1
|
Boucher MJ, Banerjee S, Joshi MB, Wei AL, Huang MY, Lei S, Ciranni M, Condon A, Langen A, Goddard TD, Caradonna I, Goranov AI, Homer CM, Mortensen Y, Petnic S, Reilly MC, Xiong Y, Susa KJ, Pastore VP, Zaro BW, Madhani HD. Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619677. [PMID: 39484549 PMCID: PMC11526942 DOI: 10.1101/2024.10.22.619677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis and the top-ranked W.H.O. priority fungal pathogen. Only distantly related to model fungi, C. neoformans is also a powerful experimental system for exploring conserved eukaryotic mechanisms lost from specialist model yeast lineages. To decipher its biology globally, we constructed 4328 gene deletions and measured-with exceptional precision--the fitness of each mutant under 141 diverse growth-limiting in vitro conditions and during murine infection. We defined functional modules by clustering genes based on their phenotypic signatures. In-depth studies leveraged these data in two ways. First, we defined and investigated new components of key signaling pathways, which revealed animal-like pathways/components not predicted from studies of model yeasts. Second, we identified environmental adaptation mechanisms repurposed to promote mammalian virulence by C. neoformans, which lacks a known animal reservoir. Our work provides an unprecedented resource for deciphering a deadly human pathogen.
Collapse
Affiliation(s)
- Michael J Boucher
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sanjita Banerjee
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Angela L Wei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Manning Y Huang
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Susan Lei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Massimiliano Ciranni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Andrew Condon
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Andreas Langen
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Thomas D Goddard
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ippolito Caradonna
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Alexi I Goranov
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Christina M Homer
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yassaman Mortensen
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sarah Petnic
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Morgann C Reilly
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Ying Xiong
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Katherine J Susa
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Vito Paolo Pastore
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Balyn W Zaro
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Li Y, Chadwick B, Pham T, Xie X, Lin X. Aspartyl peptidase May1 induces host inflammatory response by altering cell wall composition in the fungal pathogen Cryptococcus neoformans. mBio 2024; 15:e0092024. [PMID: 38742885 PMCID: PMC11237595 DOI: 10.1128/mbio.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Cryptococcus neoformans causes cryptococcal meningoencephalitis, a disease that kills more than 180,000 people annually. Contributing to its success as a fungal pathogen is its cell wall surrounded by a capsule. When the cryptococcal cell wall is compromised, exposed pathogen-associated molecular pattern molecules (PAMPs) could trigger host recognition and initiate attack against this fungus. Thus, cell wall composition and structure are tightly regulated. The cryptococcal cell wall is unusual in that chitosan, the acetylated form of chitin, is predominant over chitin and is essential for virulence. Recently, it was shown that acidic pH weakens the cell wall and increases exposure of PAMPs partly due to decreased chitosan levels. However, the molecular mechanism responsible for the cell wall remodeling in acidic pH is unknown. In this study, by screening for genes involved in cryptococcal tolerance to high levels of CO2, we serendipitously discovered that the aspartyl peptidase May1 contributes to cryptococcal sensitivity to high levels of CO2 due to acidification of unbuffered media. Overexpression of MAY1 increases the cryptococcal cell size and elevates PAMP exposure, causing a hyper-inflammatory response in the host while MAY1 deletion does the opposite. We discovered that May1 weakens the cell wall and reduces the chitosan level, partly due to its involvement in the degradation of Chs3, the sole chitin synthase that supplies chitin to be converted to chitosan. Consistently, overexpression of CHS3 largely rescues the phenotype of MAY1oe in acidic media. Collectively, we demonstrate that May1 remodels the cryptococcal cell wall in acidic pH by reducing chitosan levels through its influence on Chs3. IMPORTANCE The fungal cell wall is a dynamic structure, monitoring and responding to internal and external stimuli. It provides a formidable armor to the fungus. However, in a weakened state, the cell wall also triggers host immune attack when PAMPs, including glucan, chitin, and mannoproteins, are exposed. In this work, we found that the aspartyl peptidase May1 impairs the cell wall of Cryptococcus neoformans and increases the exposure of PAMPs in the acidic environment by reducing the chitosan level. Under acidic conditions, May1 is involved in the degradation of the chitin synthase Chs3, which supplies chitin to be deacetylated to chitosan. Consistently, the severe deficiency of chitosan in acidic pH can be rescued by overexpressing CHS3. These findings improve our understanding of cell wall remodeling and reveal a potential target to compromise the cell wall integrity in this important fungal pathogen.
Collapse
Affiliation(s)
- Yeqi Li
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Benjamin Chadwick
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Tuyetnhu Pham
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Chen M, Liu Y, Liu Z, Su L, Yan L, Huang Y, Huang Y, Zhang W, Xu X, Zheng F. Histone acetyltransferase Gcn5-mediated histone H3 acetylation facilitates cryptococcal morphogenesis and sexual reproduction. mSphere 2023; 8:e0029923. [PMID: 37850793 PMCID: PMC10732044 DOI: 10.1128/msphere.00299-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Eukaryotic gene transcription is typically regulated by a series of histone modifications, which play a crucial role in adapting to complex environmental stresses. In the ubiquitous human fungal pathogen Cryptococcus neoformans, sexual life cycle is a continuous intracellular differentiation process that strictly occurs in response to mating stimulation. Despite the comprehensive identification of the regulatory factors and genetic pathways involved in its sexual cycle, understanding of the epigenetic modifications involved in this process remains quite limited. In this research, we found that histone acetyltransferase Gcn5-mediated histone H3 acetylation plays a crucial role in completing the cryptococcal sexual cycle, including yeast-hyphae morphogenesis and the subsequent sexual reproduction. Furthermore, we demonstrated that Gcn5 participates in this process primarily through regulating the key morphogenesis regulator Znf2 and its targets. This study thus provided a comprehensive understanding of how histone acetylation modification impacts sexual life cycle in a high-risk human pathogenic fungus.
Collapse
Affiliation(s)
- Man Chen
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanli Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Zhuozhuo Liu
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Su
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lili Yan
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| | - Yuan Huang
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ye Huang
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| | - Wei Zhang
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
| | - Xinping Xu
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| | - Fanglin Zheng
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Liu R, Chen X, Zhao F, Jiang Y, Lu Z, Ji H, Feng Y, Li J, Zhang H, Zheng J, Zhang J, Zhao Y. The COMPASS Complex Regulates Fungal Development and Virulence through Histone Crosstalk in the Fungal Pathogen Cryptococcus neoformans. J Fungi (Basel) 2023; 9:672. [PMID: 37367608 DOI: 10.3390/jof9060672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The Complex of Proteins Associated with Set1 (COMPASS) methylates lysine K4 on histone H3 (H3K4) and is conserved from yeast to humans. Its subunits and regulatory roles in the meningitis-causing fungal pathogen Cryptococcus neoformans remain unknown. Here we identified the core subunits of the COMPASS complex in C. neoformans and C. deneoformans and confirmed their conserved roles in H3K4 methylation. Through AlphaFold modeling, we found that Set1, Bre2, Swd1, and Swd3 form the catalytic core of the COMPASS complex and regulate the cryptococcal yeast-to-hypha transition, thermal tolerance, and virulence. The COMPASS complex-mediated histone H3K4 methylation requires H2B mono-ubiquitination by Rad6/Bre1 and the Paf1 complex in order to activate the expression of genes specific for the yeast-to-hypha transition in C. deneoformans. Taken together, our findings demonstrate that putative COMPASS subunits function as a unified complex, contributing to cryptococcal development and virulence.
Collapse
Affiliation(s)
- Ruoyan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoyu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixuan Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenguo Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Heng Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Liu Y, Zhang Y, Zhao X, Lu W, Zhong Y, Fu YV. Antifungal Peptide SP1 Damages Polysaccharide Capsule of Cryptococcus neoformans and Enhances Phagocytosis of Macrophages. Microbiol Spectr 2023; 11:e0456222. [PMID: 36916981 PMCID: PMC10100895 DOI: 10.1128/spectrum.04562-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cryptococcus neoformans is a fungal pathogen which causes nearly half a million deaths worldwide each year. Under host-relevant conditions, it produces a characteristic polysaccharide capsule. The polysaccharide capsule is one of the main virulence factors of C. neoformans, which involves antiphagocytosis and immune responses of the host to cause a lack of an immune. Meanwhile, the polysaccharide capsule is a promising drug target because of the absence of analogs in the host. Here, we demonstrate that antifungal peptide SP1, which is derived from the N terminus of Saccharomyces cerevisiae GAPDH (glyceraldehyde-3-phosphate dehydrogenase), disrupts the polysaccharide capsule of C. neoformans H99. The mechanism is possibly due to the interaction of SP1 with glucuronoxylomannan (GXM). Disruption of the polysaccharide capsule enhances the adhesion and phagocytosis of C. neoformans H99 by macrophages and reduces the replication of C. neoformans H99 within macrophages. Additionally, SP1 exhibits antifungal activity against cryptococcal biofilms associated with the capsular polysaccharides. These findings suggest the potential of SP1 as a drug candidate for the treatment of cryptococcosis. IMPORTANCE C. neoformans is an opportunistic pathogen that causes invasive infections with a high mortality rate. Currently, the clinical drugs available for the treatment of cryptococcosis are limited to amphotericin B, azoles, and flucytosine. Amphotericin is nephrotoxic, and the widespread use of azoles and 5-flucytosine has led to a rapid development of drug resistance in C. neoformans. There is an urgent need to develop new and effective anticryptococcal drugs. Targeting virulence factors is a novel strategy for developing antifungal drugs. The antifungal peptide SP1 is capable of disrupting the polysaccharide capsule, which is a principal virulence factor of C. neoformans. Studying the mechanism by which SP1 damages the polysaccharide capsule and investigating the potential benefits of SP1 in removing C. neoformans from the host provides baseline data to develop a therapeutic strategy against refractory cryptococcal infections. This strategy would involve both inhibiting virulence factors and directly killing C. neoformans cells.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xi Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu V. Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Beattie SR, Jezewski AJ, Ristow LC, Wellington M, Krysan DJ. FKS1 Is Required for Cryptococcus neoformans Fitness In Vivo: Application of Copper-Regulated Gene Expression to Mouse Models of Cryptococcosis. mSphere 2022; 7:e0016322. [PMID: 35506343 PMCID: PMC9241531 DOI: 10.1128/msphere.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for new antifungals to treat cryptococcal meningoencephalitis, a leading cause of mortality in people living with HIV/AIDS. An important aspect of antifungal drug development is the validation of targets to determine whether they are required for the survival of the organism in animal models of disease. In Cryptococcus neoformans, a copper-regulated promoter (pCTR4-2) has been used previously to modulate gene expression in vivo. The premise for these experiments is that copper concentrations differ depending on the host niche. Here, we directly test this premise and confirm that the expression of CTR4, the promoter used to regulate gene expression, is much lower in the mouse lung compared to the brain. To further explore this approach, we applied it to the gene encoding 1,3-β-glucan synthase, FKS1. In vitro, reduced expression of FKS1 has little effect on growth but does activate the cell wall integrity stress response and increase susceptibility to caspofungin, a direct inhibitor of Fks1. These data suggest that compensatory pathways that reduce C. neoformans resistance do so through posttranscriptional effects. In vivo, however, a less pronounced reduction in FKS1 expression leads to a much more significant reduction in lung fungal burden (~1 log10 CFU), indicating that the compensatory responses to a reduction in FKS1 expression are not as effective in vivo as they are in vitro. In summary, use of copper-regulated expression of putative drug targets in vitro and in vivo can provide insights into the biological consequences of reduced activity of the target during infection. IMPORTANCE Conditional expression systems are widely used to genetically validate antifungal drug targets in mouse models of infection. Copper-regulated expression using the promoter of the CTR4 gene has been sporadically used for this purpose in C. neoformans. Here, we show that CTR4 expression is low in the lung and high in the brain, establishing the basic premise behind this approach. We applied the approach to the study of FKS1, the gene encoding the target of the echinocandin class of 1,3-β-glucan synthase inhibitors. Our in vitro and in vivo studies indicate that C. neoformans tolerates extremely low levels of FKS1 expression. This observation provides a potential explanation for the poor activity of 1,3-β-glucan synthase inhibitors toward C. neoformans.
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew J. Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Laura C. Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
8
|
Identification and Characterization of an Intergenic “Safe Haven” Region in Human Fungal Pathogen Cryptococcus gattii. J Fungi (Basel) 2022; 8:jof8020178. [PMID: 35205930 PMCID: PMC8874978 DOI: 10.3390/jof8020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Cryptococcus gattii is a primary fungal pathogen, which causes pulmonary and brain infections in healthy as well as immunocompromised individuals. Genetic manipulations in this pathogen are widely employed to study its biology and pathogenesis, and require integration of foreign DNA into the genome. Thus, identification of gene free regions where integrated foreign DNA can be expressed without influencing, or being influenced by, nearby genes would be extremely valuable. To achieve this goal, we examined publicly available genomes and transcriptomes of C. gattii, and identified two intergenic regions in the reference strain R265 as potential “safe haven” regions, named as CgSH1 and CgSH2. We found that insertion of a fluorescent reporter gene and a selection marker at these two intergenic regions did not affect the expression of their neighboring genes and were also expressed efficiently, as expected. Furthermore, DNA integration at CgSH1 or CgSH2 had no apparent effect on the growth of C. gattii, its response to various stresses, or phagocytosis by macrophages. Thus, the identified safe haven regions in C. gattii provide an effective tool for researchers to reduce variation and increase reproducibility in genetic experiments.
Collapse
|
9
|
Abstract
C. neoformans is the main causative agent of fungal meningitis that is responsible for about 15% of all HIV-related deaths. Although an obligate aerobic fungus, C. neoformans is well adapted to hypoxia conditions that the fungus could encounter in the host or the environment. To aerobic organisms, low oxygen tension (hypoxia) presents a physiological challenge. To cope with such a challenge, metabolic pathways such as those used in energy production have to be adjusted. Many of such metabolic changes are orchestrated by the conserved hypoxia-inducible factors (HIFs) in higher eukaryotes. However, there are no HIF homologs in fungi or protists, and not much is known about conductors that direct hypoxic adaptation in lower eukaryotes. Here, we discovered that the transcription factor Pas2 controls the transcript levels of metabolic genes and consequently rewires metabolism for hypoxia adaptation in the human fungal pathogen Cryptococcus neoformans. Through genetic, proteomic, and biochemical analyses, we demonstrated that Pas2 directly interacts with another transcription factor, Rds2, in regulating cryptococcal hypoxic adaptation. The Pas2/Rds2 complex represents the key transcription regulator of metabolic flexibility. Its regulation of metabolism rewiring between respiration and fermentation is critical to our understanding of the cryptococcal response to low levels of oxygen.
Collapse
|
10
|
Zhao Y, Lin X. Cryptococcus neoformans: Sex, morphogenesis, and virulence. INFECTION GENETICS AND EVOLUTION 2021; 89:104731. [PMID: 33497839 DOI: 10.1016/j.meegid.2021.104731] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a dimorphic fungus that causes lethal meningoencephalitis mainly in immunocompromised individuals. Different morphotypes enable this environmental fungus and opportunistic pathogen to adapt to different natural niches and exhibit different levels of pathogenicity in various hosts. It is well-recognized that C. neoformans undergoes bisexual or unisexual reproduction in vitro to generate genotypic, morphotypic, and phenotypic diversity, which augments its ability for adaptation. However, if and how sexual reproduction and the meiotic machinery exert any direct impact on the infection process is unclear. This review summarizes recent discoveries on the regulation of cryptococcal life cycle and morphogenesis, and how they impact cryptococcal pathogenicity. The potential role of the meiotic machinery on ploidy regulation during cryptococcal infection is also discussed. This review aims to stimulate further investigation on links between fungal morphogenesis, sexual reproduction, and virulence.
Collapse
Affiliation(s)
- Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Fan Y, Lin X. An intergenic "safe haven" region in Cryptococcus neoformans serotype D genomes. Fungal Genet Biol 2020; 144:103464. [PMID: 32947034 PMCID: PMC7726056 DOI: 10.1016/j.fgb.2020.103464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and serves as a model organism for studies of eukaryotic microbiology and microbial pathogenesis. C. neoformans species complex is classified into serotype A, serotype D, and AD hybrids, which are currently considered different subspecies. Different serotype strains display varied phenotypes, virulence, and gene regulation. Genetic investigation of important pathways is often performed in both serotype A and D reference strains in order to identify diversification or conservation of the interrogated signaling network. Many genetic tools have been developed for C. neoformans serotype A reference strain H99, including the gene free "safe haven" (SH) regions for DNA integration identified based on genomic features. However, no such a genomic safe haven region has been identified in serotype D strains. Here, capitalizing on the available genomic, transcriptomic, and chromatin data, we identified an intergenic region named as SH3 for the serotype D reference strains JEC21 and XL280. We also designed a sgRNA and a vector facilitating any alien gene integration into SH3 through a CRISPR-Cas9 system. We found that gene inserted in this region complemented the corresponding gene deletion mutant. Fluorescent reporter gene inserted in SH3 can also be expressed efficiently. Insertion in SH3 itself did not alter the expression of adjacent genes and did not affect the growth or mating of C. neoformans. Thus, SH3 provides a resource for genetic manipulations in serotype D strains and will facilitate comparative analyses of gene functions in this species complex. In addition, the incorporation of the multi-omic data in our selection of the safe haven region could help similar studies in other organisms.
Collapse
Affiliation(s)
- Yumeng Fan
- Department of Microbiology, University of Georgia, Athens 30602, GA, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens 30602, GA, USA.
| |
Collapse
|
12
|
CgCmk1 Activates CgRds2 To Resist Low-pH Stress in Candida glabrata. Appl Environ Microbiol 2020; 86:AEM.00302-20. [PMID: 32245757 DOI: 10.1128/aem.00302-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
In Candida glabrata, the transcription factor CgRds2 has been previously characterized as a regulator of glycerophospholipid metabolism, playing a crucial role in the response to osmotic stress. Here, we report that CgRds2 is also involved in the response to pH 2.0 stress. At pH 2.0, the deletion of CgRDS2 led to reduced cell growth and survival, by 33% and 57%, respectively, compared with those of the wild-type strain. These adverse phenotypes resulted from the downregulation of genes related to energy metabolism in the Cgrds2Δ strain at pH 2.0, which led to a 34% reduction of the intracellular ATP content and a 24% decrease in membrane permeability. In contrast, the overexpression of CgRDS2 rescued the growth defect of the Cgrds2Δ strain and increased cell survival at pH 2.0 by 17% compared with that of the wild-type strain, and this effect was accompanied by significant increases in ATP content and membrane permeability, by 42% and 19%, respectively. Furthermore, we found that the calcium/calmodulin-dependent protein kinase (CaMK) CgCmk1 physically interacts with the PAS domain of CgRds2, and CgCmk1 is required for CgRds2 activation and translocation from the cytoplasm to the nucleus under pH 2.0 stress. Moreover, CgCmk1 is critical for CgRds2 function in resistance to pH 2.0 stress, because cells of the Cgrds2-pas strain with a disrupted CgCmk1-CgRds2 interaction exhibited impaired energy metabolism and membrane permeability at pH 2.0. Therefore, our results indicate that CgCmk1 positively regulates CgRds2 and suggest that they promote resistance to low-pH stress by enhancing energy metabolism and membrane permeability in C. glabrata IMPORTANCE An acidic environment is the main problem in the production of organic acids in C. glabrata The present study reports that the calcium/calmodulin-dependent protein kinase CgCmk1 positively regulates CgRds2 to increase intracellular ATP content, membrane permeability, and resistance to low-pH stress. Hence, the transcription factor CgRds2 may be a potential target for improving the acid stress tolerance of C. glabrata during the fermentation of organic acids. The present study also establishes a new link between the calcium signaling pathway and energy metabolism.
Collapse
|
13
|
Zhao Y, Wang Y, Upadhyay S, Xue C, Lin X. Activation of Meiotic Genes Mediates Ploidy Reduction during Cryptococcal Infection. Curr Biol 2020; 30:1387-1396.e5. [PMID: 32109388 DOI: 10.1016/j.cub.2020.01.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a global human fungal pathogen that causes fatal meningoencephalitis in mostly immunocompromised individuals. During pulmonary infection, cryptococcal cells form large polyploid cells that exhibit increased resistance to host immune attack and are proposed to contribute to the latency of cryptococcal infection. These polyploid titan cells can generate haploid and aneuploid progeny that may result in systemic infection. What triggers cryptococcal polyploidization and how ploidy reduction is achieved remain open questions. Here, we discovered that Cryptococcus cells polyploidize in response to genotoxic stresses that cause DNA double-strand breaks. Intriguingly, meiosis-specific genes are activated in C. neoformans and contribute to ploidy reduction, both in vitro and during infection in mice. Cryptococcal cells that activated their meiotic genes in mice were resistant to specific genotoxic stress compared to sister cells recovered from the same host tissue but without activation of meiotic genes. Our findings support the idea that meiotic genes, in addition to their conventional roles in classic sexual reproduction, contribute to adaptation of eukaryotic cells that undergo dramatic genome changes in response to genotoxic stress. The discovery has additional implications for evolution of sexual reproduction and the paradox of the presence of meiotic machinery in asexual species. Finally, our findings in this eukaryotic microbe mirror the revolutionary discoveries of the polyploidization and meiosis-like ploidy reduction process in cancer cells, suggesting that the reversible ploidy change itself could provide a general mechanism for rejuvenation to promote individual survival in response to stress.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yina Wang
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Srijana Upadhyay
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Chaoyang Xue
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Integrative Activity of Mating Loci, Environmentally Responsive Genes, and Secondary Metabolism Pathways during Sexual Development of Chaetomium globosum. mBio 2019; 10:mBio.02119-19. [PMID: 31822585 PMCID: PMC6904875 DOI: 10.1128/mbio.02119-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal diversity has amazed evolutionary biologists for decades. One societally important aspect of this diversity manifests in traits that enable pathogenicity. The opportunistic pathogen Chaetomium globosum is well adapted to a high-humidity environment and produces numerous secondary metabolites that defend it from predation. Many of these chemicals can threaten human health. Understanding the phases of the C. globosum life cycle in which these products are made enables better control and even utilization of this fungus. Among its intriguing traits is that it both is self-fertile and lacks any means of propagule-based asexual reproduction. By profiling genome-wide gene expression across the process of sexual reproduction in C. globosum and comparing it to genome-wide gene expression in the model filamentous fungus N. crassa and other closely related fungi, we revealed associations among mating-type genes, sexual developmental genes, sexual incompatibility regulators, environmentally responsive genes, and secondary metabolic pathways. The origins and maintenance of the rich fungal diversity have been longstanding issues in evolutionary biology. To investigate how differences in expression regulation contribute to divergences in development and ecology among closely related species, transcriptomes were compared between Chaetomium globosum, a homothallic pathogenic fungus thriving in highly humid ecologies, and Neurospora crassa, a heterothallic postfire saprotroph. Gene expression was quantified in perithecia at nine distinct morphological stages during nearly synchronous sexual development. Unlike N. crassa, expression of all mating loci in C. globosum was highly correlated. Key regulators of the initiation of sexual development in response to light stimuli—including orthologs of N. crassasub-1, sub-1-dependent gene NCU00309, and asl-1—showed regulatory dynamics matching between C. globosum and N. crassa. Among 24 secondary metabolism gene clusters in C. globosum, 11—including the cochliodones biosynthesis cluster—exhibited highly coordinated expression across perithecial development. C. globosum exhibited coordinately upregulated expression of histidine kinases in hyperosmotic response pathways—consistent with gene expression responses to high humidity we identified in fellow pathogen Fusarium graminearum. Bayesian networks indicated that gene interactions during sexual development have diverged in concert with the capacities both to reproduce asexually and to live a self-compatible versus self-incompatible life cycle, shifting the hierarchical roles of genes associated with conidiation and heterokaryon incompatibility in N. crassa and C. globosum. This divergence supports an evolutionary history of loss of conidiation due to unfavorable combinations of heterokaryon incompatibility in homothallic species.
Collapse
|
15
|
Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu Rev Genet 2019; 53:417-444. [PMID: 31537103 PMCID: PMC7025156 DOI: 10.1146/annurev-genet-120116-024755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
16
|
Lin J, Zhao Y, Ferraro AR, Yang E, Lewis ZA, Lin X. Transcription factor Znf2 coordinates with the chromatin remodeling SWI/SNF complex to regulate cryptococcal cellular differentiation. Commun Biol 2019; 2:412. [PMID: 31754642 PMCID: PMC6856107 DOI: 10.1038/s42003-019-0665-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular differentiation is instructed by developmental regulators in coordination with chromatin remodeling complexes. Much information about their coordination comes from studies in the model ascomycetous yeasts. It is not clear, however, what kind of information that can be extrapolated to species of other phyla in Kingdom Fungi. In the basidiomycete Cryptococcus neoformans, the transcription factor Znf2 controls yeast-to-hypha differentiation. Through a forward genetic screen, we identified the basidiomycete-specific factor Brf1. We discovered Brf1 works together with Snf5 in the SWI/SNF chromatin remodeling complex in concert with existent Znf2 to execute cellular differentiation. We demonstrated that SWI/SNF assists Znf2 in opening the promoter regions of hyphal specific genes, including the ZNF2 gene itself. This complex also supports Znf2 to fully associate with its target regions. Importantly, our findings revealed key differences in composition and biological function of the SWI/SNF complex in the two major phyla of Kingdom Fungi.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Aileen R. Ferraro
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
17
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
18
|
Li Z, Fu B, Green CM, Liu B, Zhang J, Lang Y, Chaturvedi S, Belfort M, Liao G, Li H. Cisplatin protects mice from challenge of Cryptococcus neoformans by targeting the Prp8 intein. Emerg Microbes Infect 2019; 8:895-908. [PMID: 31223062 PMCID: PMC6598491 DOI: 10.1080/22221751.2019.1625727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The Prp8 intein is one of the most widespread eukaryotic inteins, present in important pathogenic fungi, including Cryptococcus and Aspergillus species. Because the processed Prp8 carries out essential and non-redundant cellular functions, a Prp8 intein inhibitor is a mechanistically novel antifungal agent. In this report, we demonstrated that cisplatin, an FDA-approved cancer drug, significantly arrested growth of Prp8 intein-containing fungi C. neoformans and C. gattii, but only poorly inhibited growth of intein-free Candida species. These results suggest that cisplatin arrests fungal growth through specific inhibition of the Prp8 intein. Cisplatin was also found to significantly inhibit growth of C. neoformans in a mouse model. Our results further showed that cisplatin inhibited Prp8 intein splicing in vitro in a dose-dependent manner by direct binding to the Prp8 intein. Crystal structures of the apo- and cisplatin-bound Prp8 inteins revealed that two degenerate cisplatin molecules bind at the intein active site. Mutation of the splicing-site residues led to loss of cisplatin binding, as well as impairment of intein splicing. Finally, we found that overexpression of the Prp8 intein in cryptococcal species conferred cisplatin resistance. Overall, these results indicate that the Prp8 intein is a novel antifungal target worth further investigation.
Collapse
Affiliation(s)
- Zhong Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Bin Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
| | - Binbin Liu
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Jing Zhang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Yuekun Lang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Sudha Chaturvedi
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Hongmin Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|