1
|
Grossman AS, Lei L, Botting JM, Liu J, Nahar N, Souza JGS, Liu J, McLean JS, He X, Bor B. Saccharibacteria deploy two distinct Type IV pili, driving episymbiosis, host competition, and twitching motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624915. [PMID: 39651235 PMCID: PMC11623550 DOI: 10.1101/2024.11.25.624915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions. To test this, we targeted T4P pilin genes in Saccharibacteria Nanosynbacter lyticus strain TM7x to assess their essentiality and roles in symbiosis. Our results revealed that N. lyticus assembles two distinct T4P, a non-essential thin pili that has the smallest diameter of any T4P and contributes to host-binding, episymbiont growth, and competitive fitness relative to other Saccharibacteria, and an essential thick pili whose functions include twitching motility. Identification of lectin-like minor pilins and modification of host cell walls suggest glycan binding mechanisms. Collectively our findings demonstrate that Saccharibacteria encode unique extracellular pili that are vital mediators of their underexplored episymbiotic lifestyle.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Lei Lei
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610093, China
| | - Jack M Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Nusrat Nahar
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - João Gabriel S Souza
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, Guarulhos, São Paulo 07023-070, Brazil
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle WA, 98109, USA
- Department of Periodontics, University of Washington, Seattle WA, 98195, USA
- Department of Oral Health Sciences, University of Washington, Seattle WA, 98195, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| |
Collapse
|
2
|
Tian Y, Liu N, Zhao X, Mei X, Zhang L, Huang J, Hua D. Construction of Anthocyanin Biosynthesis System Using Chalcone as a Substrate in Lactococcus lactis NZ9000. J Basic Microbiol 2024; 64:e2400274. [PMID: 39072774 DOI: 10.1002/jobm.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Anthocyanins are high-value natural compounds, but to date, their production still mainly relies on extraction from plants. A five-step metabolic pathway was constructed in probiotic Lactococcus lactis NZ9000 for rapid, stable, and glycosylated anthocyanin biosynthesis using chalcone as a substrate. The genes were cloned from anthocyanin-rich blueberry: chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and UDPG-flavonoid 3-O-glycosyltransferase (3GT). Using HR, the polysaccharide pellicle (PSP) segment of the cell wall polysaccharide synthesis (cwps) gene cluster from L. lactis NZ9000 was cloned into vector p15A-Cm-repDE. Then, CHI and F3H were placed sequentially under the control of NZProm 3 of this gene cluster in the vector, which was transformed into L. lactis NZ9000 to obtain Strain A. Furthermore, Strain B was constructed by placing F3H-DFR-ANS and 3GT under NZProm 2 and 3, respectively. Using LC-MS/MS analysis, several types of anthocyanins, including callistephin chloride, oenin chloride, malvidin O-hexoside, malvidin 3,5-diglucoside, and pelargonidin 3-O-malonyl-malonylhexoside, increased in the supernatant of the co-culture of Strains A and B compared to that of L. lactis NZ9000. This is the first time that a five-step metabolic pathway has been developed for anthocyanin biosynthesis in probiotic L. lactis NZ9000. This work lays the groundwork for novel anthocyanin production by a process involving the placement of several biosynthesis genes under the control of a gene cluster.
Collapse
Affiliation(s)
- Yujing Tian
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Na Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xiaowen Zhao
- The Center of Mass Spectrometry, Novogene Bioinformatics Institute, Beijing, China
| | - Xuefeng Mei
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Deping Hua
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Ruiz-Cruz S, Erazo Garzon A, Cambillau C, Ortiz Charneco G, Lugli GA, Ventura M, Mahony J, van Sinderen D. The tal gene of lactococcal bacteriophage TP901-1 is involved in DNA release following host adsorption. Appl Environ Microbiol 2024; 90:e0069424. [PMID: 39132999 PMCID: PMC11409707 DOI: 10.1128/aem.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Temperate P335 phage TP901-1 represents one of the best-characterized Gram-positive phages regarding its structure and host interactions. Following its reversible adsorption to the polysaccharidic side-chain of the cell wall polysaccharide of its host Lactococcus cremoris 3107, TP901-1 requires a glucosylated cell envelope moiety to trigger its genome delivery into the host cytoplasm. Here, we demonstrate that three distinct single amino acid substitutions in the Tal protein of TP901-1 baseplate are sufficient to overcome the TP901-1 resistance of three L. cremoris 3107 derivatives, whose resistance is due to impaired DNA release of the phage. All of these Tal alterations are located in the N-terminally located gp27-like domain of the protein, conserved in many tailed phages. AlphaFold2 predictions of the Tal mutant proteins suggest that these mutations favor conformational changes necessary to reposition the Tal fiber and thus facilitate release of the tape measure protein from the tail tube and subsequent DNA ejection in the absence of the trigger otherwise required for phage genome release. IMPORTANCE Understanding the molecular mechanisms involved in phage-host interactions is essential to develop phage-based applications in the food and probiotic industries, yet also to reduce the risk of phage infections in fermentations. Lactococcus, extensively used in dairy fermentations, has been widely employed to unravel such interactions. Phage infection commences with the recognition of a suitable host followed by the release of its DNA into the bacterial cytoplasm. Details on this latter, irreversible step are still very scarce in lactococci and other Gram-positive bacteria. We demonstrate that a component of the baseplate of the lactococcal phage TP901-1, the tail-associated lysin (Tal), is involved in the DNA delivery into its host, L. cremoris 3107. Specifically, we have found that three amino acid changes in Tal appear to facilitate structural rearrangements in the baseplate necessary for the DNA release process, even in the absence of an otherwise required host trigger.
Collapse
Affiliation(s)
- Sofía Ruiz-Cruz
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrea Erazo Garzon
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université—CNRS, Marseille, France
| | | | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Dos Santos Ré AC, Cury JA, Sassaki GL, Aires CP. Structure of rhamnoglucan, an unexpected alkali-stable polysaccharide extracted from Streptococcus mutans cell wall. Int J Biol Macromol 2024; 262:130121. [PMID: 38350588 DOI: 10.1016/j.ijbiomac.2024.130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
This study identified a rhamnose-containing cell wall polysaccharide (RhaCWP) in an alkaline extract prepared to analyze intracellular polysaccharides (IPS) from Streptococcus mutans biofilm. IPS was an 1,4-α-D-glucan with branchpoints introduced by 1,6-α-glucan while RhaCWP presented 1,2-α-L-and 1,3-α-L rhamnose backbone and side chains connected by 1,2-α-D-glucans, as identified by nuclear magnetic resonance (NMR) spectroscopy and methylation analyses. The MW of IPS and RhaCWP was 11,298 Da, as determined by diffusion-ordered NMR spectroscopy. Therefore, this study analyzed the chemical structure of RhaCWP and IPS from biofilm in a single fraction prepared via a convenient hot-alkali extraction method. This method could be a feasible approach to obtain such molecules and improve the comprehension of the structure-function relationships in polymers from S. mutans in future studies.
Collapse
Affiliation(s)
- Ana Carolina Dos Santos Ré
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Jaime Aparecido Cury
- Department of Biosciences, Piracicaba Dental School, UNICAMP, CP 52, 13414-903 Piracicaba, SP, Brazil.
| | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP: 81531-980 Curitiba, PR, Brazil.
| | - Carolina Patrícia Aires
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Yoon KN, Lee SJ, Keum GB, Song KY, Park JH, Song BS, Yu SY, Cho JH, Kim ES, Doo H, Kwak J, Kim S, Eun JB, Lee JH, Kim HB, Lee JH, Kim JK. Characteristics of Lactococcus petauri GB97 lysate isolated from porcine feces and its in vitro and in vivo effects on inflammation, intestinal barrier function, and gut microbiota composition in mice. Microbiol Spectr 2024; 12:e0133423. [PMID: 38019021 PMCID: PMC10782967 DOI: 10.1128/spectrum.01334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo. Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Soo-Jeong Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Ki-Young Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Seung Yeob Yu
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| |
Collapse
|
6
|
Guérin H, Courtin P, Guillot A, Péchoux C, Mahony J, van Sinderen D, Kulakauskas S, Cambillau C, Touzé T, Chapot-Chartier MP. Molecular mechanisms underlying the structural diversity of rhamnose-rich cell wall polysaccharides in lactococci. J Biol Chem 2024; 300:105578. [PMID: 38110036 PMCID: PMC10821137 DOI: 10.1016/j.jbc.2023.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.
Collapse
Affiliation(s)
- Hugo Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christian Cambillau
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland; Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255, Marseille, France
| | - Thierry Touzé
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | |
Collapse
|
7
|
Giesbers CAP, Fagan J, Parlindungan E, Palussière S, Courtin P, Lugli GA, Ventura M, Kulakauskas S, Chapot-Chartier MP, Mahony J, van Sinderen D. Reduced synthesis of phospho-polysaccharide in Lactococcus as a strategy to evade phage infection. Int J Food Microbiol 2023; 407:110415. [PMID: 37774633 DOI: 10.1016/j.ijfoodmicro.2023.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Lactococcus spp. are applied routinely in dairy fermentations and their consistent growth and associated acidification activity is critical to ensure the quality and safety of fermented dairy foods. Bacteriophages pose a significant threat to such fermentations and thus it is imperative to study how these bacteria may evade their viral predators in the relevant confined settings. Many lactococcal phages are known to specifically recognise and bind to cell wall polysaccharides (CWPSs) and particularly the phospho-polysaccharide (PSP) side chain component that is exposed on the host cell surface. In the present study, we generated derivatives of a lactococcal strain with reduced phage sensitivity to establish the mode of phage evasion. The resulting mutants were characterized using a combination of comparative genome analysis, microbiological and chemical analyses. Using these approaches, it was established that the phage-resistant derivatives incorporated mutations in genes within the cluster associated with CWPS biosynthesis resulting in growth and morphological defects that could revert when the selective pressure of phages was removed. Furthermore, the cell wall extracts of selected mutants revealed that the phage-resistant strains produced intact PSP but in significantly reduced amounts. The reduced availability of the PSP and the ability of lactococcal strains to revert rapidly to wild type growth and activity in the absence of phage pressure provides Lactococcus with the means to survive and evade phage attack.
Collapse
Affiliation(s)
- Conradus A P Giesbers
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| | - Jack Fagan
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| | - Elvina Parlindungan
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| | - Simon Palussière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | | | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| |
Collapse
|
8
|
Ruiz-Cruz S, Sadovskaya I, Mahony J, Grard T, Chapot-Chartier MP, van Sinderen D, Vinogradov E. Structural studies of the deacylated glycolipids and lipoteichoic acid of Lactococcus cremoris 3107. Carbohydr Res 2023; 531:108898. [PMID: 37453325 DOI: 10.1016/j.carres.2023.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Lactococcus cremoris and Lactococcus lactis are among the most extensively exploited species of lactic acid bacteria in dairy fermentations. The cell wall of lactococci, like other Gram-positive bacteria, possesses a thick peptidoglycan layer, which may incorporate cell wall polysaccharides (CWPS), wall teichoic acids (WTA), and/or lipoteichoic acids (LTA). In this study, we report the isolation, purification and structural analysis of the carbohydrate moieties of glycolipids (GL) and LTA of the L. cremoris model strain 3107. Chemical structures of these compounds were studied by chemical methods, NMR spectroscopy and positive and negative mode ESI MS. We found that the LTA of strain 3107 is composed of short chains of 1,3-polyglycerol phosphate (PGP), attached to O-6 of the non-reducing glucose of the kojibiose-Gro backbone of the glycolipid anchor. Extraction of cells with cold TCA afforded the detection of 1,3-glycerol phosphate chains randomly substituted at O-2 of glycerol by D-Ala. Unlike the LTA of L. lactis strains studied to date, the PGP backbone of the LTA of L. cremoris 3107 did not carry any glycosyl substitution. The deacylated glycolipid fraction contained the free kojibiose-Gro oligosaccharide, identical to the backbone of the GL anchor of LTA, and its shorter fragment α-Glc-1-Gro. These OS may have originated from the GL precursors of LTA biosynthesis.
Collapse
Affiliation(s)
- Sofía Ruiz-Cruz
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Irina Sadovskaya
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | | | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Evguenii Vinogradov
- National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
9
|
Guérin H, Quénée P, Palussière S, Courtin P, André G, Péchoux C, Costache V, Mahony J, van Sinderen D, Kulakauskas S, Chapot-Chartier MP. PBP2b Mutations Improve the Growth of Phage-Resistant Lactococcus cremoris Lacking Polysaccharide Pellicle. Appl Environ Microbiol 2023; 89:e0210322. [PMID: 37222606 PMCID: PMC10304956 DOI: 10.1128/aem.02103-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
Lactococcus lactis and Lactococcus cremoris are Gram-positive lactic acid bacteria widely used as starter in milk fermentations. Lactococcal cells are covered with a polysaccharide pellicle (PSP) that was previously shown to act as the receptor for numerous bacteriophages of the Caudoviricetes class. Thus, mutant strains lacking PSP are phage resistant. However, because PSP is a key cell wall component, PSP-negative mutants exhibit dramatic alterations of cell shape and severe growth defects, which limit their technological value. In the present study, we isolated spontaneous mutants with improved growth, from L. cremoris PSP-negative mutants. These mutants grow at rates similar to the wild-type strain, and based on transmission electron microscopy analysis, they exhibit improved cell morphology compared to their parental PSP-negative mutants. In addition, the selected mutants maintain their phage resistance. Whole-genome sequencing of several such mutants showed that they carried a mutation in pbp2b, a gene encoding a penicillin-binding protein involved in peptidoglycan biosynthesis. Our results indicate that lowering or turning off PBP2b activity suppresses the requirement for PSP and ameliorates substantially bacterial fitness and morphology. IMPORTANCE Lactococcus lactis and Lactococcus cremoris are widely used in the dairy industry as a starter culture. As such, they are consistently challenged by bacteriophage infections which may result in reduced or failed milk acidification with associated economic losses. Bacteriophage infection starts with the recognition of a receptor at the cell surface, which was shown to be a cell wall polysaccharide (the polysaccharide pellicle [PSP]) for the majority of lactococcal phages. Lactococcal mutants devoid of PSP exhibit phage resistance but also reduced fitness, since their morphology and division are severely impaired. Here, we isolated spontaneous, food-grade non-PSP-producing L. cremoris mutants resistant to bacteriophage infection with a restored fitness. This study provides an approach to isolate non-GMO phage-resistant L. cremoris and L. lactis strains, which can be applied to strains with technological functionalities. Also, our results highlight for the first time the link between peptidoglycan and cell wall polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Hugo Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pascal Quénée
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Simon Palussière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Gwenaëlle André
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, GABI, Jouy-en-Josas, France
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | |
Collapse
|
10
|
Cheng LL. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR IN BIOMEDICINE 2023; 36:e4684. [PMID: 34962004 DOI: 10.1002/nbm.4684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HRMAS) NMR, an approach for intact biological material analysis discovered more than 25 years ago, has been advanced by many technical developments and applied to many biomedical uses. This article provides a history of its discovery, first by explaining the key scientific advances that paved the way for HRMAS NMR's invention, and then by turning to recent developments that have profited from applying and advancing the technique during the last 5 years. Developments aimed at directly impacting healthcare include HRMAS NMR metabolomics applications within studies of human disease states such as cancers, brain diseases, metabolic diseases, transplantation medicine, and adiposity. Here, the discussion describes recent HRMAS NMR metabolomics studies of breast cancer and prostate cancer, as well as of matching tissues with biofluids, multimodality studies, and mechanistic investigations, all conducted to better understand disease metabolic characteristics for diagnosis, opportune windows for treatment, and prognostication. In addition, HRMAS NMR metabolomics studies of plants, foods, and cell structures, along with longitudinal cell studies, are reviewed and discussed. Finally, inspired by the technique's history of discoveries and recent successes, future biomedical arenas that stand to benefit from HRMAS NMR-initiated scientific investigations are presented.
Collapse
Affiliation(s)
- Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Escobedo S, Pérez de Pipaon M, Rendueles C, Rodríguez A, Martínez B. Cell wall modifications that alter the exolytic activity of lactococcal phage endolysins have little impact on phage growth. Front Microbiol 2023; 14:1106049. [PMID: 36744092 PMCID: PMC9894900 DOI: 10.3389/fmicb.2023.1106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Bacteriophages are a nuisance in the production of fermented dairy products driven by starter bacteria and strategies to reduce the risk of phage infection are permanently sought. Bearing in mind that the bacterial cell wall plays a pivotal role in host recognition and lysis, our goal was to elucidate to which extent modifications in the cell wall may alter endolysin activity and influence the outcome of phage infection in Lactococcus. Three lactococcal endolysins with distinct catalytic domains (CHAP, amidase and lysozyme) from phages 1,358, p2 and c2 respectively, were purified and their exolytic activity was tested against lactococcal mutants either overexpressing or lacking genes involved in the cell envelope stress (CES) response or in modifying peptidoglycan (PG) composition. After recombinant production in E. coli, Lys1358 (CHAP) and LysC2 (muramidase) were able to lyse lactococcal cells in turbidity reduction assays, but no activity of LysP2 was detected. The degree of PG acetylation, namely C6-O-acetylation and de-N-acetylation influenced the exolytic activity, being LysC2 more active against cells depleted of the PG deacetylase PgdA and the O-acetyl transferase OatA. On the contrary, both endolysins showed reduced activity on cells with an induced CES response. By measuring several growth parameters of phage c2 on these lactococcal mutants (lytic score, efficiency of plaquing, plaque size and one-step curves), a direct link between the exolytic activity of its endolysin and phage performance could not be stablished.
Collapse
|
12
|
Leprince A, Mahillon J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023; 15:196. [PMID: 36680236 PMCID: PMC9863714 DOI: 10.3390/v15010196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The phage life cycle is a multi-stage process initiated by the recognition and attachment of the virus to its bacterial host. This adsorption step depends on the specific interaction between bacterial structures acting as receptors and viral proteins called Receptor Binding Proteins (RBP). The adsorption process is essential as it is the first determinant of phage host range and a sine qua non condition for the subsequent conduct of the life cycle. In phages belonging to the Caudoviricetes class, the capsid is attached to a tail, which is the central player in the adsorption as it comprises the RBP and accessory proteins facilitating phage binding and cell wall penetration prior to genome injection. The nature of the viral proteins involved in host adhesion not only depends on the phage morphology (i.e., myovirus, siphovirus, or podovirus) but also the targeted host. Here, we give an overview of the adsorption process and compile the available information on the type of receptors that can be recognized and the viral proteins taking part in the process, with the primary focus on phages infecting Gram-positive bacteria.
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Bipartite rgp Locus Diversity in Streptococcus thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide. Appl Environ Microbiol 2022; 88:e0150422. [PMID: 36350137 PMCID: PMC9746298 DOI: 10.1128/aem.01504-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed rgp) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinct rgp genotypes identified (designated rgp1 through -5). In the present study, two additional genotypes were identified (designated rgp6 and rgp7) through comparative analysis of the rgp loci of 78 Streptococcus thermophilus genomes. The rgp locus of a given S. thermophilus strain encoded the biosynthetic machinery for a rhamnan-rich backbone and a variable side chain component, the latter being associated with the highly specific interactions with many bacteriophages that infect this species. The chemical structure of the Rgp from three S. thermophilus strains, representing the rgp2, -3, and -4 genotypes, was elucidated, and based on bioinformatic and biochemical analyses we propose a model for Rgp biosynthesis in dairy streptococci. Furthermore, we exploited the genetic diversity within the S. thermophilus bipartite rgp locus to develop a two-step multiplex PCR system to classify strains based on gene content associated with the biosynthesis of the variable side chain structure as well as the rhamnan backbone. IMPORTANCE Streptococcus thermophilus is present and applied in industrial and artisanal dairy fermentations for the production of various cheeses and yogurt. During these fermentations, S. thermophilus is vulnerable to phage predation, and recent studies have identified the rhamnose-glucose polymer (Rgp) as the definitive receptor for at least one problematic phage species. Detailed analysis of S. thermophilus rgp loci has revealed an unprecedented level of genetic diversity, particularly within the glycosyltransferase-encoding gene content of a given locus. Our study shows that this genetic diversity reflects the biochemical structure(s) of S. thermophilus Rgp. As such, we harnessed the genetic diversity of S. thermophilus rgp loci to develop a two-step multiplex PCR method for the classification of strain collections and, ultimately, the formation of phage-robust rational starter sets.
Collapse
|
15
|
Ruiz‐Cruz S, Erazo Garzon A, Kelleher P, Bottacini F, Breum SØ, Neve H, Heller KJ, Vogensen FK, Palussière S, Courtin P, Chapot‐Chartier M, Vinogradov E, Sadovskaya I, Mahony J, van Sinderen D. Host genetic requirements for DNA release of lactococcal phage TP901-1. Microb Biotechnol 2022; 15:2875-2889. [PMID: 36259418 PMCID: PMC9733650 DOI: 10.1111/1751-7915.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
The first step in phage infection is the recognition of, and adsorption to, a receptor located on the host cell surface. This reversible host adsorption step is commonly followed by an irreversible event, which involves phage DNA delivery or release into the bacterial cytoplasm. The molecular components that trigger this latter event are unknown for most phages of Gram-positive bacteria. In the current study, we present a comparative genome analysis of three mutants of Lactococcus cremoris 3107, which are resistant to the P335 group phage TP901-1 due to mutations that affect TP901-1 DNA release. Through genetic complementation and phage infection assays, a predicted lactococcal three-component glycosylation system (TGS) was shown to be required for TP901-1 infection. Major cell wall saccharidic components were analysed, but no differences were found. However, heterologous gene expression experiments indicate that this TGS is involved in the glucosylation of a cell envelope-associated component that triggers TP901-1 DNA release. To date, a saccharide modification has not been implicated in the DNA delivery process of a Gram-positive infecting phage.
Collapse
Affiliation(s)
- Sofía Ruiz‐Cruz
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Andrea Erazo Garzon
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Francesca Bottacini
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland,Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Solvej Østergaard Breum
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark,Present address:
Department of Virus & Microbiological Special Diagnostics, Division of Infectious Disease Preparedness, Statens Serum InstitutCopenhagenDenmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKielGermany
| | - Knut J. Heller
- Department of Microbiology and Biotechnology, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKielGermany
| | - Finn K. Vogensen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Simon Palussière
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| | - Pascal Courtin
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| | | | - Evgeny Vinogradov
- National Research Council CanadaInstitute for Biological SciencesOttawaOntarioCanada
| | - Irina Sadovskaya
- Equipe BPA, Université du Littoral‐Côte d'Opale, Institut Charles Violette EA 7394 USC AnsesBoulogne‐sur‐merFrance
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
16
|
Guérin H, Kulakauskas S, Chapot-Chartier MP. Structural variations and roles of rhamnose-rich cell wall polysaccharides in Gram-positive bacteria. J Biol Chem 2022; 298:102488. [PMID: 36113580 PMCID: PMC9574508 DOI: 10.1016/j.jbc.2022.102488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria—including streptococci, enterococci, and lactococci—of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.
Collapse
Affiliation(s)
- Hugo Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | |
Collapse
|
17
|
Hanemaaijer L, Kelleher P, Neve H, Franz CMAP, de Waal PP, van Peij NNME, van Sinderen D, Mahony J. Biodiversity of Phages Infecting the Dairy Bacterium Streptococcus thermophilus. Microorganisms 2021; 9:microorganisms9091822. [PMID: 34576718 PMCID: PMC8470116 DOI: 10.3390/microorganisms9091822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus-infecting phages represent a major problem in the dairy fermentation industry, particularly in relation to thermophilic production systems. Consequently, numerous studies have been performed relating to the biodiversity of such phages in global dairy operations. In the current review, we provide an overview of the genetic and morphological diversity of these phages and highlight the source and extent of genetic mosaicism among phages infecting this species through comparative proteome analysis of the replication and morphogenesis modules of representative phages. The phylogeny of selected phage-encoded receptor binding proteins (RBPs) was assessed, indicating that in certain cases RBP-encoding genes have been acquired separately to the morphogenesis modules, thus highlighting the adaptability of these phages. This review further highlights the significant advances that have been made in defining emergent genetically diverse groups of these phages, while it additionally summarizes remaining knowledge gaps in this research area.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Centre of Nutrition and Food, 24103 Kiel, Germany; (H.N.); (C.M.A.P.F.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Centre of Nutrition and Food, 24103 Kiel, Germany; (H.N.); (C.M.A.P.F.)
| | | | | | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Correspondence: (D.v.S.); (J.M.); Tel.: +353-20-4901365 (D.v.S.); +353-21-4902730 (J.M.)
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Correspondence: (D.v.S.); (J.M.); Tel.: +353-20-4901365 (D.v.S.); +353-21-4902730 (J.M.)
| |
Collapse
|
18
|
Cell Surface Polysaccharides Represent a Common Strategy for Adsorption among Phages Infecting Lactic Acid Bacteria: Lessons from Dairy Lactococci and Streptococci. mSystems 2021; 6:e0064121. [PMID: 34402647 PMCID: PMC8407473 DOI: 10.1128/msystems.00641-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Food fermentations rely on the application of robust bacterial starter cultures, the majority of which are represented by members of the lactic acid bacteria including Lactococcus lactis and Streptococcus thermophilus. Bacteriophage (or phage) proliferation remains one of the most significant threats to the fermentation industry. Therefore, it is imperative to define the phage ecology of fermented foods and to elucidate the mechanisms by which they recognize and bind to their bacterial hosts. Through a combination of functional and comparative genomics and structural analysis of the phage-host interactome, it is now possible to link the genotypes of strains of certain bacterial species to the chemical composition/structure of the associated cell wall polysaccharides (CWPS). In this paper, I discuss how the identification of common host recognition and binding strategies facilitates the development of rational starter culture systems and the implications of these findings in the context of sustainable food production systems.
Collapse
|
19
|
Lavelle K, Sinderen DV, Mahony J. Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors. Comput Struct Biotechnol J 2021; 19:4018-4031. [PMID: 34377367 PMCID: PMC8327497 DOI: 10.1016/j.csbj.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacterial cell walls are characterised by the presence of a thick peptidoglycan layer which provides protection from extracellular stresses, maintains cell integrity and determines cell morphology, while it also serves as a foundation to anchor a number of crucial polymeric structures. For ovococcal species, including streptococci, enterococci and lactococci, such structures are represented by rhamnose-containing cell wall polysaccharides, which at least in some instances appear to serve as a functional replacement for wall teichoic acids. The biochemical composition of several streptococcal, lactococcal and enterococcal rhamnose-containing cell wall polysaccharides have been elucidated, while associated functional genomic analyses have facilitated the proposition of models for individual biosynthetic pathways. Here, we review the genomic loci which encode the enzymatic machinery to produce rhamnose-containing, cell wall-associated polysaccharide (Rha cwps) structures of the afore-mentioned ovococcal bacteria with particular emphasis on gene content, biochemical structure and common biosynthetic steps. Furthermore, we discuss the role played by these saccharidic polymers as receptors for bacteriophages and the important role phages play in driving Rha cwps diversification and evolution.
Collapse
Affiliation(s)
- Katherine Lavelle
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| |
Collapse
|
20
|
Zaychikov VA, Potekhina NV, Dmitrenok AS, Fan D, Tul’skaya EM, Dorofeeva LV, Evtushenko LI. Cell Wall Rhamnan in Actinobacteria of the Genus Curtobacterium. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Henke MT, Brown EM, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Capsular polysaccharide correlates with immune response to the human gut microbe Ruminococcus gnavus. Proc Natl Acad Sci U S A 2021; 118:e2007595118. [PMID: 33972416 PMCID: PMC8157926 DOI: 10.1073/pnas.2007595118] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Active inflammatory bowel disease (IBD) often coincides with increases of Ruminococcus gnavus, a gut microbe found in nearly everyone. It was not known how, or if, this correlation contributed to disease. We investigated clinical isolates of R. gnavus to identify molecular mechanisms that would link R. gnavus to inflammation. Here, we show that only some isolates of R. gnavus produce a capsular polysaccharide that promotes a tolerogenic immune response, whereas isolates lacking functional capsule biosynthetic genes elicit robust proinflammatory responses in vitro. Germ-free mice colonized with an isolate of R. gnavus lacking a capsule show increased measures of gut inflammation compared to those colonized with an encapsulated isolate in vivo. These observations in the context of our earlier identification of an inflammatory cell-wall polysaccharide reveal how some strains of R. gnavus could drive the inflammatory responses that characterize IBD.
Collapse
Affiliation(s)
- Matthew T Henke
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Eric M Brown
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Chelsi D Cassilly
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Hera Vlamakis
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Ramnik J Xavier
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114
| | - Jon Clardy
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
22
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
23
|
Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems. Curr Opin Microbiol 2021; 60:24-33. [PMID: 33578058 PMCID: PMC8035078 DOI: 10.1016/j.mib.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Secondary cell wall polymers fulfil diverse and important functions within the cell wall of Gram-positive bacteria. Here, we will provide a brief overview of the principles of teichoic acid and complex secondary cell wall polysaccharide biosynthesis pathways in Firmicutes and summarize the recently revised mechanism for the decoration of teichoic acids with d-alanines. Many cell wall polymers are decorated with glycosyl groups, either intracellularly or extracellularly. The main focus of this review will be on the extracellular glycosylation mechanism and recent advances that have been made in the identification of enzymes involved in this process. Based on the proteins involved, we propose to rename the system to multi-component transmembrane glycosylation system in place of three-component glycosylation system.
Collapse
|
24
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
25
|
Solving the structural puzzle of bacterial glycome. Curr Opin Struct Biol 2021; 68:74-83. [PMID: 33434849 DOI: 10.1016/j.sbi.2020.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
The analysis of the bacterial glycome (glycomics) is among the complex 'omics' analysis owing to the inherent difficulties in structural and functional characterization of glycans. The complexity and variability of bacterial glycans, spanning from simple carbohydrates to complex glycolipids, glycopeptides and glycoproteins, make their study a challenging research area. The last two decades have witnessed tremendous advances and development of highly sophisticated methods, in combination with optimized protocols and hyphenate techniques for the understanding of structure, conformations, dynamics and organization of microbial glycans. We here present an overview of the novel approaches that have massively improved our understanding of the carbohydrate-based world of bacteria.
Collapse
|
26
|
Mahony J, Frantzen C, Vinogradov E, Sadovskaya I, Theodorou I, Kelleher P, Chapot-Chartier MP, Cambillau C, Holo H, van Sinderen D. The CWPS Rubik's cube: Linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected Lactococcus lactis strains. Mol Microbiol 2020; 114:582-596. [PMID: 32515029 DOI: 10.1111/mmi.14561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 11/29/2022]
Abstract
The biosynthetic machinery for cell wall polysaccharide (CWPS) production in lactococci is encoded by a large gene cluster, designated cwps. This locus displays considerable variation among lactococcal genomes, previously prompting a classification into three distinct genotypes (A-C). In the present study, the cwps loci of 107 lactococcal strains were compared, revealing the presence of a fourth cwps genotype (type D). Lactococcal CWPSs are comprised of two saccharidic structures: a peptidoglycan-embedded rhamnan backbone polymer to which a surface-exposed, poly/oligosaccharidic side-chain is covalently linked. Chemical structures of the side-chain of seven lactococcal strains were elucidated, highlighting their diverse and strain-specific nature. Furthermore, a link between cwps genotype and chemical structure was derived based on the number of glycosyltransferase-encoding genes in the cwps cluster and the presence of conserved genes encoding the presumed priming glycosyltransferase. This facilitates predictions of several structural features of lactococcal CWPSs including (a) whether the CWPS possesses short oligo/polysaccharide side-chains, (b) the number of component monosaccharides in a given CWPS structure, (c) the order of monosaccharide incorporation into the repeating units of the side-chain (for C-type strains), (d) the presence of Galf and phosphodiester bonds in the side-chain, and (e) the presence of glycerol phosphate substituents in the side-chain.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology, University College Cork (UCC), Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cyril Frantzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NULS), Ås, Norway
| | - Evgeny Vinogradov
- National Research Council Canada, Institute for Biological Sciences, Ottawa, ON, Canada
| | - Irina Sadovskaya
- Equipe BPA, Université du Littoral-Côte d'Opale, Institut Charles Violette EA 7394 USC Anses, Boulogne-sur-mer, France
| | - Ilias Theodorou
- School of Microbiology, University College Cork (UCC), Cork, Ireland
| | - Philip Kelleher
- School of Microbiology, University College Cork (UCC), Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Christian Cambillau
- School of Microbiology, University College Cork (UCC), Cork, Ireland.,Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Helge Holo
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NULS), Ås, Norway
| | - Douwe van Sinderen
- School of Microbiology, University College Cork (UCC), Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Goulet A, Spinelli S, Mahony J, Cambillau C. Conserved and Diverse Traits of Adhesion Devices from Siphoviridae Recognizing Proteinaceous or Saccharidic Receptors. Viruses 2020; 12:E512. [PMID: 32384698 PMCID: PMC7291167 DOI: 10.3390/v12050512] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteriophages can play beneficial roles in phage therapy and destruction of food pathogens. Conversely, they play negative roles as they infect bacteria involved in fermentation, resulting in serious industrial losses. Siphoviridae phages possess a long non-contractile tail and use a mechanism of infection whose first step is host recognition and binding. They have evolved adhesion devices at their tails' distal end, tuned to recognize specific proteinaceous or saccharidic receptors on the host's surface that span a large spectrum of shapes. In this review, we aimed to identify common patterns beyond this apparent diversity. To this end, we analyzed siphophage tail tips or baseplates, evaluating their known structures, where available, and uncovering patterns with bioinformatics tools when they were not. It was thereby identified that a triad formed by three proteins in complex, i.e., the tape measure protein (TMP), the distal tail protein (Dit), and the tail-associated lysozyme (Tal), is conserved in all phages. This common scaffold may harbor various functional extensions internally while it also serves as a platform for plug-in ancillary or receptor-binding proteins (RBPs). Finally, a group of siphophage baseplates involved in saccharidic receptor recognition exhibits an activation mechanism reminiscent of that observed in Myoviridae.
Collapse
Affiliation(s)
- Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland;
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France
| |
Collapse
|
28
|
Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone. mBio 2020; 11:mBio.00277-20. [PMID: 32345640 PMCID: PMC7188991 DOI: 10.1128/mbio.00277-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called “EPA decorations” essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci. All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the “decorations” of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called “EPA decorations” consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor.
Collapse
|
29
|
Theodorou I, Courtin P, Sadovskaya I, Palussière S, Fenaille F, Mahony J, Chapot-Chartier MP, van Sinderen D. Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. J Biol Chem 2020; 295:5519-5532. [PMID: 32169901 PMCID: PMC7170526 DOI: 10.1074/jbc.ra119.010844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall-associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.
Collapse
Affiliation(s)
- Ilias Theodorou
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Irina Sadovskaya
- Équipe BPA, Université du Littoral Côte d'Opale, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, 62202 Boulogne-sur-Mer, France
| | - Simon Palussière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - François Fenaille
- Université Paris-Saclay, Commissariat à l'Energie Atomique, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
30
|
Zorzoli A, Meyer BH, Adair E, Torgov VI, Veselovsky VV, Danilov LL, Uhrin D, Dorfmueller HC. Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase. J Biol Chem 2019; 294:15237-15256. [PMID: 31506299 PMCID: PMC6802508 DOI: 10.1074/jbc.ra119.009894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-β-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-β-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.
Collapse
Affiliation(s)
- Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elaine Adair
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Vladimir I Torgov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir V Veselovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Leonid L Danilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dusan Uhrin
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
31
|
Theodorou I, Courtin P, Palussière S, Kulakauskas S, Bidnenko E, Péchoux C, Fenaille F, Penno C, Mahony J, van Sinderen D, Chapot-Chartier MP. A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis. J Biol Chem 2019; 294:17612-17625. [PMID: 31582566 DOI: 10.1074/jbc.ra119.009957] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
In Lactococcus lactis, cell-wall polysaccharides (CWPSs) act as receptors for many bacteriophages, and their structural diversity among strains explains, at least partially, the narrow host range of these viral predators. Previous studies have reported that lactococcal CWPS consists of two distinct components, a variable chain exposed at the bacterial surface, named polysaccharide pellicle (PSP), and a more conserved rhamnan chain anchored to, and embedded inside, peptidoglycan. These two chains appear to be covalently linked to form a large heteropolysaccharide. The molecular machinery for biosynthesis of both components is encoded by a large gene cluster, named cwps In this study, using a CRISPR/Cas-based method, we performed a mutational analysis of the cwps genes. MALDI-TOF MS-based structural analysis of the mutant CWPS combined with sequence homology, transmission EM, and phage sensitivity analyses enabled us to infer a role for each protein encoded by the cwps cluster. We propose a comprehensive CWPS biosynthesis scheme in which the rhamnan and PSP chains are independently synthesized from two distinct lipid-sugar precursors and are joined at the extracellular side of the cytoplasmic membrane by a mechanism involving a membrane-embedded glycosyltransferase with a GT-C fold. The proposed scheme encompasses a system that allows extracytoplasmic modification of rhamnan by complex substituting oligo-/polysaccharides. It accounts for the extensive diversity of CWPS structures observed among lactococci and may also have relevance to the biosynthesis of complex rhamnose-containing CWPSs in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Ilias Theodorou
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Pascal Courtin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Simon Palussière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Christine Péchoux
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative (GABI), Plate-forme MIMA2, 78350 Jouy-en-Josas, France
| | - François Fenaille
- CEA, Institut Joliot, Service de Pharmacologie et d'Immunoanalyse, UMR 0496, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Christophe Penno
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Western Road, Cork, Ireland .,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | | |
Collapse
|
32
|
Kovacs CJ, Faustoferri RC, Bischer AP, Quivey RG. Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division. Mol Microbiol 2019; 112:944-959. [PMID: 31210392 DOI: 10.1111/mmi.14330] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
The cell wall of Gram-positive bacteria has been shown to mediate environmental stress tolerance, antibiotic susceptibility, host immune evasion and overall virulence. The majority of these traits have been demonstrated for the well-studied system of wall teichoic acid (WTA) synthesis, a common cell wall polysaccharide among Gram-positive organisms. Streptococcus mutans, a Gram-positive odontopathogen that contributes to the enamel-destructive disease dental caries, lacks the capabilities to generate WTA. Instead, the cell wall of S. mutans is highly decorated with rhamnose-glucose polysaccharides (RGP), for which functional roles are poorly defined. Here, we demonstrate that the RGP has a distinct role in protecting S. mutans from a variety of stress conditions pertinent to pathogenic capability. Mutant strains with disrupted RGP synthesis failed to properly localize cell division complexes, suffered from aberrant septum formation and exhibited enhanced cellular autolysis. Surprisingly, mutant strains of S. mutans with impairment in RGP side chain modification grew into elongated chains and also failed to properly localize the presumed cell wall hydrolase, GbpB. Our results indicate that fully mature RGP has distinct protective and morphogenic roles for S. mutans, and these structures are functionally homologous to the WTA of other Gram-positive bacteria.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| | - Andrew P Bischer
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Robert G Quivey
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| |
Collapse
|
33
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
34
|
Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A 2019; 116:12672-12677. [PMID: 31182571 PMCID: PMC6601261 DOI: 10.1073/pnas.1904099116] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bacteria that live within the human gut play crucial roles in regulating our primary metabolism, protecting us from pathogens, and developing our immune system. Imbalances in bacterial community structure have been implicated in many diseases, such as Crohn’s disease, an inflammatory bowel disease. We found and characterized an inflammatory polysaccharide produced by the gut bacterium Ruminococcus gnavus, populations of which bloom during flares of symptoms in patients with Crohn’s disease. This molecule induces the production of inflammatory cytokines like TNFα by dendritic cells and may contribute to the association between R. gnavus and Crohn’s disease. This work establishes a plausible molecular mechanism that may explain the association between a member of the gut microbiome and an inflammatory disease. A substantial and increasing number of human diseases are associated with changes in the gut microbiota, and discovering the molecules and mechanisms underlying these associations represents a major research goal. Multiple studies associate Ruminococcus gnavus, a prevalent gut microbe, with Crohn’s disease, a major type of inflammatory bowel disease. We have found that R. gnavus synthesizes and secretes a complex glucorhamnan polysaccharide with a rhamnose backbone and glucose sidechains. Chemical and spectroscopic studies indicated that the glucorhamnan was largely a repeating unit of five sugars with a linear backbone formed from three rhamnose units and a short sidechain composed of two glucose units. The rhamnose backbone is made from 1,2- and 1,3-linked rhamnose units, and the sidechain has a terminal glucose linked to a 1,6-glucose. This glucorhamnan potently induces inflammatory cytokine (TNFα) secretion by dendritic cells, and TNFα secretion is dependent on toll-like receptor 4 (TLR4). We also identify a putative biosynthetic gene cluster for this molecule, which has the four biosynthetic genes needed to convert glucose to rhamnose and the five glycosyl transferases needed to build the repeating pentasaccharide unit of the inflammatory glucorhamnan.
Collapse
|
35
|
Wels M, Siezen R, van Hijum S, Kelly WJ, Bachmann H. Comparative Genome Analysis of Lactococcus lactis Indicates Niche Adaptation and Resolves Genotype/Phenotype Disparity. Front Microbiol 2019; 10:4. [PMID: 30766512 PMCID: PMC6365430 DOI: 10.3389/fmicb.2019.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 01/21/2023] Open
Abstract
Lactococcus lactis is one of the most important micro-organisms in the dairy industry for the fermentation of cheese and buttermilk. Besides the conversion of lactose to lactate it is responsible for product properties such as flavor and texture, which are determined by volatile metabolites, proteolytic activity and exopolysaccharide production. While the species Lactococcus lactis consists of the two subspecies lactis and cremoris their taxonomic position is confused by a group of strains that, despite of a cremoris genotype, display a lactis phenotype. Here we compared and analyzed the (draft) genomes of 43 L. lactis strains, of which 19 are of dairy and 24 are of non-dairy origin. Machine-learning algorithms facilitated the identification of orthologous groups of protein sequences (OGs) that are predictors for either the taxonomic position or the source of isolation. This allowed the unambiguous categorization of the genotype/phenotype disparity of ssp. lactis and ssp. cremoris strains. A detailed analysis of phenotypic properties including plasmid-encoded genes indicates evolutionary changes during niche adaptations. The results are consistent with the hypothesis that dairy isolates evolved from plant isolates. The analysis further suggests that genomes of cremoris phenotype strains are so eroded that they are restricted to a dairy environment. Overall the genome comparison of a diverse set of strains allowed the identification of niche and subspecies specific genes. This explains evolutionary relationships and will aid the identification and selection of industrial starter cultures.
Collapse
Affiliation(s)
- Michiel Wels
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands
| | - Roland Siezen
- TI Food and Nutrition, Wageningen, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Microbial Bioinformatics, Ede, Netherlands
| | - Sacha van Hijum
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Herwig Bachmann
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands.,Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Maes E, Sadovskaya I, Lévêque M, Elass-Rochard E, Payré B, Grard T, Théodorou V, Guérardel Y, Mercier-Bonin M. Structure and biological activities of a hexosamine-rich cell wall polysaccharide isolated from the probiotic Lactobacillus farciminis. Glycoconj J 2019; 36:39-55. [PMID: 30637506 DOI: 10.1007/s10719-018-09854-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Lactobacillus farciminis CIP 103136 is a bacterial strain with recognized probiotic properties. However, the mechanisms underlying such properties have only been partially elucidated. In this study, we isolated and purified a cell-wall associated polysaccharide (CWPS), and evaluated its biological role in vitro. The structure of CWPS and responses from stimulation of (i) human macrophage-like THP-1 cells, (ii) human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR2 or TLR4) and (iii) human colonocyte-like T84 intestinal epithelial cells, upon exposure to CWPS were studied. The structure of the purified CWPS from L. farciminis CIP 103136 was analyzed by nuclear magnetic resonance (NMR), MALDI-TOF-TOF MS, and methylation analyses in its native form and following Smith degradation. It was shown to be a novel branched polysaccharide, composed of linear backbone of trisaccharide repeating units of: [→6αGlcpNAc1 → 4βManpNAc1 → 4βGlcpNAc1→] highly substituted with single residues of αGlcp, αGalp and αGlcpNAc. Subsequently, the lack of pro- or anti-inflammatory properties of CWPS was established on macrophage-like THP-1 cells. In addition, CWPS failed to modulate cell signaling pathways dependent of TLR2 and TLR4 in transfected HEK-cells. Finally, in T84 cells, CWPS neither influenced intestinal barrier integrity under basal conditions nor prevented TNF-α/IFN-γ cytokine-mediated epithelium impairment.
Collapse
Affiliation(s)
- Emmanuel Maes
- CNRS UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ Lille, 59 000, Lille, France
| | - Irina Sadovskaya
- Equipe Biochimie des Produits Aquatiques BPA, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, Université du Littoral-Côte d'Opale, Bassin Napoléon, 62327, Boulogne-sur-mer cedex, France
| | - Mathilde Lévêque
- Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Elisabeth Elass-Rochard
- CNRS UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ Lille, 59 000, Lille, France
| | - Bruno Payré
- Faculté de Médecine Rangueil, Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Toulouse Cedex, France
| | - Thierry Grard
- Equipe Biochimie des Produits Aquatiques BPA, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, Université du Littoral-Côte d'Opale, Bassin Napoléon, 62327, Boulogne-sur-mer cedex, France
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Yann Guérardel
- CNRS UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ Lille, 59 000, Lille, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
37
|
Sadovskaya I, Guérardel Y. Simple Protocol to Purify Cell Wall Polysaccharide from Gram-Positive Bacteria and Assess Its Structural Integrity. Methods Mol Biol 2019; 1954:37-45. [PMID: 30864122 DOI: 10.1007/978-1-4939-9154-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell wall polysaccharides (CWPS), which are usually covalently bound to the peptidoglycan and are closely associated with the cell wall, are considered as ubiquitous components of the cell envelope of gram-positive bacteria and play an important role as mediators of bacterial interactions with the environment. Here, we describe a simple method for purifying CWPS by extraction of bacterial cells with consecutive acid treatments. Purified CWPS are obtained by gel-filtration chromatography following treatment with HF. We also provide the methodology to easily assess the integrity of CWPS using high-resolution magic-angle spinning (HR-MAS) NMR.
Collapse
Affiliation(s)
- Irina Sadovskaya
- Équipe BPA, Univ. Littoral Côte d'Opale, convention ANSES, EA 7394, ICV Charles Violette, Univ. Lille, Univ. Artois, INRA, ISA F-62321, Boulogne-sur-mer, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
38
|
Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance. J Biol Chem 2018; 293:18040-18054. [PMID: 30266804 DOI: 10.1074/jbc.ra118.004273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/24/2018] [Indexed: 01/08/2023] Open
Abstract
Spores are produced by many organisms as a survival mechanism activated in response to several environmental stresses. Bacterial spores are multilayered structures, one of which is a peptidoglycan layer called the cortex, containing muramic-δ-lactams that are synthesized by at least two bacterial enzymes, the muramoyl-l-alanine amidase CwlD and the N-deacetylase PdaA. This study focused on the spore cortex of Clostridium difficile, a Gram-positive, toxin-producing anaerobic bacterial pathogen that can colonize the human intestinal tract and is a leading cause of antibiotic-associated diarrhea. Using ultra-HPLC coupled with high-resolution MS, here we found that the spore cortex of the C. difficile 630Δerm strain differs from that of Bacillus subtilis Among these differences, the muramic-δ-lactams represented only 24% in C. difficile, compared with 50% in B. subtilis CD630_14300 and CD630_27190 were identified as genes encoding the C. difficile N-deacetylases PdaA1 and PdaA2, required for muramic-δ-lactam synthesis. In a pdaA1 mutant, only 0.4% of all muropeptides carried a muramic-δ-lactam modification, and muramic-δ-lactams were absent in the cortex of a pdaA1-pdaA2 double mutant. Of note, the pdaA1 mutant exhibited decreased sporulation, altered germination, decreased heat resistance, and delayed virulence in a hamster infection model. These results suggest a much greater role for muramic-δ-lactams in C. difficile than in other bacteria, including B. subtilis In summary, the spore cortex of C. difficile contains lower levels of muramic-δ-lactams than that of B. subtilis, and PdaA1 is the major N-deacetylase for muramic-δ-lactam biosynthesis in C. difficile, contributing to sporulation, heat resistance, and virulence.
Collapse
Affiliation(s)
- Héloise Coullon
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Aline Rifflet
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Richard Wheeler
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Claire Janoir
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Ivo Gomperts Boneca
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Thomas Candela
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry,.
| |
Collapse
|
39
|
Beaussart A, Beloin C, Ghigo JM, Chapot-Chartier MP, Kulakauskas S, Duval JFL. Probing the influence of cell surface polysaccharides on nanodendrimer binding to Gram-negative and Gram-positive bacteria using single-nanoparticle force spectroscopy. NANOSCALE 2018; 10:12743-12753. [PMID: 29946619 DOI: 10.1039/c8nr01766b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.
Collapse
|
40
|
Vinogradov E, Sadovskaya I, Courtin P, Kulakauskas S, Grard T, Mahony J, van Sinderen D, Chapot-Chartier MP. Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403. Carbohydr Res 2018; 462:39-44. [DOI: 10.1016/j.carres.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
41
|
Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9. Carbohydr Res 2018; 461:25-31. [DOI: 10.1016/j.carres.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 11/19/2022]
|
42
|
Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection. Sci Rep 2018; 8:1749. [PMID: 29379180 PMCID: PMC5788860 DOI: 10.1038/s41598-018-20206-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis, an organism generally not pathogenic for healthy humans, has the potential to cause disease in susceptible hosts. While it seems to be equipped to interact with and circumvent host immune defense, most of the molecular and cellular mechanisms underlying the enterococcal infectious process remain elusive. Here, we investigated the role of the Enterococcal Leucine Rich protein A (ElrA), an internalin-like protein of E. faecalis also known as a virulence factor. ElrA was previously shown to prevent adhesion to macrophages. We show that ElrA does not inhibit the basic phagocytic process, but is able to prevent sensing and migration of macrophages toward E. faecalis. Presence or absence of FHL2, a eukaryotic partner of ElrA, does not affect the ElrA-dependent mechanism preventing macrophage migration. However, we highlight a partial contribution of FHL2 in ElrA-mediated virulence in vivo. Our results indicate that ElrA plays at least a dual role of which anti-phagocytic activity may contribute to dissemination of extracellular E. faecalis during infection.
Collapse
|