1
|
Manning J, Manna S, Dunne EM, Bongcaron V, Pell CL, Patterson NL, Kuil SD, Dhar P, Goldblatt D, Kim Mulholland E, Licciardi PV, Robins-Browne RM, Malley R, Wijburg O, Satzke C. Immunization with a whole cell vaccine reduces pneumococcal nasopharyngeal density and shedding, and middle ear infection in mice. Vaccine 2024; 42:1714-1722. [PMID: 38350767 DOI: 10.1016/j.vaccine.2024.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Pneumococcal Conjugate Vaccines (PCVs) have substantially reduced the burden of disease caused by Streptococcus pneumoniae (the pneumococcus). However, protection is limited to vaccine serotypes, and when administered to children who are colonized with pneumococci at the time of vaccination, immune responses to the vaccine are blunted. Here, we investigate the potential of a killed whole cell pneumococcal vaccine (WCV) to reduce existing pneumococcal carriage and mucosal disease when given therapeutically to infant mice colonized with pneumococci. We show that a single dose of WCV reduced pneumococcal carriage density in an antibody-dependent manner. Therapeutic vaccination induced robust immune responses to pneumococcal surface antigens CbpA, PspA (family 1) and PiaA. In a co-infection model of otitis media, a single dose of WCV reduced pneumococcal middle ear infection. Lastly, in a two-dose model, therapeutic administration of WCV reduced nasal shedding of pneumococci. Taken together, our data demonstrate that WCV administered in colonized mice reduced pneumococcal density in the nasopharynx and the middle ear, and decreased shedding. WCVs would be beneficial in low and middle-income settings where pneumococcal carriage in children is high.
Collapse
Affiliation(s)
- Jayne Manning
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sam Manna
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eileen M Dunne
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Viktoria Bongcaron
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Casey L Pell
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Natalie L Patterson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sacha D Kuil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Poshmaal Dhar
- Faculty of Health, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - David Goldblatt
- Institute of Child Health, University College London, London, United Kingdom
| | - E Kim Mulholland
- New Vaccines, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Paul V Licciardi
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia; New Vaccines, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Infectious Diseases, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, United States of America
| | - Odilia Wijburg
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Catherine Satzke
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Ganaie FA, Saad JS, Lo SW, McGee L, Bentley SD, van Tonder AJ, Hawkins P, Keenan JD, Calix JJ, Nahm MH. Discovery and Characterization of Pneumococcal Serogroup 36 Capsule Subtypes, Serotypes 36A and 36B. J Clin Microbiol 2023; 61:e0002423. [PMID: 36971549 PMCID: PMC10117043 DOI: 10.1128/jcm.00024-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus pneumoniae can produce a wide breadth of antigenically diverse capsule types, a fact that poses a looming threat to the success of vaccines that target pneumococcal polysaccharide (PS) capsule. Yet, many pneumococcal capsule types remain undiscovered and/or uncharacterized. Prior sequence analysis of pneumococcal capsule synthesis (cps) loci suggested the existence of capsule subtypes among isolates identified as "serotype 36" according to conventional capsule typing methods. We discovered these subtypes represent two antigenically similar but distinguishable pneumococcal capsule serotypes, 36A and 36B. Biochemical analysis of their capsule PS structure reveals that both have the shared repeat unit backbone [→5)-α-d-Galf-(1→1)-d-Rib-ol-(5→P→6)-β-d-ManpNAc-(1→4)-β-d-Glcp-(1→] with two branching structures. Both serotypes have a β-d-Galp branch to Ribitol. Serotypes 36A and 36B differ by the presence of a α-d-Glcp-(1→3)-β-d-ManpNAc or α-d-Galp-(1→3)-β-d-ManpNAc branch, respectively. Comparison of the phylogenetically distant serogroup 9 and 36 cps loci, which all encode this distinguishing glycosidic bond, revealed that the incorporation of Glcp (in types 9N and 36A) versus Galp (in types 9A, 9V, 9L, and 36B) is associated with the identity of four amino acids in the cps-encoded glycosyltransferase WcjA. Identifying functional determinants of cps-encoded enzymes and their impact on capsule PS structure is key to improving the resolution and reliability of sequencing-based capsule typing methods and discovering novel capsule variants indistinguishable by conventional serotyping methods.
Collapse
Affiliation(s)
- Feroze A. Ganaie
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paulina Hawkins
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jeremy D. Keenan
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Juan J. Calix
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Moon H. Nahm
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022; 12:824788. [PMID: 35155281 PMCID: PMC8834882 DOI: 10.3389/fcimb.2022.824788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
The gram-positive bacterium Streptococcus pneumoniae is a leading cause of pneumonia, otitis media, septicemia, and meningitis in children and adults. Current prevention and treatment efforts are primarily pneumococcal conjugate vaccines that target the bacterial capsule polysaccharide, as well as antibiotics for pathogen clearance. While these methods have been enormously effective at disease prevention and treatment, there has been an emergence of non-vaccine serotypes, termed serotype replacement, and increasing antibiotic resistance among these serotypes. To combat S. pneumoniae, the immune system must deploy an arsenal of antimicrobial functions. However, S. pneumoniae has evolved a repertoire of evasion techniques and is able to modulate the host immune system. Antibodies are a key component of pneumococcal immunity, targeting both the capsule polysaccharide and protein antigens on the surface of the bacterium. These antibodies have been shown to play a variety of roles including increasing opsonophagocytic activity, enzymatic and toxin neutralization, reducing bacterial adherence, and altering bacterial gene expression. In this review, we describe targets of anti-pneumococcal antibodies and describe antibody functions and effectiveness against S. pneumoniae.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Jarrod J. Mousa,
| |
Collapse
|
4
|
Babb R, Doyle CR, Pirofski LA. Isolation and Characterization of Human Monoclonal Antibodies to Pneumococcal Capsular Polysaccharide 3. Microbiol Spectr 2021; 9:e0144621. [PMID: 34756090 PMCID: PMC8579928 DOI: 10.1128/spectrum.01446-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022] Open
Abstract
The current pneumococcal capsular polysaccharide (PPS) conjugate vaccine (PCV13) is less effective against Streptococcus pneumoniae serotype 3 (ST3), which remains a major cause of pneumococcal disease and mortality. Therefore, dissecting structure-function relationships of human ST3 pneumococcal capsular polysaccharide (PPS3) antibodies may reveal characteristics of protective antibodies. Using flow cytometry, we isolated PPS3-binding memory B cells from pneumococcal vaccine recipients and generated seven PPS3-specific human monoclonal antibodies (humAbs). Five humAbs displayed ST3 opsonophagocytic activity, four induced ST3 agglutination in vitro, and four mediated both activities. Two humAbs, namely, C10 and C27, that used the same variable heavy (VH) and light (VL) chain domains (VH3-9*01/VL2-14*03) both altered ST3 gene expression in vitro; however, C10 had fewer VL somatic mutations, higher PPS3 affinity, and promoted in vitro ST3 opsonophagocytic and agglutinating activity, whereas C27 did not. In C57BL/6 mice, both humAbs reduced nasopharyngeal colonization with ST3 A66 and a clinical strain, B2, and prolonged survival following lethal A66 intraperitoneal infection, but only C10 protected against lethal intranasal infection with the clinical strain. After performing VL swaps, C10VH/C27VL exhibited reduced ST3 binding and agglutination, but C27VH/C10VL binding was unchanged. However, both humAbs lost the ability to reduce colonization in vivo when their light chains were replaced. Our findings associate the ability of PPS3-specific humAbs to reduce colonization with ST3 agglutination and opsonophagocytic activity, and reveal an unexpected role for the VL in their functional activity in vitro and in vivo. These findings also provide insights that may inform antibody-based therapy and identification of surrogates of vaccine efficacy against ST3. IMPORTANCE Despite the global success of vaccination with pneumococcal conjugate vaccines, serotype 3 (ST3) pneumococcus remains a leading cause of morbidity and mortality. In comparison to other vaccine-included serotypes, the ST3 pneumococcal capsular polysaccharide (PPS3) induces a weaker opsonophagocytic response, which is considered a correlate of vaccine efficacy. Previous studies of mouse PPS3 monoclonal antibodies identified ST3 agglutination as a correlate of reduced ST3 nasopharyngeal colonization in mice; however, neither the agglutinating ability of human vaccine-elicited PPS3 antibodies nor their ability to prevent experimental murine nasopharyngeal colonization has been studied. We generated and analyzed the functional and in vivo efficacy of human vaccine-elicited PPS3 monoclonal antibodies and found that ST3 agglutination associated with antibody affinity, protection in vivo, and limited somatic mutations in the light chain variable region. These findings provide new insights that may inform the development of antibody-based therapies and next-generation vaccines for ST3.
Collapse
Affiliation(s)
- Rachelle Babb
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | | | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
5
|
Broadly Reactive Human Monoclonal Antibodies Targeting the Pneumococcal Histidine Triad Protein Protect against Fatal Pneumococcal Infection. Infect Immun 2021; 89:IAI.00747-20. [PMID: 33649050 PMCID: PMC8091081 DOI: 10.1128/iai.00747-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most serotypes included in vaccines, a rise in infection due to nonvaccine serotypes and moderate efficacy against some vaccine serotypes have contributed to high disease incidence. Streptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most serotypes included in vaccines, a rise in infection due to nonvaccine serotypes and moderate efficacy against some vaccine serotypes have contributed to high disease incidence. Additionally, numerous isolates of S. pneumoniae are antibiotic or multidrug resistant. Several conserved pneumococcal proteins prevalent in the majority of serotypes have been examined for their potential as vaccines in preclinical and clinical trials. An additional, yet-unexplored tool for disease prevention and treatment is the use of human monoclonal antibodies (MAbs) targeting conserved pneumococcal proteins. Here, we isolated the first human MAbs (PhtD3, PhtD6, PhtD7, PhtD8, and PspA16) against the pneumococcal histidine triad protein (PhtD) and the pneumococcal surface protein A (PspA), two conserved and protective antigens. MAbs to PhtD target diverse epitopes on PhtD, and MAb PspA16 targets the N-terminal segment of PspA. The PhtD-specific MAbs bind to multiple serotypes, while MAb PspA16 serotype breadth is limited. MAbs PhtD3 and PhtD8 prolong the survival of mice infected with pneumococcal serotype 3. Furthermore, MAb PhtD3 prolongs the survival of mice in intranasal and intravenous infection models with pneumococcal serotype 4 and in mice infected with pneumococcal serotype 3 when administered 24 h after pneumococcal infection. All PhtD and PspA MAbs demonstrate opsonophagocytic activity, suggesting a potential mechanism of protection. Our results identify new human MAbs for pneumococcal disease prevention and treatment and identify epitopes on PhtD and PspA recognized by human B cells.
Collapse
|
6
|
Corrected and Republished from: A Nonfunctional Opsonic Antibody Response Frequently Occurs after Pneumococcal Pneumonia and Is Associated with Invasive Disease. mSphere 2020; 5:5/6/e01102-20. [PMID: 33328351 PMCID: PMC7758726 DOI: 10.1128/msphere.01102-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous reports on the dynamics of antipneumococcal immunity in relation to immunization with pneumococcal vaccines and on the prevalence of naturally acquired immunity in various populations have been published. In contrast, studies on the dynamics of the humoral immune response triggered by pneumococcal infection are scarce. Naturally acquired opsonic antipneumococcal antibodies are commonly found in nonvaccinated adults and confer protection against infection and colonization. Despite this, only limited data exist regarding the adaptive immune response after pneumococcal exposure. To investigate the dynamics of naturally acquired antipneumococcal immunity in relation to an episode of infection, opsonic antibody activity was studied with paired acute-phase and convalescent-phase sera obtained from 54 patients with pneumococcal community-acquired pneumonia (CAP) using an opsonophagocytic assay (OPA). Results were compared with clinical characteristics and anticapsular immunoglobulin (Ig) concentrations. Interestingly, a nonfunctional opsonic antibody response (characterized by a decreased convalescent-phase serum OPA titer compared to that of the acute-phase serum or undetectable titers in both sera) was observed in 19 (35%) patients. The remaining individuals exhibited either an increased convalescent-phase OPA titer (n = 24 [44%]) or a detectable, but unchanged, titer at both time points (n = 11 [20%]). Invasive pneumococcal disease (i.e., bacteremia) was significantly more common among patients with a nonfunctional convalescent-phase response than in patients with other convalescent-phase responses. Anticapsular Ig concentrations were higher among patients with detectable convalescent-phase OPA titers (P = 0.003), and the greatest Ig concentration increase was observed among patients with an increased convalescent-phase response (P = 0.002). Our findings indicate that an episode of pneumococcal infection may act as an immunizing event. However, in some cases when patients with CAP also suffer from bacteremia, a nonfunctional opsonic antibody response may occur. Furthermore, the results suggest that factors other than anticapsular Ig concentrations determine opsonic antibody activity in serum. IMPORTANCE Numerous reports on the dynamics of antipneumococcal immunity in relation to immunization with pneumococcal vaccines and on the prevalence of naturally acquired immunity in various populations have been published. In contrast, studies on the dynamics of the humoral immune response triggered by pneumococcal infection are scarce. This study provides valuable information that will contribute to fill this knowledge gap. Our main results indicate that a functional immune response may fail after CAP, predominantly among patients with simultaneous bacteremia.
Collapse
|
7
|
Abstract
Human antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hold intense interest, with research efforts directed at optimizing antibody-based interventions and monitoring immune status. By relating individual variations in antibody response to coronavirus disease 2019 (COVID-19) severity, beneficial antiviral immune responses may be identified in detail. In this issue of the JCI, Secchi and collaborators describe antibody response profiles in 509 patients with COVID-19 from Italy during the 2020 pandemic. The research team found that multiple antibody types to multiple SARS-CoV-2 antigens developed over four weeks. Notably, IgG against the spike receptor binding domain (RBD) was predictive of survival and IgA against the viral spike protein (S protein) associated with rapid virologic clearance. These results may help guide selection of convalescent plasma, hyperimmune products, monoclonal antibodies, and vaccine strategies for COVID-19.
Collapse
|
8
|
A Nonfunctional Opsonic Antibody Response Frequently Occurs after Pneumococcal Pneumonia and Is Associated with Invasive Disease. mSphere 2020; 5:5/1/e00925-19. [PMID: 32024704 PMCID: PMC7002313 DOI: 10.1128/msphere.00925-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous reports on the dynamics of antipneumococcal immunity in relation to immunization with pneumococcal vaccines and on the prevalence of naturally acquired immunity in various populations have been published. In contrast, studies on the dynamics of the humoral immune response triggered by pneumococcal infection are scarce. This study provides valuable information that will contribute to fill this knowledge gap. Our main results indicate that a functional immune response frequently fails to occur after CAP, predominantly among patients with simultaneous bacteremia. Naturally acquired opsonic antipneumococcal antibodies are commonly found in nonvaccinated adults and confer protection against infection and colonization. Despite this, only limited data exist regarding the adaptive immune response after pneumococcal exposure. To investigate the dynamics of naturally acquired antipneumococcal immunity in relation to an episode of infection, opsonic antibody activity was studied with paired acute-phase and convalescent-phase sera obtained from 54 patients with pneumococcal community-acquired pneumonia (CAP) using an opsonophagocytic assay (OPA). Results were compared with clinical characteristics and anticapsular immunoglobulin (Ig) concentrations. Interestingly, a nonfunctional opsonic antibody response (characterized by a decreased convalescent-phase serum OPA titer compared to that of the acute-phase serum or undetectable titers in both sera) was observed in 19 (35%) patients. A nonfunctional convalescent-phase response was significantly more common among patients with invasive pneumococcal disease (i.e., bacteremia) than in patients without invasive disease (53%; P = 0.019). Remaining individuals exhibited either an increased convalescent-phase OPA titer (n = 24 [44%]) or a detectable, but unchanged, titer at both time points (n = 11 [20%]). No correlation was found between anticapsular Ig concentrations and OPA titers. Our findings indicate that an episode of pneumococcal infection may act as an immunizing event, leading to an improved antipneumococcal adaptive immune status. However, in some cases, when patients with CAP also suffer from bacteremia, a nonfunctional opsonic antibody response may occur. Furthermore, the results suggest that factors other than anticapsular Ig concentrations are important for opsonic antibody activity in serum. IMPORTANCE Numerous reports on the dynamics of antipneumococcal immunity in relation to immunization with pneumococcal vaccines and on the prevalence of naturally acquired immunity in various populations have been published. In contrast, studies on the dynamics of the humoral immune response triggered by pneumococcal infection are scarce. This study provides valuable information that will contribute to fill this knowledge gap. Our main results indicate that a functional immune response frequently fails to occur after CAP, predominantly among patients with simultaneous bacteremia.
Collapse
|
9
|
Antimicrobial Therapy in the Context of the Damage-Response Framework: the Prospect of Optimizing Therapy by Reducing Host Damage. Antimicrob Agents Chemother 2020; 64:AAC.01800-19. [PMID: 31740558 DOI: 10.1128/aac.01800-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
By design, antimicrobial agents act directly on microbial targets. These drugs aim to eliminate microbes and are remarkably effective against susceptible organisms. Nonetheless, some patients succumb to infectious diseases despite appropriate antimicrobial therapy. Today, with very few exceptions, physicians select antimicrobial therapy based on its activity against the targeted organism without consideration of how the regimen affects patients' immune responses. An important concept to emerge in the past few decades is that immune responses to microbes can be detrimental by enhancing host damage, which can translate into clinical disease. A central tenet of the damage-response framework (DRF) of microbial pathogenesis is that the relevant outcome of host-microbe interaction is the damage that occurs in the host, which can be due to microbial factors, host factors, or both. Given that host damage can make patients sick, reducing it should be a goal of treating infectious diseases. Inflammation and damage that stem from the host response to an infectious disease can increase during therapy with some antimicrobial agents and decrease during therapy with others. When a patient cannot eliminate a microbe with their own immune response, antimicrobial therapy is essential for microbial elimination, and yet it can affect the inflammatory response. In this essay, we discuss antimicrobial therapy in the context of the DRF and propose that consideration of the DRF may help tailor therapy to a patient's need to augment or reduce inflammation.
Collapse
|
10
|
The Other Side of the Coin: Anti-inflammatory Antibody Therapy for Infectious Diseases. Infect Immun 2020; 88:IAI.00844-19. [PMID: 31712268 DOI: 10.1128/iai.00844-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The inflammatory response to the fungus Pneumocystis jirovecii plays a central role in the respiratory failure associated with Pneumocystis pneumonia. To help ameliorate the inflammatory response, corticosteroids are used as an adjuvant to standard antimicrobial therapy. Corticosteroids, however, can have a wide range of effects (including deleterious effects) on the host immune response. To date, pathogen-specific antibody therapy has primarily been developed for both its direct antimicrobial activity (e.g., toxin and viral neutralization) and its ability to enhance the antimicrobial activity of the host immune response via effector cells, like macrophages and neutrophils. In this issue of Infection and Immunity, Hoy et al. (Z. Hoy, T. W. Wright, M. Elliott, J. Malone, et al., Infect Immun 88:e00640-19, 2020, https://doi.org/10.1128/IAI.00640-19) report on a surprising application of Pneumocystis-specific antibody therapy in treating disease by decreasing the inflammatory response. This effect appears to occur as a result of an enhanced phagocytic activity within the lung and an associated alteration in the macrophage phenotype. This study adds insight into our understanding of antibody activity and highlights the possibility of using antibody therapy to limit inflammation for other infectious diseases in which inflammatory damage plays a significant role in disease pathogenesis.
Collapse
|
11
|
Opening the OPK Assay Gatekeeper: Harnessing Multi-Modal Protection by Pneumococcal Vaccines. Pathogens 2019; 8:pathogens8040203. [PMID: 31652741 PMCID: PMC6963391 DOI: 10.3390/pathogens8040203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
Pneumococcal vaccine development is driven by the achievement of high activity in a single gatekeeper assay: the bacterial opsonophagocytic killing (OPK) assay. New evidence challenges the dogma that anti-capsular antibodies have only a single function that predicts success. The emerging concept of multi-modal protection presents an array of questions that are fundamental to adopting a new vaccine design process. If antibodies have hidden non-opsonic functions that are protective, should these be optimized for better vaccines? What would protein antigens add to protective activity? Are cellular immune functions additive to antibodies for success? Do different organs benefit from different modes of protection? Can vaccine activities beyond OPK protect the immunocompromised host? This commentary raises these issues at a time when capsule-only OPK assay-based vaccines are increasingly seen as a limiting strategy.
Collapse
|
12
|
Obaidullah AJ, Ahmed MH, Kitten T, Kellogg GE. Inhibiting Pneumococcal Surface Antigen A (PsaA) with Small Molecules Discovered through Virtual Screening: Steps toward Validating a Potential Target for Streptococcus pneumoniae. Chem Biodivers 2018; 15:e1800234. [PMID: 30221472 DOI: 10.1002/cbdv.201800234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/14/2018] [Indexed: 11/09/2022]
Abstract
The pneumococcal surface antigen A (PsaA) metal transporter protein provides manganese to bacterial cells. The X-ray crystal structures of PsaA, in both closed (Mn bound) and open (metal free) conformations, were explored with virtual screening to identify potential inhibitors of manganese transport. We pursued three strategies for inhibition: i) targeting a cavity close to the bound Mn to keep the metal in place; ii) targeting the metal-free Mn site to prevent metal uptake; and iii) targeting a potentially druggable allosteric site involving loops that translate between the conformations. Tiered assays were used to test the resulting 170 acquired hits: i) assay 1 tested the compounds' growth inhibition of the TIGR4 S. pneumoniae strain (ΔPsaA mutant control), yielding 80 compounds (MIC≤250 μm); ii) assay 2 tested if the addition of 20 μm Mn to inhibited cell cultures restored growth, yielding 21 compounds; and iii) assay 3 confirmed that the restored bacterial growth was Mn concentration dependent, as was the restoration of ΔPsaA growth, yielding 12 compounds with MICs of 125 μm or greater. It may be possible for a small molecule to inhibit PsaA, but we have not yet identified a compound with exemplary properties.
Collapse
Affiliation(s)
- Ahmad J Obaidullah
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.,Current address: Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298-0566, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| |
Collapse
|
13
|
Medaglini D, Santoro F, Siegrist CA. Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol 2018; 39:65-72. [DOI: 10.1016/j.smim.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
14
|
A Capsular Polysaccharide-Specific Antibody Alters Streptococcus pneumoniae Gene Expression during Nasopharyngeal Colonization of Mice. Infect Immun 2018; 86:IAI.00300-18. [PMID: 29735523 DOI: 10.1128/iai.00300-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/30/2018] [Indexed: 01/13/2023] Open
Abstract
Pneumococcal conjugate vaccines (PCV) elicit opsonophagocytic (opsonic) antibodies to pneumococcal capsular polysaccharides (PPS) and reduce nasopharyngeal (NP) colonization by vaccine-included Streptococcus pneumoniae serotypes. However, nonopsonic antibodies may also be important for protection against pneumococcal disease. For example, 1E2, a mouse IgG1 monoclonal antibody (MAb) to the serotype 3 (ST3) PPS (PPS3), reduced ST3 NP colonization in mice and altered ST3 gene expression in vitro Here, we determined whether 1E2 affects ST3 gene expression in vivo during colonization of mice by performing RNA sequencing on NP lavage fluid from ST3-infected mice treated with 1E2, a control MAb, or phosphate-buffered saline. Compared to the results for the controls, 1E2 significantly altered the expression of over 50 genes. It increased the expression of the piuBCDA operon, which encodes an iron uptake system, and decreased the expression of dpr, which encodes a protein critical for resistance to oxidative stress. 1E2-mediated effects on ST3 in vivo required divalent binding, as Fab fragments did not reduce NP colonization or alter ST3 gene expression. In vitro, 1E2 induced dose-dependent ST3 growth arrest and altered piuB and dpr expression, whereas an opsonic PPS3 MAb, 5F6, did not. 1E2-treated bacteria were more sensitive to hydrogen peroxide and the iron-requiring antibiotic streptonigrin, suggesting that 1E2 may increase iron import and enhance sensitivity to oxidative stress. Finally, 1E2 also induced rapid capsule shedding in vitro, suggesting that this may initiate 1E2-induced changes in sensitivity to oxidative stress and gene expression. Our data reveal a novel mechanism of direct, antibody-mediated antibacterial activity that could inform new directions in antipneumococcal therapy and vaccine development.
Collapse
|
15
|
Novel, Broadly Reactive Anticapsular Antibodies against Carbapenem-Resistant Klebsiella pneumoniae Protect from Infection. mBio 2018; 9:mBio.00091-18. [PMID: 29615497 PMCID: PMC5885035 DOI: 10.1128/mbio.00091-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Carbapenem-resistant (CR) sequence type 258 (ST258) Klebsiella pneumoniae has become an urgent health care threat, causing an increasing number of high-mortality infections. Its resistance to numerous antibiotics and threat to immunocompromised patients necessitate finding new therapies to combat these infections. Previous successes in the laboratory, as well as the conservation of capsular polysaccharide (CPS) among the members of the ST258 clone, suggest that monoclonal antibody (MAb) therapy targeting the outer polysaccharide capsule of K. pneumoniae could serve as a valuable treatment alternative for afflicted patients. Here, we isolated several IgG antibodies from mice inoculated with a mixture of CR K. pneumoniae CPS conjugated to anthrax protective antigen. Two of these MAbs, 17H12 and 8F12, bind whole and oligosaccharide epitopes of the CPS of clade 2 ST258 CR K. pneumoniae, which is responsible for the most virulent CR K. pneumoniae infections in the United States. These antibodies were shown to agglutinate all clade 2 strains and were also shown to promote extracellular processes killing these bacteria, including biofilm inhibition, complement deposition, and deployment of neutrophil extracellular traps. Additionally, they promoted opsonophagocytosis and intracellular killing of CR K. pneumoniae by human-derived neutrophils and cultured murine macrophages. Finally, when mice were intratracheally infected with preopsonized clade 2 CR K. pneumoniae, these MAbs reduced bacterial dissemination to organs. Our data suggest that broadly reactive anticapsular antibodies and vaccines against clade 2 ST258 CR K. pneumoniae are possible. Such MAbs and vaccines would benefit those susceptible populations at risk of infection with this group of multidrug-resistant bacteria.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is an enteric bacterium that has been responsible for an increasing number of deadly outbreaks and hospital-acquired infections. The pathogen's resistance to numerous antibiotics, including new drugs, leaves few therapeutic options available for infected patients, who often are too sick to fight the infection themselves. Immunotherapy utilizing monoclonal antibodies has been successful in other medical fields, and antibodies targeting the outer polysaccharide capsule of these bacteria could be a valuable treatment alternative. This study presents two anticapsular antibodies, 17H12 and 8F12, that were found to be protective against the most virulent carbapenem-resistant K. pneumoniae clinical strains. These antibodies are shown to promote the killing of these strains through several extracellular and intracellular processes and prevent the spread of infection in mice from the lungs to distal organs. Thus, they could ultimately treat or protect patients infected or at risk of infection by this multidrug-resistant bacterium.
Collapse
|
16
|
Babb R, Pirofski LA. Help is on the way: Monoclonal antibody therapy for multi-drug resistant bacteria. Virulence 2017; 8:1055-1058. [PMID: 28306387 PMCID: PMC5711430 DOI: 10.1080/21505594.2017.1306620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Rachelle Babb
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, NY, USA
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, NY, USA,CONTACT Liise-anne Pirofski Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Staphylococcus aureus Clumping Factor A Remains a Viable Vaccine Target for Prevention of S. aureus Infection. mBio 2016; 7:e00225. [PMID: 26956591 PMCID: PMC4810491 DOI: 10.1128/mbio.00225-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In a recent article, X. Li et al. [mBio 7(1):e02232-15, 2016, http://dx.doi.org/10.1128/mBio.02232-15] investigate the utility of a vaccine composed of the Staphylococcus aureus protein clumping factor A (ClfA) in protecting mice from S. aureus infection. ClfA, one of the first proteins to be identified as a potential vaccine antigen for S. aureus prophylaxis, is currently a component of several investigational vaccines. The authors conclude that ClfA may not be effective for S. aureus prophylaxis. In contrast, previously published papers reporting positive data suggested that ClfA was potentially an important vaccine target to prevent invasive S. aureus disease. This commentary addresses the observed differences between the findings of Li et al. and those from other publications, highlighting the importance for preclinical vaccine antigen assessments to reflect the biological role of said antigen in virulence and, consequently, the importance of choosing appropriate preclinical disease models to test such antigens.
Collapse
|
18
|
Abstract
In modern-day vaccine design, a good pneumococcal capsular polysaccharide vaccine is measured by its ability to induce opsonic antibodies. These antibodies label bacteria for phagocytosis by neutrophils and thereby overcome the capsule’s barrier function. Doyle and Pirofski have raised a serious challenge to the current paradigm by describing anti-capsular antibodies that are highly protective but nonopsonic [C.R. Doyle and L. Pirofski, mBio 7(1):e02260-15, 2016, doi:10.1128/mBio.02260-15]. In fact, some functions are not related to neutrophils or phagocytosis at all. An increased awareness of these activities is critical not only for accurate comparisons of vaccine candidates but also for improvements in vaccination outcomes in settings of neutropenia. When vaccine developers select a single gatekeeper assay (e.g., an opsonophagocytic assay for bacteria or a neutralization assay for viruses), promising vaccine candidates may be missed. Doyle and Pirofski stress that multiple functions, not just one, should be investigated to enhance discovery of antibody mechanisms and to best assess vaccine-induced correlates of immune protection.
Collapse
|