1
|
Hyun KA, Liang X, Xu Y, Kim SY, Boo KH, Park JS, Chi WJ, Hyun CG. Analysis of the Setomimycin Biosynthetic Gene Cluster from Streptomyces nojiriensis JCM3382 and Evaluation of Its α-Glucosidase Inhibitory Activity Using Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:10758. [PMID: 39409089 PMCID: PMC11476836 DOI: 10.3390/ijms251910758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from Streptomyces nojiriensis JCM3382 was examined in comparison with the BGCs of spectomycin, julichromes, lincolnenins, and huanglongmycin. The setomimycin BGC includes post-polyketide synthase (PKS) assembly/cycling enzymes StmD (C-9 ketoreductase), StmE (aromatase), and StmF (thioesterase) as key components. The heterodimeric TcmI-like cyclases StmH and StmK are proposed to aid in forming the setomimycin monomer. In addition, StmI (P-450) is predicted to catalyze the biaryl coupling of two monomeric setomimycin units, with StmM (ferredoxin) specific to the setomimycin BGC. The roles of StmL and StmN, part of the nuclear transport factor 2 (NTF-2)-like protein family and unique to setomimycin BGCs, could particularly interest biochemists and combinatorial biologists. α-Glucosidase, a key enzyme in type 2 diabetes, hydrolyzes carbohydrates into glucose, thereby elevating blood glucose levels. This study aimed to assess the α-glucosidase inhibitory activity of EtOAc extracts of JCM 3382 and setomimycin. The JCM 3382 EtOAc extract and setomimycin exhibited greater potency than the standard inhibitor, acarbose, with IC50 values of 285.14 ± 2.04 μg/mL and 231.26 ± 0.41 μM, respectively. Molecular docking demonstrated two hydrogen bonds with maltase-glucoamylase chain A residues Thr205 and Lys480 (binding energy = -6.8 kcal·mol-1), two π-π interactions with Trp406 and Phe450, and one π-cation interaction with Asp542. Residue-energy analysis highlighted Trp406 and Phe450 as key in setomimycin's binding to maltase-glucoamylase. These findings suggest that setomimycin is a promising candidate for further enzymological research and potential antidiabetic therapy.
Collapse
Affiliation(s)
- Kyung-A Hyun
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea; (K.-A.H.); (K.-H.B.)
| | - Xuhui Liang
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| | - Yang Xu
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan 31460, Republic of Korea;
| | - Kyung-Hwan Boo
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea; (K.-A.H.); (K.-H.B.)
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea;
| | - Won-Jae Chi
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| |
Collapse
|
2
|
Wang D, Mao H, Zhao Z, Liu L, Chen Y, Li P. Reprogramming of the Aurantinin Polyketide Assembly Line to Synthesize Auritriacids by Excising an Atypical Enoyl-CoA Hydratase Domain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401708. [PMID: 38995095 PMCID: PMC11425284 DOI: 10.1002/advs.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Modular polyketide synthases (PKSs) are capable of synthesizing diverse natural products with fascinating bioactivities. Canonical enoyl-CoA hydratases (ECHs) are components of the β-branching cassette that modifies the polyketide chain by adding a β-methyl branch. Herein, it is demonstrated that the deletion of an atypical ECHQ domain (featuring a Q280 residue) of Art21, a didomain protein contains an ECHQ domain and a thioesterase (TE) domain, reprograms the polyketide assembly line from synthesizing tetracyclic aurantinins (ARTs) to bicyclic auritriacids (ATAs) with much lower antibacterial activities. Genes encoding the ECHQ-TE didomain proteins distribute in many PKS gene clusters from different bacteria. Significantly, the ART PKS machinery can be directed to make ARTs, ATAs, or both of them by employing appropriate ECHQ-TE proteins, implying a great potential for using this reprogramming strategy in polyketide structure diversification.
Collapse
Affiliation(s)
- Dacheng Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Huijin Mao
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zelian Zhao
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesYunnan UniversityKunming650500China
| | - Lilu Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Yihua Chen
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengwei Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
3
|
Zhao Y, Liu X, Xiao Z, Zhou J, Song X, Wang X, Hu L, Wang Y, Sun P, Wang W, He X, Lin S, Deng Z, Pan L, Jiang M. O-methyltransferase-like enzyme catalyzed diazo installation in polyketide biosynthesis. Nat Commun 2023; 14:5372. [PMID: 37666836 PMCID: PMC10477347 DOI: 10.1038/s41467-023-41062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Diazo compounds are rare natural products possessing various biological activities. Kinamycin and lomaiviticin, two diazo natural products featured by the diazobenzofluorene core, exhibit exceptional potency as chemotherapeutic agents. Despite the extensive studies on their biosynthetic gene clusters and the assembly of their polyketide scaffolds, the formation of the characteristic diazo group remains elusive. L-Glutamylhydrazine was recently shown to be the hydrazine donor in kinamycin biosynthesis, however, the mechanism for the installation of the hydrazine group onto the kinamycin scaffold is still unclear. Here we describe an O-methyltransferase-like protein, AlpH, which is responsible for the hydrazine incorporation in kinamycin biosynthesis. AlpH catalyses a unique SAM-independent coupling of L-glutamylhydrazine and polyketide intermediate via a rare Mannich reaction in polyketide biosynthesis. Our discovery expands the catalytic diversity of O-methyltransferase-like enzymes and lays a strong foundation for the discovery and development of novel diazo natural products through genome mining and synthetic biology.
Collapse
Affiliation(s)
- Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Xiangyang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Jie Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Xingyu Song
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, 200438, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Lijun Hu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, Jinan University, 510632, Guangzhou, P. R. China
| | - Ying Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, Jinan University, 510632, Guangzhou, P. R. China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, 200433, Shanghai, P. R. China
| | - Wenning Wang
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, 200438, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China.
| |
Collapse
|
4
|
Yang D, Eun H, Prabowo CPS. Metabolic Engineering and Synthetic Biology Approaches for the Heterologous Production of Aromatic Polyketides. Int J Mol Sci 2023; 24:8923. [PMID: 37240269 PMCID: PMC10219323 DOI: 10.3390/ijms24108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Polyketides are a diverse set of natural products with versatile applications as pharmaceuticals, nutraceuticals, and cosmetics, to name a few. Of several types of polyketides, aromatic polyketides comprising type II and III polyketides contain many chemicals important for human health such as antibiotics and anticancer agents. Most aromatic polyketides are produced from soil bacteria or plants, which are difficult to engineer and grow slowly in industrial settings. To this end, metabolic engineering and synthetic biology have been employed to efficiently engineer heterologous model microorganisms for enhanced production of important aromatic polyketides. In this review, we discuss the recent advancement in metabolic engineering and synthetic biology strategies for the production of type II and type III polyketides in model microorganisms. Future challenges and prospects of aromatic polyketide biosynthesis by synthetic biology and enzyme engineering approaches are also discussed.
Collapse
Affiliation(s)
- Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering (BK21 Four), Korea University, Seoul 02481, Republic of Korea
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
McCord JP, Kohanov ZA, Lowell AN. Thermorubin Biosynthesis Initiated by a Salicylate Synthase Suggests an Unusual Conversion of Phenols to Pyrones. ACS Chem Biol 2022; 17:3169-3177. [PMID: 36255735 DOI: 10.1021/acschembio.2c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thermorubin is a tetracyclic naphthoisocoumarin natural product that demands investigation due to its novel mechanism of bacterial protein synthesis inhibition and its unusual structural features. In this work, we describe the identification of the biosynthetic cluster responsible for thermorubin from the sequenced Laceyella sacchari producer species and its confirmation via heterologous production in Escherichia coli. Based on an in-depth annotation of the cluster, we propose a biosynthetic pathway that accounts for the formation of the unique, nonterminal pyrone. Additionally, the expression and use of salicylate synthase TheO enabled testing of the stability properties of this extremophile-derived enzyme. TheO displayed rapid kinetics and a remarkably robust secondary structure, converting chorismate to salicylate with a KM of 109 ± 12 μM, kcat of 9.17 ± 0.36 min-1, and catalytic efficiency (kcat/KM) of 84 ± 9 nM-1 min-1, and retained significant activity up to 50 °C. These studies serve as the basis for continued biosynthetic investigations and bioinspired synthetic approaches.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Tech (Virginia Polytechnic Institute and State University), Davidson Hall Rm. 480, 1040 Drillfield Dr., Blacksburg, Virginia 24061, United States
| | - Zachary A Kohanov
- Department of Chemistry, Virginia Tech (Virginia Polytechnic Institute and State University), Davidson Hall Rm. 480, 1040 Drillfield Dr., Blacksburg, Virginia 24061, United States
| | - Andrew N Lowell
- Department of Chemistry, Virginia Tech (Virginia Polytechnic Institute and State University), Davidson Hall Rm. 480, 1040 Drillfield Dr., Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Geyer K, Hartmann S, Singh RR, Erb TJ. Multiple Functions of the Type II Thioesterase Associated with the Phoslactomycin Polyketide Synthase. Biochemistry 2022; 61:2662-2671. [DOI: 10.1021/acs.biochem.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kyra Geyer
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, D-35043 Marburg, Germany
| | - Steffen Hartmann
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, D-35043 Marburg, Germany
| | - Randolph R. Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Tobias J. Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, D-35043 Marburg, Germany
- SYNMIKRO Center for Synthetic Microbiology, Karl-von-Frisch-Street 16, D-35043 Marburg, Germany
| |
Collapse
|
7
|
Williams E, Bachvaroff T, Place A. A Comparison of Dinoflagellate Thiolation Domain Binding Proteins Using In Vitro and Molecular Methods. Mar Drugs 2022; 20:581. [PMID: 36135770 PMCID: PMC9500876 DOI: 10.3390/md20090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Dinoflagellates play important roles in ecosystems as primary producers and consumers making natural products that can benefit or harm environmental and human health but are also potential therapeutics with unique chemistries. Annotations of dinoflagellate genes have been hampered by large genomes with many gene copies that reduce the reliability of transcriptomics, quantitative PCR, and targeted knockouts. This study aimed to functionally characterize dinoflagellate proteins by testing their interactions through in vitro assays. Specifically, nine Amphidinium carterae thiolation domains that scaffold natural product synthesis were substituted into an indigoidine synthesizing gene from the bacterium Streptomyces lavendulae and exposed to three A. carterae phosphopantetheinyl transferases that activate synthesis. Unsurprisingly, several of the dinoflagellate versions inhibited the ability to synthesize indigoidine despite being successfully phosphopantetheinated. However, all the transferases were able to phosphopantetheinate all the thiolation domains nearly equally, defying the canon that transferases participate in segregated processes via binding specificity. Moreover, two of the transferases were expressed during growth in alternating patterns while the final transferase was only observed as a breakdown product common to all three. The broad substrate recognition and compensatory expression shown here help explain why phosphopantetheinyl transferases are lost throughout dinoflagellate evolution without a loss in a biochemical process.
Collapse
Affiliation(s)
| | | | - Allen Place
- Institute for Marine and Environmental Technologies, University of Maryland Center for Environmental Science, 701 East Pratt St., Baltimore, MD 21202, USA
| |
Collapse
|
8
|
Gao Y, Zhao Y, Zhou J, Yang M, Lin L, Wang W, Tao M, Deng Z, Jiang M. Unexpected Role of a Short‐Chain Dehydrogenase/Reductase Family Protein in Type II Polyketide Biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Jie Zhou
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Maohua Yang
- Ministry of Education Key Laboratory of Computational Physical Sciences Department of Chemistry Institutes of Biomedical Sciences Fudan University Shanghai 200438 China
| | - Lin Lin
- Bio-X Institutes Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education Shanghai Jiao Tong University Shanghai 200240 China
| | - Wenning Wang
- Ministry of Education Key Laboratory of Computational Physical Sciences Department of Chemistry Institutes of Biomedical Sciences Fudan University Shanghai 200438 China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200030 P. R. China
| |
Collapse
|
9
|
Gao Y, Zhao Y, Zhou J, Yang M, Lin L, Wang W, Tao M, Deng Z, Jiang M. Unexpected Role of a Short-Chain Dehydrogenase/Reductase Family Protein in Type II Polyketide Biosynthesis. Angew Chem Int Ed Engl 2021; 61:e202110445. [PMID: 34927786 DOI: 10.1002/anie.202110445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/05/2022]
Abstract
We investigated the biosynthetic pathway of type II polyketide murayaquinone. The murayaquinone biosynthetic cluster contains genes for three putative short-chain dehydrogenase/reductase family enzymes including MrqF and MrqH with known functions and MrqM with unclear function. We report the functional characterization of MrqM for its role in murayaquinone biosynthesis. Our gene deletion experiment and structural elucidation of the accumulated intermediates revealed that MrqM is related with the second polyketide ring cyclization, because the inactivation of mrqM resulted in the accumulation of an off-pathway intermediate SEK43 and disrupted the second and third ring cyclization. Site-directed mutagenesis studies showed that two conserved residues in MrqM and homologous proteins Y151 and K155 are essential for its activity. The previously proposed second/third ring cyclase, MrqD, might instead play another important role in the chain releasing step of the murayaquinone biosynthesis.
Collapse
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jie Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Maohua Yang
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenning Wang
- Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
10
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
11
|
Yang C, Huang C, Fang C, Zhang L, Chen S, Zhang Q, Zhang C, Zhang W. Inactivation of Flavoenzyme-Encoding Gene flsO1 in Fluostatin Biosynthesis Leads to Diversified Angucyclinone Derivatives. J Org Chem 2021; 86:11019-11028. [DOI: 10.1021/acs.joc.0c02517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Chunshuai Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Siqiang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou
Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|