1
|
Urban BC, Gonçalves ANA, Loukov D, Passos FM, Reiné J, Gonzalez-Dias P, Solórzano C, Mitsi E, Nikolaou E, O'Connor D, Collins AM, Adler H, Pollard A, Rylance J, Gordon SB, Jochems SP, Nakaya HI, Ferreira DM. Inflammation of the nasal mucosa is associated with susceptibility to experimental pneumococcal challenge in older adults. Mucosal Immunol 2024; 17:973-989. [PMID: 38950826 PMCID: PMC11464406 DOI: 10.1016/j.mucimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal-controlled human infection by analyzing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of cluster of differentiation 8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.
Collapse
Affiliation(s)
- Britta C Urban
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - André N A Gonçalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dessi Loukov
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fernando M Passos
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Patrícia Gonzalez-Dias
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Carla Solórzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea M Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; University Hospital Aintree, Liverpool University Hospitals Trust, Liverpool, UK
| | - Hugh Adler
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jamie Rylance
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Simon P Jochems
- Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Helder I Nakaya
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
van Woudenbergh E, van Rooijen DM, Veldman-Wolf JJ, Nicolaie MA, Huynen MA, van der Klis FRM, de Jonge MI, den Hartog G. Effect of age and season on respiratory mucosal immune marker profiles. J Allergy Clin Immunol 2024; 153:1681-1691.e12. [PMID: 38142822 DOI: 10.1016/j.jaci.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND The upper respiratory tract is continuously exposed to microorganisms and noxious elements, leading to local immune responses and the secretion of immune markers. While several studies describe immune marker profiles in respiratory mucosal samples in defined patient cohorts, mucosal immune profiles from the general population during the different seasons are lacking. Such baseline profiles are essential to understand the effect of various exposures to the mucosal immune system throughout life. OBJECTIVE We sought to establish baseline local upper respiratory mucosal immune profiles in the general population and assess these profiles with regard to age, sex, seasonality, and basic health and lifestyle factors. METHODS We measured the concentrations of 35 immune markers involved in a broad range of immunological processes at the mucosa in nasopharyngeal swab samples from 951 individuals, aged 0 to 86 years, from a nationwide study. RESULTS Clustering analysis showed that immune marker profiles clearly reflected immunological functions, such as tissue regeneration and antiviral responses. Immune marker concentrations changed strongly with seasonality and age, with the most profound changes occurring in the first 25 years of life; they were also associated with sex, body mass index, smoking, mild symptoms of airway infection, and chronic asthma and hay fever. CONCLUSION Immunological analyses of noninvasive mucosal samples provide insight into mucosal immune responses to microbial and noxious element exposure in the general population. These data provide a baseline for future studies on respiratory mucosal immune responses and for the development of mucosal immune-based diagnostics.
Collapse
Affiliation(s)
- Esther van Woudenbergh
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Debbie M van Rooijen
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Janine J Veldman-Wolf
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Mioara A Nicolaie
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Fiona R M van der Klis
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gerco den Hartog
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Olsson H, Tamire M, Samuelsson E, Addissie A, Andersson R, Skovbjerg S, Athlin S. Household air pollution and pneumococcal density related to nasopharyngeal inflammation in mothers and children in Ethiopia: A cross-sectional study. PLoS One 2024; 19:e0297085. [PMID: 38271409 PMCID: PMC10810524 DOI: 10.1371/journal.pone.0297085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Three billion people in low- and middle-income countries are exposed to household air pollution as they use biomass fuel for cooking. We investigated the associations between solid fuel use and nasopharyngeal (NP) inflammation, as well as the associations between high pneumococcal density and NP inflammation, in mothers and children in rural and urban Ethiopia. MATERIALS AND METHODS Sixty pairs of mothers (median age, 30 years; range, 19-45 years) with a child (median age, 9 months; range, 1-24 months) were included from rural Butajira (n = 30) and urban Addis Ababa (n = 30) in Ethiopia. The cohort was randomly selected from a previous study of 545 mother/child pairs included 2016. Questionnaire-based data were collected which included fuel type used (solid: wood, charcoal, dung or crop waste; cleaner: electricity, liquefied petroleum gas). Nasopharyngeal (NP) samples were collected from all mothers and children and analyzed for the levels of 18 cytokines using a Luminex immunoassay. Pneumococcal DNA densities were measured by a real-time multiplex PCR and a high pneumococcal density was defined as a cyclic threshold (Ct) value ≤ 30. RESULTS Mothers from rural areas had higher median CXCL8 levels in NP secretions than those from urban areas (8000 versus 1900 pg/mL; p < 0.01), while rural children had slightly higher IL-10 levels than those from the urban area (26 vs 13 pg/mL; p = 0.04). No associations between fuel type and cytokine levels were found. However, a high pneumococcal density was associated with higher levels of cytokines in both mothers (CCL4, CXCL8, IL-1β, IL-6 and VEGF-A) and children (CCL4, CXCL8, IL-1β, IL-6 and IL-18). CONCLUSIONS No significant associations were found between solid fuel use and NP inflammation in Ethiopian mothers and children, but the inflammatory activity was higher in individuals living in the rural compared to the urban area. In addition, high cytokine levels were associated with high pneumococcal density in both mothers and children, indicating a significant impact of NP pathogens on inflammatory mediator levels in upper airways.
Collapse
Affiliation(s)
- Henrik Olsson
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden
| | - Mulugeta Tamire
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ebba Samuelsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Adamu Addissie
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Simon Athlin
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
German EL, Nabwera HM, Robinson R, Shiham F, Liatsikos K, Parry CM, McNamara C, Kattera S, Carter K, Howard A, Pojar S, Hamilton J, Matope A, Read JM, Allen SJ, Hill H, Hawcutt DB, Urban BC, Collins AM, Ferreira DM, Nikolaou E. Participant perceptions and experiences of a novel community-based respiratory longitudinal sampling method in Liverpool, UK: A mixed methods feasibility study. PLoS One 2023; 18:e0294133. [PMID: 37943741 PMCID: PMC10635470 DOI: 10.1371/journal.pone.0294133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Longitudinal, community-based sampling is important for understanding prevalence and transmission of respiratory pathogens. Using a minimally invasive sampling method, the FAMILY Micro study monitored the oral, nasal and hand microbiota of families for 6 months. Here, we explore participant experiences and opinions. A mixed methods approach was utilised. A quantitative questionnaire was completed after every sampling timepoint to report levels of discomfort and pain, as well as time taken to collect samples. Participants were also invited to discuss their experiences in a qualitative structured exit interview. We received questionnaires from 36 families. Most adults and children >5y experienced no pain (94% and 70%) and little discomfort (73% and 47% no discomfort) regardless of sample type, whereas children ≤5y experienced variable levels of pain and discomfort (48% no pain but 14% hurts even more, whole lot or worst; 38% no discomfort but 33% moderate, severe, or extreme discomfort). The time taken for saliva and hand sampling decreased over the study. We conducted interviews with 24 families. Families found the sampling method straightforward, and adults and children >5y preferred nasal sampling using a synthetic absorptive matrix over nasopharyngeal swabs. It remained challenging for families to fit sampling into their busy schedules. Adequate fridge/freezer space and regular sample pick-ups were found to be important factors for feasibility. Messaging apps proved extremely effective for engaging with participants. Our findings provide key information to inform the design of future studies, specifically that self-sampling at home using minimally invasive procedures is feasible in a family context.
Collapse
Affiliation(s)
- Esther L. German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Helen M. Nabwera
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Ryan Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Farah Shiham
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kostas Liatsikos
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | | | | | | | - Katie Carter
- Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joshua Hamilton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Agnes Matope
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jonathan M. Read
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Stephen J. Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Edward Francis Small Teaching Hospital, Banjul, The Gambia
| | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniel B. Hawcutt
- Alder Hey Children’s Hospital, Liverpool, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | - Britta C. Urban
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrea M. Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
5
|
Nikolaou E, German EL, Howard A, Nabwera HM, Matope A, Robinson R, Shiham F, Liatsikos K, McNamara C, Kattera S, Carter K, Parry CM, Read JM, Allen SJ, Urban BC, Hawcutt DB, Hill H, Collins AM, Ferreira DM. Assessing the use of minimally invasive self-sampling at home for long-term monitoring of the microbiota within UK families. Sci Rep 2023; 13:18201. [PMID: 37875557 PMCID: PMC10598218 DOI: 10.1038/s41598-023-45574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023] Open
Abstract
Monitoring the presence of commensal and pathogenic respiratory microorganisms is of critical global importance. However, community-based surveillance is difficult because nasopharyngeal swabs are uncomfortable and painful for a wide age range of participants. We designed a methodology for minimally invasive self-sampling at home and assessed its use for longitudinal monitoring of the oral, nasal and hand microbiota of adults and children within families. Healthy families with two adults and up to three children, living in and near Liverpool, United Kingdom, self-collected saliva, nasal lining fluid using synthetic absorptive matrices and hand swabs at home every two weeks for six months. Questionnaires were used to collect demographic and epidemiological data and assess feasibility and acceptability. Participants were invited to take part in an exit interview. Thirty-three families completed the study. Sampling using our approach was acceptable to 25/33 (76%) families, as sampling was fast (76%), easy (76%) and painless (60%). Saliva and hand sampling was acceptable to all participants of any age, whereas nasal sampling was accepted mostly by adults and children older than 5 years. Multi-niche self-sampling at home can be used by adults and children for longitudinal surveillance of respiratory microorganisms, providing key data for design of future studies.
Collapse
Affiliation(s)
- E Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, 3050, Australia.
- Microbiology and Immunology Department, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - E L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - A Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - H M Nabwera
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Alder Hey Children's Hospital, Liverpool, UK
- Centre of Excellence in Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - A Matope
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - R Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - F Shiham
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - K Liatsikos
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - C McNamara
- Alder Hey Children's Hospital, Liverpool, UK
| | - S Kattera
- Alder Hey Children's Hospital, Liverpool, UK
| | - K Carter
- Alder Hey Children's Hospital, Liverpool, UK
| | - C M Parry
- Alder Hey Children's Hospital, Liverpool, UK
| | - J M Read
- Lancaster Medical School, Lancaster University, Lancaster, UK
| | - S J Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Edward Francis Small Teaching Hospital, Banjul, The Gambia
| | - B C Urban
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX3 7LE, UK
| | - D B Hawcutt
- Alder Hey Children's Hospital, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | - H Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - A M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - D M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX3 7LE, UK.
| |
Collapse
|
6
|
Kahlert CR, Nigg S, Onder L, Dijkman R, Diener L, Vidal AGJ, Rodriguez R, Vernazza P, Thiel V, Vidal JE, Albrich WC. The quorum sensing com system regulates pneumococcal colonisation and invasive disease in a pseudo-stratified airway tissue model. Microbiol Res 2023; 268:127297. [PMID: 36608536 PMCID: PMC9868095 DOI: 10.1016/j.micres.2022.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The effects of the com quorum sensing system during colonisation and invasion of Streptococcus pneumoniae (Spn) are poorly understood. METHODS We developed an ex vivo model of differentiated human airway epithelial (HAE) cells with beating ciliae, mucus production and tight junctions to study Spn colonisation and translocation. HAE cells were inoculated with Spn wild-type TIGR4 (wtSpn) or its isogenic ΔcomC quorum sensing-deficient mutant. RESULTS Colonisation density of ΔcomC mutant was lower after 6 h but higher at 19 h and 30 h compared to wtSpn. Translocation correlated inversely with colonisation density. Transepithelial electric resistance (TEER) decreased after pneumococcal inoculation and correlated with increased translocation. Confocal imaging illustrated prominent microcolony formation with wtSpn but disintegration of microcolony structures with ΔcomC mutant. ΔcomC mutant showed greater cytotoxicity than wtSpn, suggesting that cytotoxicity was likely not the mechanism leading to translocation. There was greater density- and time-dependent increase of inflammatory cytokines including NLRP3 inflammasome-related IL-18 after infection with ΔcomC compared with wtSpn. ComC inactivation was associated with increased pneumolysin expression. CONCLUSIONS ComC system allows a higher organisational level of population structure resulting in microcolony formation, increased early colonisation and subsequent translocation. We propose that ComC inactivation unleashes a very different and possibly more virulent phenotype that merits further investigation.
Collapse
Affiliation(s)
- Christian R Kahlert
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland; Children's Hospital of Eastern Switzerland, Infectious Disease & Hospital Epidemiology, St. Gallen, Switzerland.
| | - Susanne Nigg
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Liliane Diener
- Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ana G Jop Vidal
- Department of Cell and Molecular Biology, and Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Regulo Rodriguez
- Institute of Pathology, Cantonal Hospital St. Gallen, Switzerland
| | - Pietro Vernazza
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, and Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Werner C Albrich
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland.
| |
Collapse
|
7
|
Mu R, Huang Y, Bouquet J, Yuan J, Kubiak RJ, Ma E, Naser S, Mylott WR, Ismaiel OA, Wheeler AM, Burkart R, Cortes DF, Bruton J, Arends RH, Liang M, Rosenbaum AI. Multiplex Hybrid Antigen-Capture LC-MRM Quantification in Sera and Nasal Lining Fluid of AZD7442, a SARS-CoV-2-Targeting Antibody Combination. Anal Chem 2022; 94:14835-14845. [PMID: 36269894 DOI: 10.1021/acs.analchem.2c01320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months. Instead, we developed a highly sensitive (5 ng/mL limit of quantification) method using a hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approach for quantification of the two codosed antibodies in serum and nasal lining fluid (NLF), a rare matrix. The method was optimized by careful selection of multiple reaction monitoring, capture reagents, magnetic beads, chromatographic conditions, evaluations of selectivity, and matrix effect. The final assay used viral spike protein receptor-binding domain as capture reagent and signature proteotypic peptides from the complementarity-determining region of each mAb for detection. In contrast to other methods of similar/superior sensitivity, our approach did not require multidimensional separations and can be operated in an analytical flow regime, ensuring high throughput and robustness required for clinical analysis at scale. The sensitivity of this method significantly exceeds typical sensitivity of ∼100 ng/mL for analytical flow 1D LBA-LC-MS/MS methods for large macromolecules, such as antibodies. Furthermore, infection and vaccination status did not impact method performance, ensuring method robustness and applicability to a broad patient population. This report demonstrated the general applicability of the hybrid LBA-LC-MS/MS approach to platform quantification of antibodies with high sensitivity and reproducibility, with specialized extension to matrices of increasing interest, such as NLF.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jerome Bouquet
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Robert J Kubiak
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Eric Ma
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Sami Naser
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - William R Mylott
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Omnia A Ismaiel
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States.,Faculty of Pharmacy, Zagazig University, Zagazig 2, Zagazig, Egypt
| | - Aaron M Wheeler
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rebecca Burkart
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Diego F Cortes
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - James Bruton
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rosalinda H Arends
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
9
|
Liatsikos K, Hyder-Wright A, Pojar S, Chen T, Wang D, Davies K, Myerscough C, Reine J, Robinson RE, Urban B, Mitsi E, Solorzano C, Gordon SB, Quinn A, Pan K, Anderson AS, Theilacker C, Begier E, Gessner BD, Collins A, Ferreira DM. Protocol for a phase IV double-blind randomised controlled trial to investigate the effect of the 13-valent pneumococcal conjugate vaccine and the 23-valent pneumococcal polysaccharide vaccine on pneumococcal colonisation using the experimental human pneumococcal challenge model in healthy adults (PREVENTING PNEUMO 2). BMJ Open 2022; 12:e062109. [PMID: 35798520 PMCID: PMC9263934 DOI: 10.1136/bmjopen-2022-062109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Despite widely available vaccinations, Streptococcus pneumoniae (SPN) remains a major cause of morbidity and mortality worldwide, causing community-acquired pneumonia, meningitis, otitis media, sinusitis and bacteraemia. Here, we summarise an ethically approved protocol for a double-blind, randomised controlled trial investigating the effect of the 13-valent pneumococcal conjugate vaccine (PCV13) and the 23-valent pneumococcal polysaccharide vaccine (PPV23) on pneumococcal nasopharyngeal colonisation acquisition, density and duration using experimental human pneumococcal challenge (EHPC). METHODS AND ANALYSIS Healthy adult participants aged 18-50 years will be randomised to receive PCV13, PPV23 or placebo and then undergo one or two EHPCs involving intranasal administration of SPN at 1-month post-vaccination with serotype 3 (SPN3) and 6 months with serotype 6B (SPN6B). Participants randomised to PCV13 and placebo will also be randomised to one of two clinically relevant SPN3 strains from distinct lineages within clonal complex 180, clades Ia and II, creating five study groups. Following inoculation, participants will be seen on days 2, 7, 14 and 23. During the follow-up period, we will monitor safety, colonisation status, density and duration, immune responses and antigenuria. The primary outcome of the study is comparing the rate of SPN3 acquisition between the vaccinated (PCV13 or PPV23) and unvaccinated (placebo) groups as defined by classical culture. Density and duration of colonisation, comparison of acquisition rates using molecular methods and evaluation of the above measurements for individual SPN3 clades and SPN6B form the secondary objectives. Furthermore, we will explore the immune responses associated with these vaccines, their effect on colonisation and the relationship between colonisation and urinary pneumococcal antigen detection. ETHICS AND DISSEMINATION The study is approved by the NHS Research and Ethics Committee (Reference: 20/NW/0097) and by the Medicines and Healthcare products Regulatory Agency (Reference: CTA 25753/0001/001-0001). Findings will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN15728847, NCT04974294.
Collapse
Affiliation(s)
| | - Angela Hyder-Wright
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Sherin Pojar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tao Chen
- Global Health Trials Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Duolao Wang
- Global Health Trials Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Davies
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Jesus Reine
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ryan E Robinson
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Britta Urban
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elena Mitsi
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solorzano
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Liverpool School of Tropical Medicine, Blantyre, Malawi
| | - Angela Quinn
- Pfizer Vaccines, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Kaijie Pan
- Pfizer Vaccines, Pfizer Inc, Collegeville, Pennsylvania, USA
| | | | | | | | | | - Andrea Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
10
|
Mitsi E, Reiné J, Urban BC, Solórzano C, Nikolaou E, Hyder-Wright AD, Pojar S, Howard A, Hitchins L, Glynn S, Farrar MC, Liatsikos K, Collins AM, Walker NF, Hill HC, German EL, Cheliotis KS, Byrne RL, Williams CT, Cubas-Atienzar AI, Fletcher TE, Adams ER, Draper SJ, Pulido D, Beavon R, Theilacker C, Begier E, Jodar L, Gessner BD, Ferreira DM. Streptococcus pneumoniae colonization associates with impaired adaptive immune responses against SARS-CoV-2. J Clin Invest 2022; 132:e157124. [PMID: 35139037 PMCID: PMC8970672 DOI: 10.1172/jci157124] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundAlthough recent epidemiological data suggest that pneumococci may contribute to the risk of SARS-CoV-2 disease, cases of coinfection with Streptococcus pneumoniae in patients with coronavirus disease 2019 (COVID-19) during hospitalization have been reported infrequently. This apparent contradiction may be explained by interactions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pneumococci in the upper airway, resulting in the escape of SARS-CoV-2 from protective host immune responses.MethodsHere, we investigated the relationship of these 2 respiratory pathogens in 2 distinct cohorts of health care workers with asymptomatic or mildly symptomatic SARS-CoV-2 infection identified by systematic screening and patients with moderate to severe disease who presented to the hospital. We assessed the effect of coinfection on host antibody, cellular, and inflammatory responses to the virus.ResultsIn both cohorts, pneumococcal colonization was associated with diminished antiviral immune responses, which primarily affected mucosal IgA levels among individuals with mild or asymptomatic infection and cellular memory responses in infected patients.ConclusionOur findings suggest that S. pneumoniae impair host immunity to SARS-CoV-2 and raise the question of whether pneumococcal carriage also enables immune escape of other respiratory viruses and facilitates reinfection.Trial registrationISRCTN89159899 (FASTER study) and ClinicalTrials.gov NCT03502291 (LAIV study).
Collapse
Affiliation(s)
- Elena Mitsi
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Britta C. Urban
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carla Solórzano
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Sherin Pojar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lisa Hitchins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sharon Glynn
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Madlen C. Farrar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Andrea M. Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Naomi F. Walker
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen C. Hill
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Esther L. German
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Rachel L. Byrne
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Ana I. Cubas-Atienzar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tom E. Fletcher
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily R. Adams
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon J. Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Pulido
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Luis Jodar
- Pfizer Vaccines, Collegeville, Pennsylvania, USA
| | | | - Daniela M. Ferreira
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
11
|
Nikolaou E, German EL, Blizard A, Howard A, Hitchins L, Chen T, Chadwick J, Pojar S, Mitsi E, Solórzano C, Sunny S, Dunne F, Gritzfeld JF, Adler H, Hinds J, Gould KA, Rylance J, Collins AM, Gordon SB, Ferreira DM. The nose is the best niche for detection of experimental pneumococcal colonisation in adults of all ages, using nasal wash. Sci Rep 2021; 11:18279. [PMID: 34521967 PMCID: PMC8440778 DOI: 10.1038/s41598-021-97807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Previous studies have suggested that the pneumococcal niche changes from the nasopharynx to the oral cavity with age. We use an Experimental Human Pneumococcal Challenge model to investigate pneumococcal colonisation in different anatomical niches with age. Healthy adults (n = 112) were intranasally inoculated with Streptococcus pneumoniae serotype 6B (Spn6B) and were categorised as young 18-55 years (n = 57) or older > 55 years (n = 55). Colonisation status (frequency and density) was determined by multiplex qPCR targeting the lytA and cpsA-6A/B genes in both raw and culture-enriched nasal wash and oropharyngeal swab samples collected at 2-, 7- and 14-days post-exposure. For older adults, raw and culture-enriched saliva samples were also assessed. 64% of NW samples and 54% of OPS samples were positive for Spn6B in young adults, compared to 35% of NW samples, 24% of OPS samples and 6% of saliva samples in older adults. Many colonisation events were only detected in culture-enriched samples. Experimental colonisation was detected in 72% of young adults by NW and 63% by OPS. In older adults, this was 51% by NW, 36% by OPS and 9% by saliva. The nose, as assessed by nasal wash, is the best niche for detection of experimental pneumococcal colonisation in both young and older adults.
Collapse
Affiliation(s)
- Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Lisa Hitchins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jim Chadwick
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Syba Sunny
- Medical Microbiology, Royal Liverpool University Hospital, Liverpool, UK
| | - Felicity Dunne
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jenna F Gritzfeld
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Life Course and Medical Sciences, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jason Hinds
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Katherine A Gould
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,College of Medicine, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| |
Collapse
|
12
|
Slimmen LJM, Janssens HM, van Rossum AMC, Unger WWJ. Antigen-Presenting Cells in the Airways: Moderating Asymptomatic Bacterial Carriage. Pathogens 2021; 10:pathogens10080945. [PMID: 34451409 PMCID: PMC8400527 DOI: 10.3390/pathogens10080945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial respiratory tract infections (RTIs) are a major global health burden, and the role of antigen-presenting cells (APCs) in mounting an immune response to contain and clear invading pathogens is well-described. However, most encounters between a host and a bacterial pathogen do not result in symptomatic infection, but in asymptomatic carriage instead. The fact that a pathogen will cause infection in one individual, but not in another does not appear to be directly related to bacterial density, but rather depend on qualitative differences in the host response. Understanding the interactions between respiratory pathogens and airway APCs that result in asymptomatic carriage, will provide better insight into the factors that can skew this interaction towards infection. This review will discuss the currently available knowledge on airway APCs in the context of asymptomatic bacterial carriage along the entire respiratory tract. Furthermore, in order to interpret past and futures studies into this topic, we propose a standardized nomenclature of the different stages of carriage and infection, based on the pathogen’s position with regard to the epithelium and the amount of inflammation present.
Collapse
Affiliation(s)
- Lisa J. M. Slimmen
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Hettie M. Janssens
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Annemarie M. C. van Rossum
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
13
|
Weight CM, Jochems SP, Adler H, Ferreira DM, Brown JS, Heyderman RS. Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:651474. [PMID: 34113578 PMCID: PMC8185287 DOI: 10.3389/fcimb.2021.651474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
In humans, nasopharyngeal carriage of Streptococcus pneumoniae is common and although primarily asymptomatic, is a pre-requisite for pneumonia and invasive pneumococcal disease (IPD). Together, these kill over 500,000 people over the age of 70 years worldwide every year. Pneumococcal conjugate vaccines have been largely successful in reducing IPD in young children and have had considerable indirect impact in protection of older people in industrialized country settings (herd immunity). However, serotype replacement continues to threaten vulnerable populations, particularly older people in whom direct vaccine efficacy is reduced. The early control of pneumococcal colonization at the mucosal surface is mediated through a complex array of epithelial and innate immune cell interactions. Older people often display a state of chronic inflammation, which is associated with an increased mortality risk and has been termed 'Inflammageing'. In this review, we discuss the contribution of an altered microbiome, the impact of inflammageing on human epithelial and innate immunity to S. pneumoniae, and how the resulting dysregulation may affect the outcome of pneumococcal infection in older individuals. We describe the impact of the pneumococcal vaccine and highlight potential research approaches which may improve our understanding of respiratory mucosal immunity during pneumococcal colonization in older individuals.
Collapse
Affiliation(s)
- Caroline M. Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeremy S. Brown
- Respiratory Medicine, University College London, London, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|