1
|
Bolin LG. Soil microbes influence the ecology and evolution of plant plasticity. THE NEW PHYTOLOGIST 2025; 245:2224-2236. [PMID: 39775550 DOI: 10.1111/nph.20383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities. To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant. Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution. Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.
Collapse
Affiliation(s)
- Lana G Bolin
- Department of Biology, The University of New Mexico, Castetter Hall, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
2
|
Lau JA, Bolin LG. The tiny drivers behind plant ecology and evolution. AMERICAN JOURNAL OF BOTANY 2024; 111:e16324. [PMID: 38666516 DOI: 10.1002/ajb2.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Jennifer A Lau
- Biology Department, Indiana University, 1001 E 3rd St., Bloomington, 47405, IN, USA
| | - Lana G Bolin
- Biology Department, Indiana University, 1001 E 3rd St., Bloomington, 47405, IN, USA
| |
Collapse
|
3
|
Hammer TJ. Why do hosts malfunction without microbes? Missing benefits versus evolutionary addiction. Trends Microbiol 2024; 32:132-141. [PMID: 37652785 DOI: 10.1016/j.tim.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Microbes are widely recognized to be vital to host health. This new consensus rests, in part, on experiments showing how hosts malfunction when microbes are removed. More and more microbial dependencies are being discovered, even in fundamental processes such as development, immunity, physiology, and behavior. But why do they exist? The default explanation is that microbes are beneficial; when hosts lose microbes, they also lose benefits. Here I call attention to evolutionary addiction, whereby a host trait evolves a need for microbes without having been improved by them. Evolutionary addiction should be considered when interpreting microbe-removal experiments, as it is a distinct and potentially common process. Further, it may have unique implications for the evolution and stability of host-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Schmidt RL, Azarbad H, Bainard L, Tremblay J, Yergeau E. Intermittent water stress favors microbial traits that better help wheat under drought. ISME COMMUNICATIONS 2024; 4:ycae074. [PMID: 38863723 PMCID: PMC11165427 DOI: 10.1093/ismeco/ycae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Microorganisms can improve plant resistance to drought through various mechanisms, such as the production of plant hormones, osmolytes, antioxidants, and exopolysaccharides. It is, however, unclear how previous exposure to water stress affects the functional capacity of the soil microbial community to help plants resist drought. We compared two soils that had either a continuous or intermittent water stress history (WSH) for almost 40 years. We grew wheat in these soils and subjected it to water stress, after which we collected the rhizosphere soil and shotgun sequenced its metagenome. Wheat growing in soil with an intermittent WSH maintained a higher biomass when subjected to water stress. Genes related to indole-acetic acid and osmolyte production were more abundant in the metagenome of the soil with an intermittent WSH as compared to the soil with a continuous WSH. We suggest that an intermittent WSH selects traits beneficial for life under water stress.
Collapse
Affiliation(s)
- Ruth Lydia Schmidt
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada
| | - Hamed Azarbad
- Department of Biology, Evolutionary Ecology of Plants, Philipps-University Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - Luke Bainard
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 #7 Highway, Agassiz, BC, V0M 1A2, Canada
| | - Julien Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada
| | - Etienne Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
5
|
Mehlferber EC, Debray R, Conover AE, Sherman JK, Kaulbach G, Reed R, McCue KF, Ferrel JE, Khanna R, Koskella B. Phyllosphere microbial associations improve plant reproductive success. FRONTIERS IN PLANT SCIENCE 2023; 14:1273330. [PMID: 38143578 PMCID: PMC10739325 DOI: 10.3389/fpls.2023.1273330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023]
Abstract
The above-ground (phyllosphere) plant microbiome is increasingly recognized as an important component of plant health. We hypothesized that phyllosphere bacterial recruitment may be disrupted in a greenhouse setting, and that adding a bacterial amendment would therefore benefit the health and growth of host plants. Using a newly developed synthetic phyllosphere bacterial microbiome for tomato (Solanum lycopersicum), we tested this hypothesis across multiple trials by manipulating microbial inoculation of leaves and measuring subsequent plant growth and reproductive success, comparing results from plants grown in both greenhouse and field settings. We confirmed that greenhouse-grown plants have a relatively depauperate phyllosphere bacterial microbiome, which both makes them an ideal system for testing the impact of phyllosphere communities on plant health and important targets for microbial amendments as we move towards increased agricultural sustainability. We find that the addition of the synthetic microbial community early in greenhouse growth leads to an increase in fruit production in this setting, implicating the phyllosphere microbiome as a key component of plant fitness and emphasizing the role that these bacterial microbiomes likely play in the ecology and evolution of plant communities.
Collapse
Affiliation(s)
- Elijah C. Mehlferber
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Reena Debray
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Asa E. Conover
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Julia K. Sherman
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
| | - Griffin Kaulbach
- Department of Environmental Studies, Haverford College, PA, United States
| | - Robert Reed
- i-Cultiver, Inc., Manteca, CA, United States
| | - Kent F. McCue
- Crop Improvement and Genetics Research Unit, Agricultural Research Service, Western Regional Research Center, United States Department of Agriculture, Albany, CA, United States
| | - Jon E. Ferrel
- i-Cultiver, Inc., Manteca, CA, United States
- Azomite Mineral Products, Inc., Nephi, UT, United States
| | - Rajnish Khanna
- i-Cultiver, Inc., Manteca, CA, United States
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Britt Koskella
- Koskella Lab, University of California, Department of Integrative Biology, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
6
|
Munyoki SK, Goff JP, Kolobaric A, Long A, Mullett SJ, Burns JK, Jenkins AK, DePoy L, Wendell SG, McClung CA, Morrison KE, Jašarević E. Intestinal microbial circadian rhythms drive sex differences in host immunity and metabolism. iScience 2023; 26:107999. [PMID: 37841582 PMCID: PMC10568425 DOI: 10.1016/j.isci.2023.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Circadian rhythms dynamically regulate sex differences in metabolism and immunity, and circadian disruption increases the risk of metabolic disorders. We investigated the role of sex-specific intestinal microbial circadian rhythms in host metabolism using germ-free and conventionalized mice and manipulation of dietary-derived fat, fiber, and microbiota-accessible carbohydrates. Our findings demonstrate that sex differences in circadian rhythms of genes involved in immunity and metabolism depend on oscillations in microbiota, microbial metabolic functions, and microbial metabolites. Further, we show that consuming an obesogenic, high-fat, low-fiber diet produced sex-specific changes in circadian rhythms in microbiota, metabolites, and host gene expression, which were linked to sex differences in the severity of metabolic dysfunction. Our results reveal that microbial circadian rhythms contribute to sex differences in immunity and metabolism and that dietary factors can entrain new circadian rhythms and modify the magnitude of sex differences in host-microbe circadian dynamics.
Collapse
Affiliation(s)
- Sarah K. Munyoki
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Julie P. Goff
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | - Armari Long
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Steven J. Mullett
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jennifer K. Burns
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron K. Jenkins
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren DePoy
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy G. Wendell
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A. McClung
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Eldin Jašarević
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Iwai N, Tachiki Y. Species-specific model to predict amphibian metamorphosis. Sci Rep 2023; 13:16503. [PMID: 37783741 PMCID: PMC10545764 DOI: 10.1038/s41598-023-43639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Exploring the timing of life-history transitions has been a pivotal focus in the field of evolutionary ecology. Studies on amphibian metamorphosis are well suited to investigate this aspect. We propose a species-specific model to predict the optimal metamorphosis point for frog individuals with different larval growth trajectories. Because overall fitness will be determined throughout both aquatic and terrestrial stages, we included growth and survival rates of aquatic and terrestrial stages in the fitness equation. Then we conducted a rearing experiment on a brown frog, Rana ornativentris, as an example to obtain the size at metamorphosis, larval period, and larval growth trajectory. Based on these results, we determined the model's parameters to fit the actual metamorphosis patterns. Because the parameters are supposed to be evolutionarily maintained, our data-driven approach enabled obtaining fundamental ecological information (evolutionally-based life-history parameters) of the target species. Comparing the parameters among species will allow us to understand the mechanisms in determining life-history transition more deeply.
Collapse
Affiliation(s)
- Noriko Iwai
- Department of Environment Conservation, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-0054, Japan.
| | - Yuuya Tachiki
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
8
|
Carrier TJ, Schmittmann L, Jung S, Pita L, Hentschel U. Maternal provisioning of an obligate symbiont in a sponge. Ecol Evol 2023; 13:e10012. [PMID: 37153023 PMCID: PMC10154371 DOI: 10.1002/ece3.10012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/09/2023] Open
Abstract
The transmission of microbes from mother to offspring is an ancient, advantageous, and widespread feature of metazoan life history. Despite this, little is known about the quantitative strategies taken to maintain symbioses across generations. The quantity of maternal microbes that is provided to each offspring through vertical transmission could theoretically be stochastic (no trend), consistent (an optimal range is allocated), or provisioned (a trade-off with fecundity). Examples currently come from animals that release free-living eggs (oviparous) and suggest that offspring are provided a consistent quantity of symbionts. The quantity of maternal microbes that is vertically transmitted in other major reproductive strategies has yet to be assessed. We used the brooding (viviparous) sponge Halichondria panicea to test whether offspring receive quantitatively similar numbers of maternal microbes. We observed that H. panicea has a maternal pool of the obligate symbiont Candidatus Halichondribacter symbioticus and that this maternal pool is provisioned proportionally to reproductive output and allometrically by offspring size. This pattern was not observed for the total bacterial community. Experimental perturbation by antibiotics could not reduce the abundance of Ca. H. symbioticus in larvae, while the total bacterial community could be reduced without affecting the ability of larvae to undergo metamorphosis. A trade-off between offspring size and number is, by definition, maternal provisioning and parallel differences in Ca. H. symbioticus abundance would suggest that this obligate symbiont is also provisioned.
Collapse
Affiliation(s)
- Tyler J. Carrier
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Zoological Institute, Christian‐Albrechts University of KielKielGermany
| | | | - Sabrina Jung
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
| | - Lucía Pita
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Department Marine Biology and OceanographyInstitute of Marine Sciences (ICM‐CSIC)BarcelonaSpain
| | - Ute Hentschel
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Zoological Institute, Christian‐Albrechts University of KielKielGermany
| |
Collapse
|
9
|
Abstract
Animal development is an inherently complex process that is regulated by highly conserved genomic networks, and the resulting phenotype may remain plastic in response to environmental signals. Despite development having been studied in a more natural setting for the past few decades, this framework often precludes the role of microbial prokaryotes in these processes. Here, we address how microbial symbioses impact animal development from the onset of gametogenesis through adulthood. We then provide a first assessment of which developmental processes may or may not be influenced by microbial symbioses and, in doing so, provide a holistic view of the budding discipline of developmental symbiosis.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel 24105, Germany.,Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| |
Collapse
|
10
|
Angulo V, Beriot N, Garcia-Hernandez E, Li E, Masteling R, Lau JA. Plant-microbe eco-evolutionary dynamics in a changing world. THE NEW PHYTOLOGIST 2022; 234:1919-1928. [PMID: 35114015 DOI: 10.1111/nph.18015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Both plants and their associated microbiomes can respond strongly to anthropogenic environmental changes. These responses can be both ecological (e.g. a global change affecting plant demography or microbial community composition) and evolutionary (e.g. a global change altering natural selection on plant or microbial populations). As a result, global changes can catalyse eco-evolutionary feedbacks. Here, we take a plant-focused perspective to discuss how microbes mediate plant ecological responses to global change and how these ecological effects can influence plant evolutionary response to global change. We argue that the strong and functionally important relationships between plants and their associated microbes are particularly likely to result in eco-evolutionary feedbacks when perturbed by global changes and discuss how improved understanding of plant-microbe eco-evolutionary dynamics could inform conservation or even agriculture.
Collapse
Affiliation(s)
- Violeta Angulo
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Nicolas Beriot
- Soil Physics and Land Management Group, Wageningen University & Research, PO Box 47, Wageningen, 6700AA, the Netherlands
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, Cartagena, 30203, Spain
| | - Edisa Garcia-Hernandez
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9700 CC, the Netherlands
| | - Erqin Li
- Plant-Microbe Interactions Group, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Raul Masteling
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, Wageningen, 6708 PB, the Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, the Netherlands
| | - Jennifer A Lau
- Biology Department and the Environmental Resilience Institute, Indiana University, 1001 East 3rd St., Bloomington, IN, 47405, USA
| |
Collapse
|
11
|
Markalanda SH, McFadden CJ, Cassidy ST, Wood CW. The soil microbiome increases plant survival and modifies interactions with root endosymbionts in the field. Ecol Evol 2022; 12:e8283. [PMID: 35126998 PMCID: PMC8796929 DOI: 10.1002/ece3.8283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022] Open
Abstract
Evidence is accumulating that the soil microbiome-the community of microorganisms living in soils-has a major effect on plant traits and fitness. However, most work to date has taken place under controlled laboratory conditions and has not experimentally disentangled the effect of the soil microbiome on plant performance from the effects of key endosymbiotic constituents. As a result, it is difficult to extrapolate from existing data to understand the role of the soil microbiome in natural plant populations. To address this gap, we performed a field experiment using the black medick Medicago lupulina to test how the soil microbiome influences plant performance and colonization by two root endosymbionts (the mutualistic nitrogen-fixing bacteria Ensifer spp. and the parasitic root-knot nematode Meloidogyne hapla) under natural conditions. We inoculated all plants with nitrogen-fixing bacteria and factorially manipulated the soil microbiome and nematode infection. We found that plants grown in microbe-depleted soil exhibit greater mortality, but that among the survivors, there was no effect of the soil microbiome on plant performance (shoot biomass, root biomass, or shoot-to-root ratio). The soil microbiome also impacted parasitic nematode infection and affected colonization by mutualistic nitrogen-fixing bacteria in a plant genotype-dependent manner, increasing colonization in some plant genotypes and decreasing it in others. Our results demonstrate the soil microbiome has complex effects on plant-endosymbiont interactions and may be critical for survival under natural conditions.
Collapse
Affiliation(s)
| | - Connor J. McFadden
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Steven T. Cassidy
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Corlett W. Wood
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Natural selection for imprecise vertical transmission in host-microbiota systems. Nat Ecol Evol 2022; 6:77-87. [PMID: 34949814 PMCID: PMC9901532 DOI: 10.1038/s41559-021-01593-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
How and when the microbiome modulates host adaptation remains an evolutionary puzzle, despite evidence that the extended genetic repertoire of the microbiome can shape host phenotypes and fitness. One complicating factor is that the microbiome is often transmitted imperfectly across host generations, leading to questions about the degree to which the microbiome contributes to host adaptation. Here, using an evolutionary model, we demonstrate that decreasing vertical transmission fidelity can increase microbiome variation, and thus phenotypic variation, across hosts. When the most beneficial microbial genotypes change unpredictably from one generation to the next (for example, in variable environments), hosts can maximize fitness by increasing the microbiome variation among offspring, as this improves the chance of there being an offspring with the right microbial combination for the next generation. Imperfect vertical transmission can therefore be adaptive in varying environments. We characterize how selection on vertical transmission is shaped by environmental conditions, microbiome changes during host development and the contribution of other factors to trait variation. We illustrate how environmentally dependent microbial effects can favour intermediate transmission and set our results in the context of examples from natural systems. We also suggest research avenues to empirically test our predictions. Our model provides a basis to understand the evolutionary pathways that potentially led to the wide diversity of microbe transmission patterns found in nature.
Collapse
|
13
|
Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L, Rock KD, Howard CD, Morrison KE, Ravel J, Bale TL. The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat Commun 2021; 12:6289. [PMID: 34725359 PMCID: PMC8560944 DOI: 10.1038/s41467-021-26634-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Newborns are colonized by maternal microbiota that is essential for offspring health and development. The composition of these pioneer communities exhibits individual differences, but the importance of this early-life heterogeneity to health outcomes is not understood. Here we validate a human microbiota-associated model in which fetal mice are cesarean delivered and gavaged with defined human vaginal microbial communities. This model replicates the inoculation that occurs during vaginal birth and reveals lasting effects on offspring metabolism, immunity, and the brain in a community-specific manner. This microbial effect is amplified by prior gestation in a maternal obesogenic or vaginal dysbiotic environment where placental and fetal ileum development are altered, and an augmented immune response increases rates of offspring mortality. Collectively, we describe a translationally relevant model to examine the defined role of specific human microbial communities on offspring health outcomes, and demonstrate that the prenatal environment dramatically shapes the postnatal response to inoculation.
Collapse
Affiliation(s)
- Eldin Jašarević
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Elizabeth M Hill
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick J Kane
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lindsay Rutt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Trevonn Gyles
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lillian Folts
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kylie D Rock
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher D Howard
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kathleen E Morrison
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Mika K, Okamoto AS, Shubin NH, Mark Welch DB. Bacterial community dynamics during embryonic development of the little skate (Leucoraja erinacea). Anim Microbiome 2021; 3:72. [PMID: 34645528 PMCID: PMC8513177 DOI: 10.1186/s42523-021-00136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Microbial transmission from parent to offspring is hypothesized to be widespread in vertebrates. However, evidence for this is limited as many evolutionarily important clades remain unexamined. There is currently no data on the microbiota associated with any Chondrichthyan species during embryonic development, despite the global distribution, ecological importance, and phylogenetic position of this clade. In this study, we take the first steps towards filling this gap by investigating the microbiota associated with embryonic development in the little skate, Leucoraja erinacea, a common North Atlantic species and popular system for chondrichthyan biology. Methods To assess the potential for bacterial transmission in an oviparous chondrichthyan, we used 16S rRNA amplicon sequencing to characterize the microbial communities associated with the skin, gill, and egg capsule of the little skate, at six points during ontogeny. Community composition was analyzed using the QIIME2 pipeline and microbial continuity between stages was tracked using FEAST. Results We identify site-specific and stage-specific microbiota dominated by the bacterial phyla Proteobacteria and Bacteroidetes. This composition is similar to, but distinct from, that of previously published data on the adult microbiota of other chondrichthyan species. Our data reveal that the skate egg capsule harbors a highly diverse bacterial community–particularly on the internal surface of the capsule–and facilitates intergenerational microbial transfer to the offspring. Embryonic skin and external gill tissues host similar bacterial communities; the skin and gill communities later diverge as the internal gills and skin denticles develop. Conclusions Our study is the first exploration of the chondrichthyan microbiota throughout ontogeny and provides the first evidence of vertical transmission in this group. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00136-x.
Collapse
Affiliation(s)
- Katelyn Mika
- Organismal Biology and Anatomy, University of Chicago, 900 E 57th St, Culver Hall 108 OBA, Chicago, IL, 60637-1428, USA. .,Genetic Medicine, University of Chicago, Chicago, USA.
| | | | - Neil H Shubin
- Organismal Biology and Anatomy, University of Chicago, 900 E 57th St, Culver Hall 108 OBA, Chicago, IL, 60637-1428, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
15
|
O'Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. AMERICAN JOURNAL OF BOTANY 2021; 108:1824-1837. [PMID: 34655479 DOI: 10.1002/ajb2.1743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nichole A Ginnan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - María Rebolleda-Gómez
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
16
|
Henry LP, Bruijning M, Forsberg SKG, Ayroles JF. The microbiome extends host evolutionary potential. Nat Commun 2021; 12:5141. [PMID: 34446709 PMCID: PMC8390463 DOI: 10.1038/s41467-021-25315-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The microbiome shapes many host traits, yet the biology of microbiomes challenges traditional evolutionary models. Here, we illustrate how integrating the microbiome into quantitative genetics can help untangle complexities of host-microbiome evolution. We describe two general ways in which the microbiome may affect host evolutionary potential: by shifting the mean host phenotype and by changing the variance in host phenotype in the population. We synthesize the literature across diverse taxa and discuss how these scenarios could shape the host response to selection. We conclude by outlining key avenues of research to improve our understanding of the complex interplay between hosts and microbiomes.
Collapse
Affiliation(s)
- Lucas P. Henry
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Marjolein Bruijning
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Simon K. G. Forsberg
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.8993.b0000 0004 1936 9457Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julien F. Ayroles
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| |
Collapse
|
17
|
Igwe AN, Quasem B, Liu N, Vannette RL. Plant phenology influences rhizosphere microbial community and is accelerated by serpentine microorganisms in Plantago erecta. FEMS Microbiol Ecol 2021; 97:6300443. [PMID: 34132353 DOI: 10.1093/femsec/fiab085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
Serpentine soils are drought-prone and rich in heavy metals, and plants growing on serpentine soils host distinct microbial communities that may affect plant survival and phenotype. However, whether the rhizosphere communities of plants from different soil chemistries are initially distinct or diverge over time may help us understand drivers of microbial community structure and function in stressful soils. Here, we test the hypothesis that rhizosphere microbial communities will converge over time (plant development), independent of soil chemistry and microbial source. We grew Plantago erecta in serpentine or nonserpentine soil, with serpentine or nonserpentine microbes and tracked plant growth and root phenotypes. We used 16S rRNA gene barcoding to compare bacterial species composition at seedling, vegetative, early- and late-flowering phases. Plant phenotype and rhizosphere bacterial communities were mainly structured by soil type, with minor contributions by plant development, microbe source and their interactions. Serpentine microorganisms promoted early flowering in plants on nonserpentine soils. Despite strong effects of soil chemistry, the convergence in bacterial community composition across development demonstrates the importance of the plant-microbe interactions in shaping microbial assembly processes across soil types.
Collapse
Affiliation(s)
- Alexandria N Igwe
- University of Miami, Department of Biology, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Bibi Quasem
- University of California, Davis, Department of Entomology and Nematology, One Shields Avenue, Davis, CA 95616, USA
| | - Naomi Liu
- University of California, Davis, Department of Entomology and Nematology, One Shields Avenue, Davis, CA 95616, USA
| | - Rachel L Vannette
- University of California, Davis, Department of Entomology and Nematology, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
18
|
Petipas RH, Geber MA, Lau JA. Microbe-mediated adaptation in plants. Ecol Lett 2021; 24:1302-1317. [PMID: 33913572 DOI: 10.1111/ele.13755] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
Interactions with microbial symbionts have yielded great macroevolutionary innovations across the tree of life, like the origins of chloroplasts and the mitochondrial powerhouses of eukaryotic cells. There is also increasing evidence that host-associated microbiomes influence patterns of microevolutionary adaptation in plants and animals. Here we describe how microbes can facilitate adaptation in plants and how to test for and differentiate between the two main mechanisms by which microbes can produce adaptive responses in higher organisms: microbe-mediated local adaptation and microbe-mediated adaptive plasticity. Microbe-mediated local adaptation is when local plant genotypes have higher fitness than foreign genotypes because of a genotype-specific affiliation with locally beneficial microbes. Microbe-mediated adaptive plasticity occurs when local plant phenotypes, elicited by either the microbial community or the non-microbial environment, have higher fitness than foreign phenotypes as a result of interactions with locally beneficial microbes. These microbial effects on adaptation can be difficult to differentiate from traditional modes of adaptation but may be prevalent. Ignoring microbial effects may lead to erroneous conclusions about the traits and mechanisms underlying adaptation, hindering management decisions in conservation, restoration, and agriculture.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, IN, USA.,The Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
19
|
Koskella B, Bergelson J. The study of host-microbiome (co)evolution across levels of selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190604. [PMID: 32772660 PMCID: PMC7435161 DOI: 10.1098/rstb.2019.0604] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganismal diversity can be explained in large part by selection imposed from both the abiotic and biotic environments, including-in the case of host-associated microbiomes-interactions with eukaryotes. As such, the diversity of host-associated microbiomes can be usefully studied across a variety of scales: within a single host over time, among host genotypes within a population, between populations and among host species. A plethora of recent studies across these scales and across diverse systems are: (i) exemplifying the importance of the host genetics in shaping microbiome composition; (ii) uncovering the role of the microbiome in shaping key host phenotypes; and (iii) highlighting the dynamic nature of the microbiome. They have also raised a critical question: do these complex associations fit within our existing understanding of evolution and coevolution, or do these often intimate and seemingly cross-generational interactions follow novel evolutionary rules from those previously identified? Herein, we describe the known importance of (co)evolution in host-microbiome systems, placing the existing data within extant frameworks that have been developed over decades of study, and ask whether there are unique properties of host-microbiome systems that require a paradigm shift. By examining when and how selection can act on the host and its microbiome as a unit (termed, the holobiont), we find that the existing conceptual framework, which focuses on individuals, as well as interactions among individuals and groups, is generally well suited for understanding (co)evolutionary change in these intimate assemblages. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Hawkes CV, Bull JJ, Lau JA. Symbiosis and stress: how plant microbiomes affect host evolution. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190590. [PMID: 32772675 DOI: 10.1098/rstb.2019.0590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Existing paradigms for plant microevolution rarely acknowledge the potential impacts of diverse microbiomes on evolutionary processes. Many plant-associated microorganisms benefit the host via access to resources, protection from pathogens, or amelioration of abiotic stress. In doing so, they alter the plant's perception of the environment, potentially reducing the strength of selection acting on plant stress tolerance or defence traits or altering the traits that are the target of selection. We posit that the microbiome can affect plant microevolution via (1) manipulation of plant phenotypes in ways that increase plant fitness under stress and (2) direct microbial responses to the environment that benefit the plant. Both mechanisms might favour plant genotypes that attract or stimulate growth of the most responsive microbial populations or communities. We provide support for these scenarios using infectious disease and quantitative genetics models. Finally, we discuss how beneficial plant-microbiome associations can evolve if traditional mechanisms maintaining cooperation in pairwise symbioses, namely partner fidelity, partner choice and fitness alignment, also apply to the interactions between plants and diverse foliar and soil microbiomes. To understand the role of the plant microbiome in host evolution will require a broad ecological understanding of plant-microbe interactions across both space and time. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|