to modern medicine. Historically, microorganisms such as bacteria and fungi have been instrumental in generating drugs and lead compounds because of the ease of culturing and genetically manipulating them. However, the ever-increasing demand for novel drugs highlights the need to bioprospect previously unexplored taxa for their biosynthetic potential. Next-generation sequencing technologies have expanded the range of organisms that can be explored for their biosynthetic content, as these technologies can provide a glimpse of an organism's entire biosynthetic landscape, without the need for cultivation. The entirety of biosynthetic genes can be compared to the genes of known function to identify the gene clusters potentially coding for novel products. In this study, we mine the genomes of nine lichen-forming fungal species of the genus Umbilicaria for biosynthetic genes, and categorize the biosynthetic gene clusters (BGCs) as "associated product structurally known" or "associated product putatively novel". Although lichen-forming fungi have been suggested to be a rich source of NPs, it is not known how their biosynthetic diversity compares to that of bacteria and non-lichenized fungi. We found that 25%-30% of biosynthetic genes are divergent as compared to the global database of BGCs, which comprises 1,200,000 characterized biosynthetic genes from plants, bacteria, and fungi. Out of 217 BGCs, 43 were highly divergant suggesting that they potentially encode structurally and functionally novel NPs. Clusters encoding the putatively novel metabolic diversity comprise polyketide synthases (30), non-ribosomal peptide synthetases (12), and terpenes (1). Our study emphasizes the utility of genomic data in bioprospecting microorganisms for their biosynthetic potential and in advancing the industrial application of unexplored taxa. We highlight the untapped structural metabolic diversity encoded in the lichenized fungal genomes. To the best of our knowledge, this is the first investigation identifying genes coding for NPs with potentially novel properties in lichenized fungi.
Collapse
Affiliation(s)
- Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padova, Italy
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padova, Italy
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Institute of Ecology, Diversity and Evolution, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
23
|
A Candidate Gene Cluster for the Bioactive Natural Product Gyrophoric Acid in Lichen-Forming Fungi. Microbiol Spectr 2022; 10:e0010922. [PMID: 35867425 PMCID: PMC9430680 DOI: 10.1128/spectrum.00109-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Natural products of lichen-forming fungi are structurally diverse and have a variety of medicinal properties. Despite this, they have limited implementation in industry mostly because the corresponding genes are unknown for most of their natural products. Here, we implement a long-read sequencing and bioinformatic approach to identify the putative biosynthetic gene cluster of the bioactive natural product gyrophoric acid (GA). Using 15 high-quality genomes representing nine GA-producing species of the lichen-forming fungal genus Umbilicaria, we identify the most likely GA cluster and investigate the cluster gene organization and composition across the nine species. Our results show that GA clusters are promiscuous within Umbilicaria, and only three genes are conserved across species, including the polyketide synthase (PKS) gene. In addition, our results suggest that the same cluster codes for different, but structurally similar compounds, namely, GA, umbilicaric-, and hiascic acid, bringing new evidence that lichen metabolite diversity is also generated through regulatory mechanisms at the molecular level. Ours is the first study to identify the most likely GA cluster and, thus, provides essential information to open new avenues for biotechnological approaches to producing and modifying GA and similar lichen-derived compounds. GA PKS is the first tridepside PKS to be identified. IMPORTANCE The implementation of natural products in the pharmaceutical industry relies on the possibility of modifying the natural product (NP) pathway to optimize yields and pharmacological effects. Characterization of genes and pathways underlying natural product biosynthesis is a major bottleneck for exploiting the medicinal properties of the natural products. Genome mining is a promising and relatively cost- and time-effective approach to utilize unexplored NP resources for drug discovery. In this study, we identify the most likely gene cluster for the lichen-forming fungal depside gyrophoric acid in nine Umbilicaria species. This compound shows cytotoxic and antiproliferative properties against several cancer cell lines and is also a broad-spectrum antimicrobial agent. This information paves the way for generating GA analogs with modified properties by selective activation/deactivation of genes.
Collapse
|
24
|
Mosunova OV, Navarro-Muñoz JC, Haksar D, van Neer J, Hoeksma J, den Hertog J, Collemare J. Evolution-Informed Discovery of the Naphthalenone Biosynthetic Pathway in Fungi. mBio 2022; 13:e0022322. [PMID: 35616333 PMCID: PMC9239057 DOI: 10.1128/mbio.00223-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Fungi produce a wide diversity of secondary metabolites with interesting biological activities for the health, industrial, and agricultural sectors. While fungal genomes have revealed an unexpectedly high number of biosynthetic pathways that far exceeds the number of known molecules, accessing and characterizing this hidden diversity remain highly challenging. Here, we applied a combined phylogenetic dereplication and comparative genomics strategy to explore eight lichenizing fungi. The determination of the evolutionary relationships of aromatic polyketide pathways resulted in the identification of an uncharacterized biosynthetic pathway that is conserved in distant fungal lineages. The heterologous expression of the homologue from Aspergillus parvulus linked this pathway to naphthalenone compounds, which were detected in cultures when the pathway was expressed. Our unbiased and rational strategy generated evolutionary knowledge that ultimately linked biosynthetic genes to naphthalenone polyketides. Applied to many more genomes, this approach can unlock the full exploitation of the fungal kingdom for molecule discovery. IMPORTANCE Fungi have provided us with life-changing small bioactive molecules, with the best-known examples being the first broad-spectrum antibiotic penicillin, immunosuppressive cyclosporine, and cholesterol-lowering statins. Since the 1980s, exploration of chemical diversity in nature has been highly reduced. However, the genomic era has revealed that fungal genomes are concealing an unexpected and largely unexplored chemical diversity. So far, fungal genomes have been exploited to predict the production potential of bioactive compounds or to find genes that control the production of known molecules of interest. But accessing and characterizing the full fungal chemical diversity require rational and, thus, efficient strategies. Our approach is to first determine the evolutionary relationships of fungal biosynthetic pathways in order to identify those that are already characterized and those that show a different evolutionary origin. This knowledge allows prioritizing the choice of the pathway to functionally characterize in a second stage using synthetic-biology tools like heterologous expression. A particular strength of this strategy is that it is always successful: it generates knowledge about the evolution of bioactive-molecule biosynthesis in fungi, it either yields novel molecules or links the studied pathway to already known molecules, and it reveals the chemical diversity within a given pathway, all at once. The strategy is very powerful to avoid studying the same pathway again and can be used with any fungal genome. Functional characterization using heterologous expression is particularly suitable for fungi that are difficult to grow or not genetically tractable. Thanks to the decreasing cost of gene synthesis, ultimately, only the genome sequence is needed to identify novel pathways and characterize the molecules that they produce. Such an evolution-informed strategy allows the efficient exploitation of the chemical diversity hidden in fungal genomes and is very promising for molecule discovery.
Collapse
Affiliation(s)
- Olga V. Mosunova
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Diksha Haksar
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jacq van Neer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen den Hertog
- University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
25
|
Abstract
Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum. Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa, which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum. Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encoding hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction.
Collapse
|
26
|
Prokopiev I, Chesnokov S, Serebryakov E, Konoreva L. Chemical variation in the Arctoparmelia separata (Parmeliaceae, Lichenized Ascomycota). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Gerasimova JV, Beck A, Werth S, Resl P. High Diversity of Type I Polyketide Genes in Bacidia rubella as Revealed by the Comparative Analysis of 23 Lichen Genomes. J Fungi (Basel) 2022; 8:449. [PMID: 35628705 PMCID: PMC9146135 DOI: 10.3390/jof8050449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Fungi involved in lichen symbioses produce a large array of secondary metabolites that are often diagnostic in the taxonomic delimitation of lichens. The most common lichen secondary metabolites-polyketides-are synthesized by polyketide synthases, particularly by Type I PKS (TI-PKS). Here, we present a comparative genomic analysis of the TI-PKS gene content of 23 lichen-forming fungal genomes from Ascomycota, including the de novo sequenced genome of Bacidia rubella. Firstly, we identify a putative atranorin cluster in B. rubella. Secondly, we provide an overview of TI-PKS gene diversity in lichen-forming fungi, and the most comprehensive Type I PKS phylogeny of lichen-forming fungi to date, including 624 sequences. We reveal a high number of biosynthetic gene clusters and examine their domain composition in the context of previously characterized genes, confirming that PKS genes outnumber known secondary substances. Moreover, two novel groups of reducing PKSs were identified. Although many PKSs remain without functional assignments, our findings highlight that genes from lichen-forming fungi represent an untapped source of novel polyketide compounds.
Collapse
Affiliation(s)
- Julia V. Gerasimova
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
| | - Andreas Beck
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Institute of Biology, University of Graz, 8010 Graz, Austria
| |
Collapse
|
28
|
Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. Int J Mol Sci 2022; 23:ijms23073686. [PMID: 35409046 PMCID: PMC8998291 DOI: 10.3390/ijms23073686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
The strategies of genetic dereplication and manipulation of epigenetic regulators to activate the cryptic gene clusters are effective to discover natural products with novel structure in filamentous fungi. In this study, a combination of genetic dereplication (deletion of pesthetic acid biosynthetic gene, PfptaA) and manipulation of epigenetic regulators (deletion of histone methyltransferase gene PfcclA and histone deacetylase gene PfhdaA) was developed in plant endophytic fungus Pestalotiopsis fici. The deletion of PfptaA with PfcclA and/or PfhdaA led to isolation of 1 novel compound, pestaloficiol X (1), as well as another 11 known compounds with obvious yield changes. The proposed biosynthesis pathway of pestaloficiol X was speculated using comparative analysis of homologous biosynthetic gene clusters. Moreover, phenotypic effects on the conidial development and response to oxidative stressors in the mutants were explored. Our results revealed that the new strain with deletion of PfcclA or PfhdaA in ΔPfptaA background host can neutralise the hyperformation of conidia in the PfptaA mutant, and that the ΔPfptaA ΔPfhdaA mutant was generally not sensitive to oxidative stressors as much as the ΔPfptaA ΔcclA mutant in comparison with the single mutant ΔPfptaA or the parental strains. This combinatorial approach can be applied to discover new natural products in filamentous fungi.
Collapse
|
29
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
30
|
Paguirigan JA, Liu R, Im SM, Hur JS, Kim W. Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens. THE PLANT PATHOLOGY JOURNAL 2022; 38:25-32. [PMID: 35144359 PMCID: PMC8831355 DOI: 10.5423/ppj.oa.12.2021.0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Plant pathogens pose major threats on agriculture and horticulture, causing significant economic loss worldwide. Due to the continuous and excessive use of synthetic pesticides, emergence of pesticide resistant pathogens has become more frequent. Thus, there is a growing needs for environmentally-friendly and selective antimicrobial agents with a novel mode of action, which may be used in combination with conventional pesticides to delay development of pesticide resistance. In this study, we evaluated the potentials of lichen substances as novel biopesticides against eight bacterial and twelve fungal plant pathogens that have historically caused significant phytopathological problems in South Korea. Eight lichen substances of diverse chemical origins were extracted from axenic culture or dried specimen, and further purified for comparative analysis of their antimicrobial properties. Usnic acid and vulpinic acid exhibited strong antibacterial activities against Clavibacter michiganensis subsp. michiganensis. In addition, usnic acid and vulpinic acid were highly effective in the growth inhibition of fungal pathogens, such as Diaporthe eres, D. actinidiae, and Sclerotinia sclerotiorum. Intriguingly, the growth of Rhizoctonia solani was specifically inhibited by lecanoric acid, indicating that lichen substances exhibit some degrees of selectivity to plant pathogens. These results suggested that lichen substance can be used as a selective biopesticide for controlling plant disease of agricultural and horticultural significance, minimizing possible emergence of pesticide resistant pathogens in fields.
Collapse
Affiliation(s)
- Jaycee A. Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Boulevard, Manila 1008,
Philippines
| | - Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| | - Seong Mi Im
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| |
Collapse
|
31
|
Depside and Depsidone Synthesis in Lichenized Fungi Comes into Focus through a Genome-Wide Comparison of the Olivetoric Acid and Physodic Acid Chemotypes of Pseudevernia furfuracea. Biomolecules 2021; 11:biom11101445. [PMID: 34680078 PMCID: PMC8533459 DOI: 10.3390/biom11101445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Primary biosynthetic enzymes involved in the synthesis of lichen polyphenolic compounds depsides and depsidones are non-reducing polyketide synthases (NR-PKSs), and cytochrome P450s. However, for most depsides and depsidones the corresponding PKSs are unknown. Additionally, in non-lichenized fungi specific fatty acid synthases (FASs) provide starters to the PKSs. Yet, the presence of such FASs in lichenized fungi remains to be investigated. Here we implement comparative genomics and metatranscriptomics to identify the most likely PKS and FASs for olivetoric acid and physodic acid biosynthesis, the primary depside and depsidone defining the two chemotypes of the lichen Pseudevernia furfuracea. We propose that the gene cluster PF33-1_006185, found in both chemotypes, is the most likely candidate for the olivetoric acid and physodic acid biosynthesis. This is the first study to identify the gene cluster and the FAS likely responsible for olivetoric acid and physodic acid biosynthesis in a lichenized fungus. Our findings suggest that gene regulation and other epigenetic factors determine whether the mycobiont produces the depside or the depsidone, providing the first direct indication that chemotype diversity in lichens can arise through regulatory and not only through genetic diversity. Combining these results and existing literature, we propose a detailed scheme for depside/depsidone synthesis.
Collapse
|