1
|
Li Y, Shi W, Sun Z, Zhang W. Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence. Microbiol Res 2024; 289:127917. [PMID: 39368257 DOI: 10.1016/j.micres.2024.127917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. Vibrio splendidus is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber. Our study demonstrated that V. splendidus AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in V. splendidus virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of V. splendidus toward L-Glu, and highlights the importance of chemotaxis in its virulence.
Collapse
Affiliation(s)
- Ya Li
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weibo Shi
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Zihao Sun
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China.
| |
Collapse
|
2
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Matilla MA, Krell T. Bacterial amino acid chemotaxis: a widespread strategy with multiple physiological and ecological roles. J Bacteriol 2024; 206:e0030024. [PMID: 39330213 PMCID: PMC11500578 DOI: 10.1128/jb.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Chemotaxis is the directed, flagellum-based movement of bacteria in chemoeffector gradients. Bacteria respond chemotactically to a wide range of chemoeffectors, including amino, organic, and fatty acids, sugars, polyamines, quaternary amines, purines, pyrimidines, aromatic hydrocarbons, oxygen, inorganic ions, or polysaccharides. Most frequent are chemotactic responses to amino acids (AAs), which were observed in numerous bacteria regardless of their phylogeny and lifestyle. Mostly chemoattraction responses are observed, although a number of bacteria are repelled from certain AAs. Chemoattraction is associated with the important metabolic value of AAs as growth substrates or building blocks of proteins. However, additional studies revealed that AAs are also sensed as environmental cues. Many chemoreceptors are specific for AAs, and signaling is typically initiated by direct ligand binding to their four-helix bundle or dCache ligand-binding domains. Frequently, bacteria possess multiple AA-responsive chemoreceptors that at times possess complementary AA ligand spectra. The identification of sequence motifs in the binding sites at dCache_1 domains has permitted to define an AA-specific family of dCache_1AA chemoreceptors. In addition, AAs are among the ligands recognized by broad ligand range chemoreceptors, and evidence was obtained for chemoreceptor activation by the binding of AA-loaded solute-binding proteins. The biological significance of AA chemotaxis is very ample including in biofilm formation, root and seed colonization by beneficial bacteria, plant entry of phytopathogens, colonization of the intestine, or different virulence-related features in human/animal pathogens. This review provides insights that may be helpful for the study of AA chemotaxis in other uncharacterized bacteria.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
4
|
Munar-Palmer M, Santamaría-Hernando S, Liedtke J, Ortega DR, López-Torrejón G, Rodríguez-Herva JJ, Briegel A, López-Solanilla E. Chemosensory systems interact to shape relevant traits for bacterial plant pathogenesis. mBio 2024; 15:e0087124. [PMID: 38899869 PMCID: PMC11253619 DOI: 10.1128/mbio.00871-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024] Open
Abstract
Chemosensory systems allow bacteria to respond and adapt to environmental conditions. Many bacteria contain more than one chemosensory system, but knowledge of their specific roles in regulating different functions remains scarce. Here, we address this issue by analyzing the function of the F6, F8, and alternative (non-motility) cellular functions (ACF) chemosensory systems of the model plant pathogen Pseudomonas syringae pv. tomato. In this work, we assign PsPto chemoreceptors to each chemosensory system, and we visualize for the first time the F6 and F8 chemosensory systems of PsPto using cryo-electron tomography. We confirm that chemotaxis and swimming motility are controlled by the F6 system, and we demonstrate how different components from the F8 and ACF systems also modulate swimming motility. We also determine how the kinase and response regulators from the F6 and F8 chemosensory systems do not work together in the regulation of biofilm, whereas both components from the ACF system contribute together to regulate these traits. Furthermore, we show how the F6, F8, and ACF kinases interact with the ACF response regulator WspR, supporting crosstalk among chemosensory systems. Finally, we reveal how all chemosensory systems play a role in regulating virulence. IMPORTANCE Chemoperception through chemosensory systems is an essential feature for bacterial survival, as it allows bacterial interaction with its surrounding environment. In the case of plant pathogens, it is especially relevant to enter the host and achieve full virulence. Multiple chemosensory systems allow bacteria to display a wider plasticity in their response to external signals. Here, we perform a deep characterization of the F6, F8, and alternative (non-motility) cellular functions chemosensory systems in the model plant pathogen Pseudomonas syringae pv. tomato DC3000. These chemosensory systems regulate key virulence-related traits, like motility and biofilm formation. Furthermore, we unveil an unexpected crosstalk among these chemosensory systems at the level of the interaction between kinases and response regulators. This work shows novel results that contribute to the knowledge of chemosensory systems and their role in functions alternative to chemotaxis.
Collapse
Affiliation(s)
- Martí Munar-Palmer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Janine Liedtke
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Davi R. Ortega
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gema López-Torrejón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
5
|
Nisha FA, Tagoe JNA, Pease AB, Horne SM, Ugrinov A, Geddes BA, Prüß BM. Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of Rhizobium leguminosarum bv. viciae 3841 and Azospirillum brasilense Sp7. Can J Microbiol 2024; 70:150-162. [PMID: 38427979 DOI: 10.1139/cjm-2023-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.
Collapse
Affiliation(s)
- Fatema A Nisha
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Janice N A Tagoe
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Amanda B Pease
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Shelley M Horne
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Barney A Geddes
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Birgit M Prüß
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
6
|
Scribani-Rossi C, Molina-Henares MA, Espinosa-Urgel M, Rinaldo S. Exploring the Metabolic Response of Pseudomonas putida to L-arginine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38429473 DOI: 10.1007/5584_2024_797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Beyond their role as protein-building units, amino acids are modulators of multiple behaviours in different microorganisms. In the root-colonizing beneficial bacterium Pseudomonas putida (recently proposed to be reclassified as alloputida) KT2440, current evidence suggests that arginine functions both as a metabolic indicator and as an environmental signal molecule, modulating processes such as chemotactic responses, siderophore-mediated iron uptake or the levels of the intracellular second messenger cyclic diguanylate (c-di-GMP). Using microcalorimetry and extracellular flux analysis, in this work we have studied the metabolic adaptation of P. putida KT2440 to the presence of L-arginine in the growth medium, and the influence of mutations related to arginine metabolism. Arginine causes rapid changes in the respiratory activity of P. putida, particularly magnified in a mutant lacking the transcriptional regulator ArgR. The metabolic activity of mutants affected in arginine transport and metabolism is also altered during biofilm formation in the presence of the amino acid. The results obtained here further support the role of arginine as a metabolic signal in P. putida and the relevance of ArgR in the adaptation to the amino acid. They also serve as proof of concept on the use of calorimetric and extracellular flux techniques to analyse metabolic responses in bacteria and the impact of different mutant backgrounds on such responses.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain.
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Matilla MA, Krell T. Sensing the environment by bacterial plant pathogens: What do their numerous chemoreceptors recognize? Microb Biotechnol 2024; 17:e14368. [PMID: 37929806 PMCID: PMC10832524 DOI: 10.1111/1751-7915.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
Bacteria have evolved multiple sensing strategies to efficiently adapt to their natural hosts and environments. In the context of plant pathology, chemotaxis allows phytopathogenic bacteria to direct their movement towards hosts through the detection of a landscape of plant-derived molecules, facilitating the initiation of the infective process. The importance of chemotaxis for the lifestyle of phytopathogens is also reflected in the fact that they have, on average, twice as many chemoreceptors as bacteria that do not interact with plants. Paradoxically, the knowledge about the function of plant pathogen chemoreceptors is scarce. Notably, many of these receptors seem to be specific to plant-interacting bacteria, suggesting that they may recognize plant-specific compounds. Here, we highlight the need to advance our knowledge of phytopathogen chemoreceptor function, which may serve as a base for the development of anti-infective therapies for the control of phytopathogens.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Tino Krell
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
8
|
Matilla MA, Krell T. Targeting motility and chemotaxis as a strategy to combat bacterial pathogens. Microb Biotechnol 2023; 16:2205-2211. [PMID: 37387327 PMCID: PMC10686171 DOI: 10.1111/1751-7915.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
9
|
Matilla MA, Gavira JA, Krell T. Accessing nutrients as the primary benefit arising from chemotaxis. Curr Opin Microbiol 2023; 75:102358. [PMID: 37459734 DOI: 10.1016/j.mib.2023.102358] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 09/17/2023]
Abstract
About half of the known bacterial species perform chemotaxis that gains them access to sites that are optimal for growth and survival. The motility apparatus and chemotaxis signaling pathway impose a large energetic and metabolic burden on the cell. There is almost no limit to the type of chemoeffectors that are recognized by bacterial chemoreceptors. For example, they include hormones, neurotransmitters, quorum-sensing molecules, and inorganic ions. However, the vast majority of chemoeffectors appear to be of metabolic value. We review here the experimental evidence indicating that accessing nutrients is the main selective force that led to the evolution of chemotaxis.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Armilla, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
10
|
Wang T, Hua C, Deng X. c-di-GMP signaling in Pseudomonas syringae complex. Microbiol Res 2023; 275:127445. [PMID: 37450986 DOI: 10.1016/j.micres.2023.127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The Pseudomonas syringae Complex is one of the model phytopathogenic bacteria for exploring plant-microbe interactions, causing devastating plant diseases and economic losses worldwide. The ubiquitous second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an important role in the 'lifestyle switch' from single motile cells to biofilm formation and modulates bacterial behavior, thus influencing virulence in Pseudomonas and other bacterial species. However, less is known about the role of c-di-GMP in the P. syringae complex, in which c-di-GMP levels are controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), such as Chp8, BifA and WspR. Deletion the chemotaxis receptor PscA also influences c-di-GMP levels, suggesting a cross-talk between chemotaxis and c-di-GMP pathways. Another transcription factor, FleQ, plays a dual role (positive or negative) in regulating cellulose synthesis as a c-di-GMP effector, whereas the transcription factor AmrZ regulates local c-di-GMP levels by inhibiting the DGC enzyme AdcA and the PDE enzyme MorA. Our recent research demonstrated that an increase in the c-di-GMP concentration increased biofilm development, siderophore biosynthesis and oxidative stress tolerance, while it decreased the siderophore content, bacterial motility and type III secretion system activity in P. syringae complex. These findings show that c-di-GMP intricately controls virulence in P. syringae complex, indicating that adjusting c-di-GMP levels may be a valuable tactic for defending plants against pathogens. This review highlights recent research on metabolic enzymes, regulatory mechanisms and the phenotypic consequences of c-di-GMP signaling in the P. syringae.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Canfeng Hua
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Hong Kong SAR, China; Tung Research Centre, City University of Hong Kong, Hong Kong SAR, China; Chengdu Research Institute, City University of Hong Kong, Chengdu, China.
| |
Collapse
|
11
|
Anderson JC. Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:49-71. [PMID: 37253693 DOI: 10.1146/annurev-phyto-021621-114026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
12
|
Monteagudo-Cascales E, Ortega Á, Velando F, Morel B, Matilla MA, Krell T. Study of NIT domain-containing chemoreceptors from two global phytopathogens and identification of NIT domains in eukaryotes. Mol Microbiol 2023. [PMID: 37186477 DOI: 10.1111/mmi.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Bacterial signal transduction systems are typically activated by the binding of signal molecules to receptor ligand binding domains (LBDs), such as the NIT LBD. We report here the identification of the NIT domain in more than 15,000 receptors that were present in 30 bacterial phyla, but also in 19 eukaryotic phyla, expanding its known phylogenetic distribution. The NIT domain formed part of seven receptor families that either control transcription, mediate chemotaxis or regulate second messenger levels. We have produced the NIT domains from chemoreceptors of the bacterial phytopathogens Pectobacterium atrosepticum (PacN) and Pseudomonas savastanoi (PscN) as individual purified proteins. High-throughput ligand screening using compound libraries revealed a specificity for nitrate and nitrite binding. Isothermal titration calorimetry experiments showed that PacN-LBD bound preferentially nitrate ( K D = 1.9 μM), whereas the affinity of PscN-LBD for nitrite ( K D = 2.1 μM) was 22 times higher than that for nitrate. Analytical ultracentrifugation experiments indicated that PscN-LBD is monomeric in the presence and absence of ligands. The R182A mutant of PscN did not bind nitrate or nitrite. This residue is not conserved in the NIT domain of the Pseudomonas aeruginosa chemoreceptor PA4520, which may be related to its failure to bind nitrate/nitrite. The magnitude of P. atrosepticum chemotaxis towards nitrate was significantly greater than that of nitrite and pacN deletion almost abolished responses to both compounds. This study highlights the important role of nitrate and nitrite as signal molecules in life and advances our knowledge on the NIT domain as universal nitrate/nitrite sensor module.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence 'Campus Mare Nostrum, Murcia, Spain
| | - Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Bertrand Morel
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
13
|
Velando F, Matilla MA, Zhulin IB, Krell T. Three unrelated chemoreceptors provide Pectobacterium atrosepticum with a broad-spectrum amino acid sensing capability. Microb Biotechnol 2023. [PMID: 36965186 DOI: 10.1111/1751-7915.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Amino acids are important nutrients and also serve as signals for diverse signal transduction pathways. Bacteria use chemoreceptors to recognize amino acid attractants and to navigate their gradients. In Escherichia coli two likely paralogous chemoreceptors Tsr and Tar detect 9 amino acids, whereas in Pseudomonas aeruginosa the paralogous chemoreceptors PctA, PctB and PctC detect 18 amino acids. Here, we show that the phytobacterium Pectobacterium atrosepticum uses the three non-homologous chemoreceptors PacA, PacB and PacC to detect 19 proteinogenic and several non-proteinogenic amino acids. PacB recognizes 18 proteinogenic amino acids as well as 8 non-proteinogenic amino acids. PacB has a ligand preference for the three branched chain amino acids L-leucine, L-valine and L-isoleucine. PacA detects L-proline next to several quaternary amines. The third chemoreceptor, PacC, is an ortholog of E. coli Tsr and the only one of the 36 P. atrosepticum chemoreceptors that is encoded in the cluster of chemosensory pathway genes. Surprisingly, in contrast to Tsr, which primarily senses serine, PacC recognizes aspartate as the major chemoeffector but not serine. Our results demonstrate that bacteria use various strategies to sense a wide range of amino acids and that it takes more than one chemoreceptor to achieve this goal.
Collapse
Affiliation(s)
- Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
14
|
Sakata N, Ishiga Y. Prevention of Stomatal Entry as a Strategy for Plant Disease Control against Foliar Pathogenic Pseudomonas Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030590. [PMID: 36771673 PMCID: PMC9919041 DOI: 10.3390/plants12030590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 05/14/2023]
Abstract
The genus Pseudomonas includes some of the most problematic and studied foliar bacterial pathogens. Generally, in a successful disease cycle there is an initial epiphytic lifestyle on the leaf surface and a subsequent aggressive endophytic stage inside the leaf apoplast. Leaf-associated bacterial pathogens enter intercellular spaces and internal leaf tissues by natural surface opening sites, such as stomata. The stomatal crossing is complex and dynamic, and functional genomic studies have revealed several virulence factors required for plant entry. Currently, treatments with copper-containing compounds, where authorized and admitted, and antibiotics are commonly used against bacterial plant pathogens. However, strains resistant to these chemicals occur in the fields. Therefore, the demand for alternative control strategies has been increasing. This review summarizes efficient strategies to prevent bacterial entry. Virulence factors required for entering the leaf in plant-pathogenic Pseudomonas species are also discussed.
Collapse
Affiliation(s)
- Nanami Sakata
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| | - Yasuhiro Ishiga
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| |
Collapse
|
15
|
Ortega Á, Matilla MA, Krell T. The Repertoire of Solute-Binding Proteins of Model Bacteria Reveals Large Differences in Number, Type, and Ligand Range. Microbiol Spectr 2022; 10:e0205422. [PMID: 36121253 PMCID: PMC9602780 DOI: 10.1128/spectrum.02054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/31/2022] Open
Abstract
Solute-binding proteins (SBPs) are of central physiological relevance for bacteria. They are located in the extracytosolic space, where they present substrates to transporters but also stimulate different types of transmembrane receptors coordinating compound uptake with signal transduction. SBPs are a superfamily composed of proteins recognized by 45 Pfam profiles. The definition of SBP profiles for bacteria is hampered by the fact that these Pfam profiles recognize sensor domains for different types of signaling proteins or cytosolic proteins with alternative functions. We report here the retrieval of the SBPs from 49 bacterial model strains with different lifestyles and phylogenetic distributions. Proteins were manually curated, and the ligands recognized were predicted bioinformatically. There were very large differences in the number and type of SBPs between strains, ranging from 7 SBPs in Helicobacter pylori 26695 to 189 SBPs in Sinorhizobium meliloti 1021. SBPs were found to represent 0.22 to 5.13% of the total protein-encoding genes. The abundance of SBPs was largely determined by strain phylogeny, and no obvious link with the bacterial lifestyle was noted. Most abundant (36%) were SBPs predicted to recognize amino acids or peptides, followed by those expected to bind different sugars (18%). To the best of our knowledge, this is the first comparative study of bacterial SBP repertoires. Given the importance of SBPs in nutrient uptake and signaling, this study enhances the knowledge of model bacteria and will permit the definition of SBP profiles of other strains. IMPORTANCE SBPs are essential components for many transporters, but multiple pieces of more recent evidence indicate that the SBP-mediated stimulation of different transmembrane receptors is a general and widespread signal transduction mechanism in bacteria. The double function of SBPs in coordinating transport with signal transduction remains to a large degree unexplored and represents a major research need. The definition of the SBP repertoire of the 49 bacterial model strains examined here, along with information on their cognate ligand profiles forms the basis to close this gap in knowledge. Furthermore, this study provides information on the forces that have driven the evolution of transporters with different ligand specificities in bacteria that differ in phylogenetics and lifestyle. This article is also a first step in setting up automatic algorithms that permit the large-scale identification of the SBP repertoire in proteomes.
Collapse
Affiliation(s)
- Álvaro Ortega
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
16
|
Balmaceda RS, Ramos Ricciuti FE, Redersdorff IE, Veinticcinque LM, Studdert CA, Herrera Seitz MK. Chemosensory pathways of Halomonas titanicae KHS3 control chemotaxis behaviour and biofilm formation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36215099 DOI: 10.1099/mic.0.001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Halomonas titanicae KHS3 is a marine bacterium whose genome codes for two different chemosensory pathways. Chemosensory gene cluster 1 is very similar to the canonical Che cluster from Escherichia coli. Chemosensory cluster 2 includes a gene coding for a diguanylate cyclase with receiver domains, suggesting that it belongs to the functional group that regulates alternative cellular functions other than chemotaxis. In this work we assess the functional roles of both chemosensory pathways through approaches that include the heterologous expression of Halomonas proteins in E. coli strains and phenotypic analyses of Halomonas mutants. Our results confirm that chemosensory cluster 1 is indeed involved in chemotaxis behaviour, and only proteins from this cluster complement E. coli defects. We present evidence suggesting that chemosensory cluster 2 resembles the Wsp pathway from Pseudomonas, since the corresponding methylesterase mutant shows an increased methylation level of the cognate receptor and develops a wrinkly colony morphology correlated with an increased ability to form biofilm. Consistently, mutational interruption of this gene cluster correlates with low levels of biofilm. Our results suggest that the proteins from each pathway assemble and function independently. However, the phenotypic characteristics of the mutants show functional connections between the pathways controlled by each chemosensory system.
Collapse
Affiliation(s)
- Rocío S Balmaceda
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Fernando E Ramos Ricciuti
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ingrid E Redersdorff
- Instituto de Investigaciones Biológicas, CONICET- Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Luciana M Veinticcinque
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Claudia A Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET- Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET- Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
17
|
Santamaría‐Hernando S, López‐Maroto Á, Galvez‐Roldán C, Munar‐Palmer M, Monteagudo‐Cascales E, Rodríguez‐Herva J, Krell T, López‐Solanilla E. Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and l-Pro chemoperception. MOLECULAR PLANT PATHOLOGY 2022; 23:1433-1445. [PMID: 35689388 PMCID: PMC9452764 DOI: 10.1111/mpp.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Foliar bacterial pathogens have to penetrate the plant tissue and access the interior of the apoplast in order to initiate the pathogenic phase. The entry process is driven by chemotaxis towards plant-derived compounds in order to locate plant openings. However, information on plant signals recognized by bacterial chemoreceptors is scarce. Here, we show that the perception of GABA and l-Pro, two abundant components of the tomato apoplast, through the PsPto-PscC chemoreceptor drives the entry of Pseudomonas syringae pv. tomato into the tomato apoplast. The recognition of both compounds by PsPto-PscC caused chemoattraction to both amino acids and participated in the regulation of GABA catabolism. Mutation of the PsPto-PscC chemoreceptor caused a reduced chemotactic response towards these compounds which in turn impaired entry and reduced virulence in tomato plants. Interestingly, GABA and l-Pro levels significantly increase in tomato plants upon pathogen infection and are involved in the regulation of the plant defence response. This is an example illustrating how bacteria respond to plant signals produced during the interaction as cues to access the plant apoplast and to ensure efficient infection.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Álvaro López‐Maroto
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Clara Galvez‐Roldán
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Martí Munar‐Palmer
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Elizabet Monteagudo‐Cascales
- Departamento de Protección AmbientalEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - José‐Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadridSpain
| | - Tino Krell
- Departamento de Protección AmbientalEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadridSpain
| |
Collapse
|
18
|
Rico‐Jiménez M, Roca A, Krell T, Matilla MA. A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environ Microbiol 2022; 24:3580-3597. [PMID: 35088505 PMCID: PMC9543091 DOI: 10.1111/1462-2920.15920] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Indole-3-acetic acid (IAA) is the main naturally occurring auxin and is produced by organisms of all kingdoms of life. In addition to the regulation of plant growth and development, IAA plays an important role in the interaction between plants and growth-promoting and phytopathogenic bacteria by regulating bacterial gene expression and physiology. We show here that an IAA metabolizing plant-associated Pseudomonas putida isolate exhibits chemotaxis to IAA that is independent of auxin metabolism. We found that IAA chemotaxis is based on the activity of the PcpI chemoreceptor and heterologous expression of pcpI conferred IAA taxis to different environmental and human pathogenic isolates of the Pseudomonas genus. Using ligand screening, microcalorimetry and quantitative chemotaxis assays, we found that PcpI failed to bind IAA directly, but recognized and mediated chemoattractions to various aromatic compounds, including the phytohormone salicylic acid. The expression of pcpI and its role in the interactions with plants was also investigated. PcpI extends the range of central signal molecules recognized by chemoreceptors. To our knowledge, this is the first report on a bacterial receptor that responds to two different phytohormones. Our study reinforces the multifunctional role of IAA and salicylic acid as intra- and inter-kingdom signal molecules.
Collapse
Affiliation(s)
- Miriam Rico‐Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Amalia Roca
- Department of Microbiology, Facultad de FarmaciaCampus Universitario de Cartuja, Universidad de GranadaGranada18071Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
19
|
Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation. mSystems 2022; 7:e0151821. [PMID: 35311563 PMCID: PMC9040814 DOI: 10.1128/msystems.01518-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCEShewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.
Collapse
|
20
|
Tumewu SA, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Identification of chemoreceptor proteins for amino acids involved in host plant infection in Pseudomonas syringae pv. tabaci 6605. Microbiol Res 2021; 253:126869. [PMID: 34597823 DOI: 10.1016/j.micres.2021.126869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
Chemotaxis is crucial for Pseudomonas syringae pv. tabaci (Pta) 6605 to evoke disease in tobacco plants. Pta6605 harbors more than fifty genes for methyl-accepting chemotaxis proteins (mcp), but almost all are functionally uncharacterized. Previously we identified a dCache_1 type MCP in Pta6605 that mediates chemotaxis to γ-aminobutyric acid, called McpG. In this study, we characterized four more dCache_1 type MCPs, three of which, PscA, PscB, and PscC2, are responsible for sensing amino acids. Using a capillary chemotaxis assay, we observed that PscA, PscB, and PscC2 mutant strains had reduced chemotaxis to most amino acids, indicating that PscA and PscB mediate chemotaxis to 14 amino acids, while PscC2 has a slightly narrower ligand recognition, mediating chemotaxis to 12 amino acids. Other cellular functions were also affected in ΔpscB and ΔpscC2: swarming motility was reduced, and biofilm formation was increased. Furthermore, ΔpscB and ΔpscC2 but not ΔpscA had reduced virulence in the host tobacco plant. On the other hand, ΔpscC1 was defective in motility and did not even respond to yeast extract and was unable to cause disease. These findings supported the idea that the chemosensory pathway correlated with virulence-related phenotypes. Amino acids are abundant in tobacco apoplast; having multiple MCPs appears to support the invasion of Pta6605 into the plant.
Collapse
Affiliation(s)
- Stephany Angelia Tumewu
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
21
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
22
|
Abstract
Chemosensory pathways are among the most abundant prokaryotic signal transduction systems, allowing bacteria to sense and respond to environmental stimuli. Signaling is typically initiated by the binding of specific molecules to the ligand binding domain (LBD) of chemoreceptor proteins (CRs). Although CRs play a central role in plant-microbiome interactions such as colonization and infection, little is known about their phylogenetic and ecological specificity. Here, we analyzed 82,277 CR sequences from 11,806 representative microbial species covering the whole prokaryotic phylogeny, and we classified them according to their LBD type using a de novo homology clustering method. Through phylogenomic analysis, we identified hundreds of LBDs that are found predominantly in plant-associated bacteria, including several LBDs specific to phytopathogens and plant symbionts. Functional annotation of our catalogue showed that many of the LBD clusters identified might constitute unknown types of LBDs. Moreover, we found that the taxonomic distribution of most LBD types that are specific to plant-associated bacteria is only partially explained by phylogeny, suggesting that lifestyle and niche adaptation are important factors in their selection. Finally, our results show that the profile of LBD types in a given genome is related to the lifestyle specialization, with plant symbionts and phytopathogens showing the highest number of niche-specific LBDs. The LBD catalogue and information on how to profile novel genomes are available at https://github.com/compgenomicslab/CRs. IMPORTANCE Considering the enormous variety of LBDs at sensor proteins, an important question resides in establishing the forces that have driven their evolution and selection. We present here the first clear demonstration that environmental factors play an important role in the selection and evolution of LBDs. We were able to demonstrate the existence of LBD families that are highly enriched in plant-associated bacteria but show a wide phylogenetic spread. These findings offer a number of research opportunities in the field of single transduction, such as the exploration of similar relationships in chemoreceptors of bacteria with a different lifestyle, like those inhabiting or infecting the human intestine. Similarly, our results raise the question whether similar LBD types might be shared by members of different sensor protein families. Lastly, we provide a comprehensive catalogue of CRs classified by their LBD region that includes a large number of putative new LBD types.
Collapse
|
23
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
24
|
Tanui CK, Shyntum DY, Sedibane PK, Bellieny-Rabelo D, Moleleki LN. Pectobacterium brasiliense 1692 Chemotactic Responses and the Role of Methyl-Accepting Chemotactic Proteins in Ecological Fitness. FRONTIERS IN PLANT SCIENCE 2021; 12:650894. [PMID: 33968106 PMCID: PMC8100591 DOI: 10.3389/fpls.2021.650894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
To adapt to changing environmental niches, bacteria require taxis, a movement toward or away from a stimulus (ligand). Chemotaxis has been studied in some members of the Soft Rot Pectobacteriaceae (SRP), particularly members of the genus Dickeya. On the contrary, there are fewer studies on this topic for the other genus in the SRP group, namely Pectobacterium. This study evaluated chemotactic responses in Pectobacterium brasiliense (Pb 1692) to various ligands. A total of 34 methyl-accepting chemotactic proteins (MCPs) were identified in the Pb 1692 genome and the domain architectures of these MCPs were determined. Four Pb 1692 MCPs previously shown to be differentially expressed during potato tuber infection were selected for further functional characterization. Toward this end, Pb 1692 mutant strains each lacking either AED-0001492, AED-0003671, AED-0000304, or AED-0000744 were generated. Two of these mutants (AED-0001492 and AED-0003671), were attenuated in their ability to grow and respond to citrate and are thus referred to as MCP cit2 and MCP cit1 , respectively, while the other two, AED-0000304 (MCP xyl ) and AED-0000744 (MCP asp ), were affected in their ability to respond to xylose and aspartate, respectively. Trans-complementation of the mutant strains restored swimming motility in the presence of respective ligands. The four MCP mutants were not affected in virulence but were significantly attenuated in their ability to attach to potato leaves suggesting that ecological fitness is an important contribution of these MCPs toward Pb 1692 biology.
Collapse
Affiliation(s)
| | - Divine Yutefar Shyntum
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Precious K. Sedibane
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel Bellieny-Rabelo
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Lucy N. Moleleki
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
25
|
Vandelle E, Colombo T, Regaiolo A, Maurizio V, Libardi T, Puttilli MR, Danzi D, Polverari A. Transcriptional Profiling of Three Pseudomonas syringae pv. actinidiae Biovars Reveals Different Responses to Apoplast-Like Conditions Related to Strain Virulence on the Host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:376-396. [PMID: 33356409 DOI: 10.1094/mpmi-09-20-0248-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae pv. actinidiae is a phytopathogen that causes devastating bacterial canker in kiwifruit. Among five biovars defined by genetic, biochemical, and virulence traits, P. syringae pv. actinidiae biovar 3 (Psa3) is the most aggressive and is responsible for the most recent reported outbreaks; however, the molecular basis of its heightened virulence is unclear. Therefore, we designed the first P. syringae multistrain whole-genome microarray, encompassing biovars Psa1, Psa2, and Psa3 and the well-established model P. syringae pv. tomato, and analyzed early bacterial responses to an apoplast-like minimal medium. Transcriptomic profiling revealed i) the strong activation in Psa3 of all hypersensitive reaction and pathogenicity (hrp) and hrp conserved (hrc) cluster genes, encoding components of the type III secretion system required for bacterial pathogenicity and involved in responses to environmental signals; ii) potential repression of the hrp/hrc cluster in Psa2; and iii) activation of flagellum-dependent cell motility and chemotaxis genes in Psa1. The detailed investigation of three gene families encoding upstream regulatory proteins (histidine kinases, their cognate response regulators, and proteins with diguanylate cyclase or phosphodiesterase domains) indicated that cyclic di-GMP may be a key regulator of virulence in P. syringae pv. actinidiae biovars. The gene expression data were supported by the quantification of biofilm formation. Our findings suggest that diverse early responses to the host apoplast, even among bacteria belonging to the same pathovar, can lead to different virulence strategies and may explain the differing outcomes of infections. Based on our detailed structural analysis of hrp operons, we also propose a revision of hrp cluster organization and operon regulation in P. syringae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Teresa Colombo
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology (IBPM) c/o Department of Biochemical Sciences "A. Rossi Fanelli", "Sapienza" University of Rome, Rome, 00185, Italy
| | - Alice Regaiolo
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Vanessa Maurizio
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Tommaso Libardi
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | | | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | | |
Collapse
|
26
|
Gumerov VM, Andrianova EP, Zhulin IB. Diversity of bacterial chemosensory systems. Curr Opin Microbiol 2021; 61:42-50. [PMID: 33684668 DOI: 10.1016/j.mib.2021.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Chemosensory system is the most complex, specialized mode of signal transduction in bacteria and archaea. It is composed of several core and auxiliary protein components that are highly organized in order to deliver a fast response to changing environmental conditions. Chemosensory pathways were studied in-depth in a handful of model organisms and experimentally characterized at least to some degree in approximately thirty other species. However, genome-wide analyses have revealed their presence in thousands of sequenced microbial genomes. Both experimental and computational studies uncovered substantial diversity in system design, functional regulation, cellular localization and phyletic distribution of chemosensory pathways. Here, we summarize advances and expose gaps in our current understanding of the diversity of chemosensory systems.
Collapse
Affiliation(s)
- Vadim M Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210 USA
| | | | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210 USA.
| |
Collapse
|
27
|
Ogura K, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Taguchi F, Ichinose Y. Vfr targets promoter of genes encoding methyl-accepting chemotaxis protein in Pseudomonas syringae pv. tabaci 6605. Biochem Biophys Rep 2021; 26:100944. [PMID: 33659714 PMCID: PMC7890371 DOI: 10.1016/j.bbrep.2021.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/22/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Virulence factor regulator (Vfr) is an indispensable transcription factor in the expression of virulence in the phytopathogenic bacteria Pseudomonassyringae. However, the function of Vfr is not known so far. The deletion of vfr resulted in the loss of surface swarming motility and reduced the virulence in P. syringae pv. tabaci (Pta) 6605. In order to identify the target genes of Vfr, we screened the sequences that bind to Vfr by chromatin immune precipitation (ChIP) and sequencing methods using the closely related bacterium P. syringae pv. syringae (Pss) B728a. For this purpose we first generated a strain that possesses the recombinant gene vfr::FLAG in Pss B728a, and performed ChIP using an anti-FLAG antibody. Immunoprecipitated DNA was purified and sequenced with Illumina HiSeq. The Vfr::FLAG-specific peaks were further subjected to an electrophoresis mobility-shift assay, and the promoter regions of locus tag for Psyr_0578 , Psyr_1776, and Psyr_2237 were identified as putative target genes of Vfr. These genes encode plant pathogen–specific methyl-accepting chemotaxis proteins (Mcp). These mcp genes seem to be involved in the Vfr-regulated expression of virulence. Identification of target gene of Vfr in Pseudomonas syringae by ChIP-seq and EMSA. Vfr targets 3 methyl-accepting chemotaxis proteins (mcp) genes. Existence of putative Vfr binding sequences in the promoter of 3 mcp genes.
Collapse
Affiliation(s)
- Keisuke Ogura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Fumiko Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.,Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
28
|
Tumewu SA, Ogawa Y, Okamoto T, Sugihara Y, Yamada H, Taguchi F, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence. Mol Genet Genomics 2021; 296:299-312. [PMID: 33386986 DOI: 10.1007/s00438-020-01745-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes.
Collapse
Affiliation(s)
- Stephany Angelia Tumewu
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yujiro Ogawa
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Takumi Okamoto
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yuka Sugihara
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Hajime Yamada
- Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Fumiko Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
29
|
Xie Y, Liu W, Shao X, Zhang W, Deng X. Signal transduction schemes in Pseudomonas syringae. Comput Struct Biotechnol J 2020; 18:3415-3424. [PMID: 33294136 PMCID: PMC7691447 DOI: 10.1016/j.csbj.2020.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/11/2022] Open
Abstract
To cope with their continually fluctuating surroundings, pathovars of the unicellular phytopathogen Pseudomonas syringae have developed rapid and sophisticated signalling networks to sense extracellular stimuli, which allow them to adjust their cellular composition to survive and cause diseases in host plants. Comparative genomic analyses of P. syringae strains have identified various genes that encode several classes of signalling proteins, although how this bacterium directly perceives these environmental cues remains elusive. Recent work has revealed new mechanisms of a cluster of bacterial signal transduction systems that mainly include two-component systems (such as RhpRS, GacAS, CvsRS and AauRS), extracytoplasmic function sigma factors (such as HrpL and AlgU), nucleotide-based secondary messengers, methyl-accepting chemotaxis sensor proteins and several other intracellular surveillance systems. In this review, we compile a list of the signal transduction mechanisms that P. syringae uses to monitor and respond in a timely manner to intracellular and external conditions. Further understanding of these surveillance processes will provide new perspectives from which to combat P. syringae infections.
Collapse
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Wenbao Liu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Weihua Zhang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
30
|
Santamaría‐Hernando S, Cerna‐Vargas JP, Martínez‐García PM, de Francisco‐de Polanco S, Nebreda S, Rodríguez‐Palenzuela P, Rodríguez‐Herva JJ, López‐Solanilla E. Blue-light perception by epiphytic Pseudomonas syringae drives chemoreceptor expression, enabling efficient plant infection. MOLECULAR PLANT PATHOLOGY 2020; 21:1606-1619. [PMID: 33029921 PMCID: PMC7694672 DOI: 10.1111/mpp.13001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/01/2023]
Abstract
Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Jean Paul Cerna‐Vargas
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pedro Manuel Martínez‐García
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERAvenida Americo VespucioSevilleSpain
| | - Sofía de Francisco‐de Polanco
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones Científicas, Avenida Ramiro de MaeztuMadridSpain
| | - Sandra Nebreda
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pablo Rodríguez‐Palenzuela
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - José Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
31
|
Yan Q, Rogan CJ, Pang YY, Davis EW, Anderson JC. Ancient co-option of an amino acid ABC transporter locus in Pseudomonas syringae for host signal-dependent virulence gene regulation. PLoS Pathog 2020; 16:e1008680. [PMID: 32673374 PMCID: PMC7386598 DOI: 10.1371/journal.ppat.1008680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/28/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
Pathogenic bacteria frequently acquire virulence traits via horizontal gene transfer, yet additional evolutionary innovations may be necessary to integrate newly acquired genes into existing regulatory pathways. The plant bacterial pathogen Pseudomonas syringae relies on a horizontally acquired type III secretion system (T3SS) to cause disease. T3SS-encoding genes are induced by plant-derived metabolites, yet how this regulation occurs, and how it evolved, is poorly understood. Here we report that the two-component system AauS-AauR and substrate-binding protein AatJ, proteins encoded by an acidic amino acid-transport (aat) and -utilization (aau) locus in P. syringae, directly regulate T3SS-encoding genes in response to host aspartate and glutamate signals. Mutants of P. syringae strain DC3000 lacking aauS, aauR or aatJ expressed lower levels of T3SS genes in response to aspartate and glutamate, and had decreased T3SS deployment and virulence during infection of Arabidopsis. We identified an AauR-binding motif (Rbm) upstream of genes encoding T3SS regulators HrpR and HrpS, and demonstrated that this Rbm is required for maximal T3SS deployment and virulence of DC3000. The Rbm upstream of hrpRS is conserved in all P. syringae strains with a canonical T3SS, suggesting AauR regulation of hrpRS is ancient. Consistent with a model of conserved function, an aauR deletion mutant of P. syringae strain B728a, a bean pathogen, had decreased T3SS expression and growth in host plants. Together, our data suggest that, upon acquisition of T3SS-encoding genes, a strain ancestral to P. syringae co-opted an existing AatJ-AauS-AauR pathway to regulate T3SS deployment in response to specific host metabolite signals.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Conner J. Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Edward W. Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
32
|
Matilla MA, Martín-Mora D, Krell T. The use of isothermal titration calorimetry to unravel chemotactic signalling mechanisms. Environ Microbiol 2020; 22:3005-3019. [PMID: 32329116 DOI: 10.1111/1462-2920.15035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Chemotaxis is based on the action of chemosensory pathways and is typically initiated by the recognition of chemoeffectors at chemoreceptor ligand-binding domains (LBD). Chemosensory signalling is highly complex; aspect that is not only reflected in the intricate interaction between many signalling proteins but also in the fact that bacteria frequently possess multiple chemosensory pathways and often a large number of chemoreceptors, which are mostly of unknown function. We review here the usefulness of isothermal titration calorimetry (ITC) to study this complexity. ITC is the gold standard for studying binding processes due to its precision and sensitivity, as well as its capability to determine simultaneously the association equilibrium constant, enthalpy change and stoichiometry of binding. There is now evidence that members of all major LBD families can be produced as individual recombinant proteins that maintain their ligand-binding properties. High-throughput screening of these proteins using thermal shift assays offer interesting initial information on chemoreceptor ligands, providing the basis for microcalorimetric analyses and microbiological experimentation. ITC has permitted the identification and characterization of many chemoreceptors with novel specificities. This ITC-based approach can also be used to identify signal molecules that stimulate members of other families of sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
33
|
Tumewu SA, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Requirement of γ-Aminobutyric Acid Chemotaxis for Virulence of Pseudomonas syringae pv. tabaci 6605. Microbes Environ 2020; 35:ME20114. [PMID: 33162464 PMCID: PMC7734410 DOI: 10.1264/jsme2.me20114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 12/04/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid that accumulates in plants under biotic and abiotic stress conditions. Recent studies suggested that GABA also functions as an intracellular signaling molecule in plants and in signals mediating interactions between plants and phytopathogenic bacteria. However, the molecular mechanisms underlying GABA responses to bacterial pathogens remain unknown. In the present study, a GABA receptor, named McpG, was conserved in the highly motile plant-pathogenic bacteria Pseudomonas syringae pv. tabaci 6605 (Pta6605). We generated a deletion mutant of McpG to further investigate its involvement in GABA chemotaxis using quantitative capillary and qualitative plate assays. The wild-type strain of Pta6605 was attracted to GABA, while the ΔmcpG mutant abolished chemotaxis to 10 mM GABA. However, ΔmcpG retained chemotaxis to proteinogenic amino acids and succinic semialdehyde, a structural analog of GABA. Furthermore, ΔmcpG was unable to effectively induce disease on host tobacco plants in three plant inoculation assays: flood, dip, and infiltration inoculations. These results revealed that the GABA sensing of Pta6605 is important for the interaction of Pta6605 with its host tobacco plant.
Collapse
Affiliation(s)
- Stephany Angelia Tumewu
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| |
Collapse
|