1
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Phelps GA, Cheramie MN, Fernando DM, Selchow P, Meyer CJ, Waidyarachchi SL, Dharuman S, Liu J, Meuli M, Molin MD, Killam BY, Murphy PA, Reeve SM, Wilt LA, Anderson SM, Yang L, Lee RB, Temrikar ZH, Lukka PB, Meibohm B, Polikanov YS, Hobbie SN, Böttger EC, Sander P, Lee RE. Development of 2nd generation aminomethyl spectinomycins that overcome native efflux in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2024; 121:e2314101120. [PMID: 38165935 PMCID: PMC10786304 DOI: 10.1073/pnas.2314101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/11/2023] [Indexed: 01/04/2024] Open
Abstract
Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.
Collapse
Affiliation(s)
- Gregory A. Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN38103
| | - Martin N. Cheramie
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Dinesh M. Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Christopher J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Samanthi L. Waidyarachchi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Benjamin Y. Killam
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Patricia A. Murphy
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Laura A. Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Shelby M. Anderson
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Robin B. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Zaid H. Temrikar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Pradeep B. Lukka
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL60607
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
4
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
5
|
Bolden N, Mell JC, Logan JB, Planet PJ. Phylogenomics of nontuberculous mycobacteria respiratory infections in people with cystic fibrosis. Paediatr Respir Rev 2023; 46:63-70. [PMID: 36828670 PMCID: PMC10659050 DOI: 10.1016/j.prrv.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Nontuberculous mycobacteria (NTM) can cause severe pulmonary disease in people with cystic fibrosis (pwCF). These infections present unique challenges for diagnosis and treatment, prompting a recent interest in understanding NTM transmission and pathogenesis during chronic infection. Major gaps remain in our knowledge regarding basic pathogenesis, immune evasion strategies, population dynamics, recombination potential, and the evolutionary implications of host and antibiotic pressures of long-term NTM infections in pwCF. Phylogenomic techniques have emerged as an important tool for tracking global patterns of transmission and are beginning to be used to ask fundamental biological questions about adaptation to the host during pathogenesis. In this review, we discuss the burden of NTM lung disease (NTM-LD), highlight the use of phylogenomics in NTM research, and address the clinical implications associated with these studies.
Collapse
Affiliation(s)
- Nicholas Bolden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Joshua Chang Mell
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, United States; Department of Microbiology & Immunology, Drexel University, Philadelphia, PA, United States.
| | - Jennifer Bouso Logan
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pulmonary Medicine and Cystic Fibrosis Center, Lehigh Valley Reilly Children's Hospital, PA, United States.
| | - Paul J Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Comparative Genomics, American Museum of Natural History, New York, NY, United States.
| |
Collapse
|
6
|
Rudzite M, Subramoni S, Endres RG, Filloux A. Effectiveness of Pseudomonas aeruginosa type VI secretion system relies on toxin potency and type IV pili-dependent interaction. PLoS Pathog 2023; 19:e1011428. [PMID: 37253075 PMCID: PMC10281587 DOI: 10.1371/journal.ppat.1011428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023] Open
Abstract
The type VI secretion system (T6SS) is an antibacterial weapon that is used by numerous Gram-negative bacteria to gain competitive advantage by injecting toxins into adjacent prey cells. Predicting the outcome of a T6SS-dependent competition is not only reliant on presence-absence of the system but instead involves a multiplicity of factors. Pseudomonas aeruginosa possesses 3 distinct T6SSs and a set of more than 20 toxic effectors with diverse functions including disruption of cell wall integrity, degradation of nucleic acids or metabolic impairment. We generated a comprehensive collection of mutants with various degrees of T6SS activity and/or sensitivity to each individual T6SS toxin. By imaging whole mixed bacterial macrocolonies, we then investigated how these P. aeruginosa strains gain a competitive edge in multiple attacker/prey combinations. We observed that the potency of single T6SS toxin varies significantly from one another as measured by monitoring the community structure, with some toxins acting better in synergy or requiring a higher payload. Remarkably the degree of intermixing between preys and attackers is also key to the competition outcome and is driven by the frequency of contact as well as the ability of the prey to move away from the attacker using type IV pili-dependent twitching motility. Finally, we implemented a computational model to better understand how changes in T6SS firing behaviours or cell-cell contacts lead to population level competitive advantages, thus providing conceptual insight applicable to all types of contact-based competition.
Collapse
Affiliation(s)
- Marta Rudzite
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Robert G. Endres
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
7
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
8
|
Prieto MD, Jang J, Franciosi AN, Av-Gay Y, Bach H, Tebbutt SJ, Quon BS. Whole blood RNA-seq demonstrates an increased host immune response in individuals with cystic fibrosis who develop nontuberculous mycobacterial pulmonary disease. PLoS One 2022; 17:e0278296. [PMID: 36480571 PMCID: PMC9731410 DOI: 10.1371/journal.pone.0278296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Individuals with cystic fibrosis have an elevated lifetime risk of colonization, infection, and disease caused by nontuberculous mycobacteria. A prior study involving non-cystic fibrosis individuals reported a gene expression signature associated with susceptibility to nontuberculous mycobacteria pulmonary disease (NTM-PD). In this study, we determined whether people living with cystic fibrosis who progress to NTM-PD have a gene expression pattern similar to the one seen in the non-cystic fibrosis population. METHODS We evaluated whole blood transcriptomics using bulk RNA-seq in a cohort of cystic fibrosis patients with samples collected closest in timing to the first isolation of nontuberculous mycobacteria. The study population included patients who did (n = 12) and did not (n = 30) develop NTM-PD following the first mycobacterial growth. Progression to NTM-PD was defined by a consensus of two expert clinicians based on reviewing clinical, microbiological, and radiological information. Differential gene expression was determined by DESeq2. RESULTS No differences in demographics or composition of white blood cell populations between groups were identified at baseline. Out of 213 genes associated with NTM-PD in the non-CF population, only two were significantly different in our cystic fibrosis NTM-PD cohort. Gene set enrichment analysis of the differential expression results showed that CF individuals who developed NTM-PD had higher expression levels of genes involved in the interferon (α and γ), tumor necrosis factor, and IL6-STAT3-JAK pathways. CONCLUSION In contrast to the non-cystic fibrosis population, the gene expression signature of patients with cystic fibrosis who develop NTM-PD is characterized by increased innate immune responses.
Collapse
Affiliation(s)
- Miguel Dario Prieto
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Jiah Jang
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Alessandro N. Franciosi
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Horacio Bach
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott J. Tebbutt
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, British Columbia, Canada
| | - Bradley S. Quon
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
9
|
Wong SL, Pandzic E, Kardia E, Allan KM, Whan RM, Waters SA. Quantifying Intracellular Viral Pathogen: Specimen Preparation, Visualization and Quantification of Multiple Immunofluorescent Signals in Fixed Human Airway Epithelium Cultured at Air-Liquid Interface. J Pers Med 2022; 12:jpm12101668. [PMID: 36294807 PMCID: PMC9605096 DOI: 10.3390/jpm12101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Infection control and aggressive antibiotic therapy play an important role in the management of airway infections in individuals with cystic fibrosis (CF). The responses of airway epithelial cells to pathogens are likely to contribute to the pathobiology of CF lung disease. Primary airway epithelial cells obtained from individuals with CF, cultured and differentiated at air-liquid interface (ALI), effectively mimic the structure and function of the in vivo airway epithelium. With the recent respiratory viral pandemics, ALI cultures were extensively used to model respiratory infections in vitro to facilitate physiologically relevant respiratory research. Immunofluorescence staining and imaging were used as an effective tool to provide a fundamental understanding of host–pathogen interactions and for exploring the therapeutic potential of novel or repurposed drugs. Therefore, we described an optimized quantitative fluorescence microscopy assay for the wholemount staining and imaging of epithelial cell markers to identify distinct cell populations and pathogen-specific targets in ALI cultures of human airway epithelial cells grown on permeable support insert membranes. We present a detailed methodology using a graphical user interface (GUI) package to quantify the detected signals on a tiled whole membrane. Our method provided an imaging strategy of the entire membrane, overcoming the common issue of undersampling and enabling unbiased quantitative analysis.
Collapse
Affiliation(s)
- Sharon L. Wong
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Egi Kardia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Katelin M. Allan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Correspondence:
| |
Collapse
|
10
|
Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health. Microorganisms 2022; 10:microorganisms10081516. [PMID: 35893574 PMCID: PMC9332762 DOI: 10.3390/microorganisms10081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) represent an important group of environmentally saprophytic and potentially pathogenic bacteria that can cause serious mycobacterioses in humans and animals. The sources of infections often remain undetected except for soil- or water-borne, water-washed, water-based, or water-related infections caused by groups of the Mycobacterium (M.) avium complex; M. fortuitum; and other NTM species, including M. marinum infection, known as fish tank granuloma, and M. ulcerans infection, which is described as a Buruli ulcer. NTM could be considered as water-borne, air-borne, and soil-borne pathogens (sapronoses). A lot of clinically relevant NTM species could be considered due to the enormity of published data on permanent, periodic, transient, and incidental sapronoses. Interest is currently increasing in mycobacterioses diagnosed in humans and husbandry animals (esp. pigs) caused by NTM species present in peat bogs, potting soil, garden peat, bat and bird guano, and other matrices used as garden fertilizers. NTM are present in dust particles and in water aerosols, which represent certain factors during aerogenous infection in immunosuppressed host organisms during hospitalization, speleotherapy, and leisure activities. For this Special Issue, a collection of articles providing a current view of the research on NTM-including the clinical relevance, therapy, prevention of mycobacterioses, epidemiology, and ecology-are addressed.
Collapse
|
11
|
Wang G, Stapleton JT, Baker AW, Rouphael N, Creech CB, El Sahly HM, Stout JE, Jackson L, Charbek E, Leyva FJ, Tomashek KM, Tibbals M, Miller A, Frey S, Niemotka S, Wiemken TL, Beydoun N, Alaaeddine G, Turner N, Walter EB, Chamberland R, Abate G. Clinical features and treatment outcomes of pulmonary Mycobacterium avium-intracellulare complex with and without co-infections. Open Forum Infect Dis 2022; 9:ofac375. [PMID: 35959208 PMCID: PMC9361173 DOI: 10.1093/ofid/ofac375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Coinfections are more common in patients with cystic fibrosis and bronchiectasis. Infiltrates on imaging studies are seen more commonly in patients with coinfections, but coinfections did not affect treatment outcomes of pulmonary Mycobacterium avium complex.
Collapse
Affiliation(s)
- Grace Wang
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Jack T Stapleton
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Arthur W Baker
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Nadine Rouphael
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hana M El Sahly
- Baylor College of Medicine, Human Vaccine Institute, Houston, Texas, USA
| | - Jason E Stout
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Lisa Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Edward Charbek
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Francisco J Leyva
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kay M Tomashek
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Melinda Tibbals
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aaron Miller
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Sharon Frey
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Samson Niemotka
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Timothy L Wiemken
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Nour Beydoun
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ghina Alaaeddine
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas Turner
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Robin Chamberland
- Department of Pathology, Division of Clinical Pathology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Getahun Abate
- Correspondence: Getahun Abate, MD, PhD, Department of Internal Medicine, Saint Louis University, 1100 S Grand Blvd, Saint Louis, MO 63104, USA ()
| |
Collapse
|
12
|
Nontuberculous Mycobacterial Lung Disease in the Patients with Cystic Fibrosis—A Challenging Diagnostic Problem. Diagnostics (Basel) 2022; 12:diagnostics12071514. [PMID: 35885420 PMCID: PMC9316837 DOI: 10.3390/diagnostics12071514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Cystic fibrosis (CF) is an autosomal, recessive genetic disorder, caused by a mutation in the cystic fibrosis transmembrane conductance receptor regulator (CFTR) gene. Dysregulated mucous production, and decreased bronchial mucociliary clearance, results in increased susceptibility to bacterial and fungal infections. Recently, nontuberculous mycobacteria (NTM) infections were identified as an emerging clinical problem in CF patients. Aim: The aim of the present study was to assess the frequency of NTM isolations in CF patients hospitalized in the pulmonary department, serving as a hospital CF center, and to describe challenges concerning the recognition of NTMLD (nontuberculous mycobacterial lung disease) in those patients. Methods: Consecutive CF patients, who were hospitalized due to pulmonary exacerbations (PEX), in a single CF center, between 2010 and 2020, were retrospectively assessed for the presence of NTM in respiratory specimens. Clinical and radiological data were retrospectively reviewed. Results: Positive respiratory specimen cultures for NTM were obtained in 11 out of 151 patients (7%), mean age—35.7 years, mean BMI—20.2 kg/m2, mean FEV1—58.6% pred. Cultures and phenotyping revealed the presence of Mycobacterium avium (M. avium)—in six patients, Mycobacterium chimaera (M. chimaera) in two, Mycobacterium kansasii (M. kansasii)—in one, Mycobacterium abscessus (M. abscessus)—in one, Mycobacterium lentifavum (M. lentiflavum)—in one. Simultaneously, respiratory cultures were positive for fungi in 91% of patients: Candida albicans (C. albicans)—in 82%, Aspergillus fumigatus (A. fumigatus)—in 45%. Clinical signs of NTMLD were non—specific, chest CT indicated NTMLD in five patients only. Conclusion: Due to non-specific clinical presentation, frequent sputum cultures for NTM and analysis of serial chest CT examinations are crucial for NTMLD recognition in CF patients. Further studies concerning the predictive role of fungal pathogens for NTMLD development in CF patients are needed.
Collapse
|
13
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
14
|
Lv Q, Elders BBLJ, Warris A, Caudri D, Ciet P, Tiddens HAWM. Aspergillus-related lung disease in people with cystic fibrosis: can imaging help us to diagnose disease? Eur Respir Rev 2021; 30:30/162/210103. [PMID: 34789463 DOI: 10.1183/16000617.0103-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
In people with cystic fibrosis (PwCF), viscous sputum and dysfunction of the mucociliary escalator leads to early and chronic infections. The prevalence of Aspergillus fumigatus in sputum is high in PwCF and the contribution of A. fumigatus to the progression of structural lung disease has been reported. However, overall, relatively little is known about the contribution of A. fumigatus to CF lung disease. More knowledge is needed to aid clinical decisions on whether to start antifungal treatment. In this review, we give an overview of A. fumigatus colonisation and infection in PwCF and the different types of pulmonary disease caused by it. Furthermore, we discuss the current evidence for structural lung damage associated with A. fumigatus in PwCF on chest computed tomography and magnetic resonance imaging. We conclude that radiological outcomes to identify disease caused by A. fumigatus can be important for clinical studies and management.
Collapse
Affiliation(s)
- Qianting Lv
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Bernadette B L J Elders
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Daan Caudri
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands .,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|