1
|
Zhong Y, Guo J, Zhang Z, Zheng Y, Yang M, Su Y. Exogenous NADH promotes the bactericidal effect of aminoglycoside antibiotics against Edwardsiella tarda. Virulence 2024; 15:2367647. [PMID: 38884466 PMCID: PMC11185186 DOI: 10.1080/21505594.2024.2367647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
The global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Ziyi Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Manjun Yang
- Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, Lasa, Xizang, People’s Republic of China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Whittle EE, Orababa O, Osgerby A, Siasat P, Element SJ, Blair JMA, Overton TW. Efflux pumps mediate changes to fundamental bacterial physiology via membrane potential. mBio 2024; 15:e0237024. [PMID: 39248573 PMCID: PMC11481890 DOI: 10.1128/mbio.02370-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Efflux pumps are well known to be an important mechanism for removing noxious substances such as antibiotics from bacteria. Given that many antibiotics function by accumulating inside bacteria, efflux pumps contribute to resistance. Efflux pump inactivation is a potential strategy to combat antimicrobial resistance, as bacteria would not be able to pump out antibiotics. We recently discovered that the impact of loss of efflux function is only apparent in actively growing cells. We demonstrated that the global transcriptome of Salmonella Typhimurium is drastically altered during slower growth leading to stationary-phase cells having a remodeled, less permeable envelope that prevents antibiotics entering the cell. Here, we investigated the effects of deleting the major efflux pump of Salmonella Typhimurium, AcrB, on global gene transcription across growth. We revealed that an acrB knockout entered stationary phase later than the wild-type strain SL1344 and displayed increased and prolonged expression of genes responsible for anaerobic energy metabolism. We devised a model linking efflux and membrane potential, whereby deactivation of AcrB prevents influx of protons across the inner membrane and thereby hyperpolarization. Knockout or deactivation of AcrB was demonstrated to increase membrane potential. We propose that the global transcription regulator ArcBA senses changes to the redox state of the quinol pool (linked to the membrane potential of the bacterium) and coordinates the shift from exponential to stationary phase via the key master regulators RpoS, Rsd, and Rmf. Inactivation of efflux pumps therefore influences the fundamental physiology of Salmonella, with likely impacts on multiple phenotypes.IMPORTANCEWe demonstrate for the first time that deactivation of efflux pumps brings about changes to gross bacterial physiology and metabolism. Rather than simply being a response to noxious substances, efflux pumps appear to play a key role in maintenance of membrane potential and thereby energy metabolism. This discovery suggests that efflux pump inhibition or inactivation might have unforeseen positive consequences on antibiotic activity. Given that stationary-phase bacteria are more resistant to antibiotic uptake, late entry into stationary phase would prolong antibiotic accumulation by bacteria. Furthermore, membrane hyperpolarization could result in increased generation of reactive species proposed to be important for the activity of some antibiotics. Finally, changes in gross physiology could also explain the decreased virulence of efflux mutants.
Collapse
Affiliation(s)
- Emily E. Whittle
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Oluwatosin Orababa
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Alexander Osgerby
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Siasat
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Sarah J. Element
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Jessica M. A. Blair
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Honselmann Genannt Humme J, Dubrowska K, Grygorcewicz B, Gliźniewicz M, Paszkiewicz O, Głowacka A, Musik D, Story G, Rakoczy R, Augustyniak A. Optimised stress - intensification of pyocyanin production with zinc oxide nanoparticles. Microb Cell Fact 2024; 23:215. [PMID: 39061071 PMCID: PMC11282796 DOI: 10.1186/s12934-024-02486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles. RESULTS The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass. CONCLUSIONS Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.
Collapse
Affiliation(s)
- Joanna Honselmann Genannt Humme
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland.
| | - Kamila Dubrowska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Bartłomiej Grygorcewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Marta Gliźniewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Anna Głowacka
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Daniel Musik
- ESC Global, Sp. z o.o., Słoneczny Sad 4F, 72-002, Dołuje, Poland
| | - Grzegorz Story
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav- Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
4
|
Sheydai F, Tukmechi A. Cell wall disruption, membrane damage, and decrease in the expression of Yrp1 virulence factor in Yersinia ruckeri by propolis ethanol extract. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:533-540. [PMID: 38045706 PMCID: PMC10692965 DOI: 10.18502/ijm.v15i4.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives Instead of antibiotics, propolis is a promising alternative for treating bacterial diseases. The aim of this study was to evaluate the effect of propolis ethanol extract (PEE) on Yersinia ruckeri (Y. ruckeri), a fish pathogen, by examining its impact on the cell wall, cytoplasmic membrane, and gene expression. Materials and Methods The effect of propolis on the bacterial cell wall, membrane, and DNA using scanning electron microscopy (SEM) was investigated. Its effect on the NAD+/NADH ratio, reactive oxygen species (ROS) production, as well as the expression of a virulence factor (yrp1) was also determined. Results It was demonstrated that PEE has multiple antibacterial mechanisms against Y. ruckeri involving cell wall damage, membrane lysis, and a decrease in gene expression. Conclusion The obtained results indicated that the mode of propolis action against Y. ruckeri is both structural and functional, while others showed propolis only could inactivate bacteria in a structural way.
Collapse
Affiliation(s)
- Fardin Sheydai
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Tukmechi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
5
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
6
|
Kerkhove L, Geirnaert F, Rifi AL, Law KL, Gutiérrez A, Oudaert I, Corbet C, Gevaert T, Dufait I, De Ridder M. Repurposing Sulfasalazine as a Radiosensitizer in Hypoxic Human Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15082363. [PMID: 37190291 DOI: 10.3390/cancers15082363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
xCT overexpression in cancer cells has been linked to tumor growth, metastasis and treatment resistance. Sulfasalazine (SSZ), an FDA-approved drug for the treatment of rheumatoid sarthritis, and inflammatory bowel diseases, has anticancer properties via inhibition of xCT, leading to the disruption of redox homeostasis. Since reactive oxygen species (ROS) are pivotal for the efficacy of radiotherapy (RT), elevated levels of ROS are associated with improved RT outcomes. In this study, the influence of SSZ treatment on the radiosensitivity of human colorectal cancer (CRC) cells was investigated. Our principal finding in human HCT116 and DLD-1 cells was that SSZ enhances the radiosensitivity of hypoxic CRC cells but does not alter the intrinsic radiosensitivity. The radiosensitizing effect was attributed to the depletion of glutathione and thioredoxin reductase levels. In turn, the reduction leads to excessive levels of ROS, increased DNA damage, and ferroptosis induction. Confirmation of these findings was performed in 3D models and in DLD-1 xenografts. Taken together, this study is a stepping stone for applying SSZ as a radiosensitizer in the clinic and confirms that xCT in cancer cells is a valid radiobiological target.
Collapse
Affiliation(s)
- Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Febe Geirnaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Amir Laraki Rifi
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ka Lun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Adrián Gutiérrez
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Inge Oudaert
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
7
|
Ijaz S, Haq IU, Malik R, Nadeem G, Ali HM, Kaur S. In silico characterization of differentially expressed short-read nucleotide sequences identified in dieback stress-induced transcriptomic analysis reveals their role as antimicrobial peptides. FRONTIERS IN PLANT SCIENCE 2023; 14:1168221. [PMID: 37021314 PMCID: PMC10069654 DOI: 10.3389/fpls.2023.1168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
We investigated the in silico characterization of short-length nucleotide sequences that were differentially expressed in dieback stress-induced transcriptomic analysis. They displayed homology with C-terminal flanking peptides and defensins-like proteins, revealing their antimicrobial activity. Their predicted fingerprints displayed protein signatures related to antimicrobial peptides. These short-length RGAs have been shown to possess structural motifs such as APLT P-type ATPase, casein kinase II (CK2), protein kinase 3, protein kinase C (PKC), and N-glycosylation site that are the attributes of disease resistance genes. The prediction of arginine and lysine residues in active binding sites in ligand docking analysis prophesied them as antimicrobial peptides due to their strong relation with antimicrobial activity. The in silico structural-functional characterization has predicted their role in resistance against microbial pathogens. Moreover, the predicted antimicrobial peptide regions showed their homology with the signature domain of PR-5-like protein and AMP family Thaumatin.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Riffat Malik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Ghalia Nadeem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sukhwinder Kaur
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Niu K, Meng Y, Liu M, Ma Z, Lin H, Zhou H, Fan H. Phosphorylation of GntR reduces Streptococcus suis oxidative stress resistance and virulence by inhibiting NADH oxidase transcription. PLoS Pathog 2023; 19:e1011227. [PMID: 36913374 PMCID: PMC10010549 DOI: 10.1371/journal.ppat.1011227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.
Collapse
Affiliation(s)
- Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Cheng JH, Zou S, Ma J, Sun DW. Toxic reactive oxygen species stresses for reconfiguring central carbon metabolic fluxes in foodborne bacteria: Sources, mechanisms and pathways. Crit Rev Food Sci Nutr 2023; 63:1806-1821. [PMID: 36688292 DOI: 10.1080/10408398.2023.2169245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The toxic reactive oxygen species (toxROS) is the reactive oxygen species (ROS) beyond the normal concentration of cells, which has inactivation and disinfection effects on foodborne bacteria. However, foodborne bacteria can adapt and survive by physicochemical regulation of antioxidant systems, especially through central carbon metabolism (CCM), which is a significant concern for food safety. It is thus necessary to study the antioxidant regulation mechanisms of CCM in foodborne bacteria under toxROS stresses. Therefore, the purpose of this review is to provide an update and comprehensive overview of the reconfiguration of CCM fluxes in foodborne bacteria that respond to different toxROS stresses. In this review, two key types of toxROS including exogenous toxROS (exo-toxROS) and endogenous toxROS (endo-toxROS) are introduced. Exo-toxROS are produced by disinfectants, such as H2O2 and HOCl, or during food non-thermal processing such as ultraviolet (UV/UVA), cold plasma (CP), ozone (O3), electrolyzed water (EW), pulsed electric field (PEF), pulsed light (PL), and electron beam (EB) processing. Endo-toxROS are generated by bioreagents such as antibiotics (aminoglycosides, quinolones, and β-lactams). Three main pathways for CCM in foodborne bacteria under the toxROS stress are also highlighted, which are glycolysis (EMP), pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA). In addition, energy metabolisms throughout these pathways are discussed. Finally, challenges and future work in this area are suggested. It is hoped that this review should be beneficial in providing insights for future research on bacterial antioxidant CCM defence under both exo-toxROS stresses and endo-toxROS stresses.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Sang Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
10
|
Hu LI, Stohl EA, Seifert HS. The Neisseria gonorrhoeae type IV pilus promotes resistance to hydrogen peroxide- and LL-37-mediated killing by modulating the availability of intracellular, labile iron. PLoS Pathog 2022; 18:e1010561. [PMID: 35714158 PMCID: PMC9246397 DOI: 10.1371/journal.ppat.1010561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The Neisseria gonorrhoeae Type IV pilus is a multifunctional, dynamic fiber involved in host cell attachment, DNA transformation, and twitching motility. We previously reported that the N. gonorrhoeae pilus is also required for resistance against hydrogen peroxide-, antimicrobial peptide LL-37-, and non-oxidative, neutrophil-mediated killing. We tested whether the hydrogen peroxide, LL-37, and neutrophil hypersensitivity phenotypes in non-piliated N. gonorrhoeae could be due to elevated iron levels. Iron chelation in the growth medium rescued a nonpiliated pilE mutant from both hydrogen peroxide- and antimicrobial peptide LL-37-mediated killing, suggesting these phenotypes are related to iron availability. We used the antibiotic streptonigrin, which depends on free cytoplasmic iron and oxidation to kill bacteria, to determine whether piliation affected intracellular iron levels. Several non-piliated, loss-of-function mutants were more sensitive to streptonigrin killing than the piliated parental strain. Consistent with the idea that higher available iron levels in the under- and non-piliated strains were responsible for the higher streptonigrin sensitivity, iron limitation by desferal chelation restored resistance to streptonigrin in these strains and the addition of iron restored the sensitivity to streptonigrin killing. The antioxidants tiron and dimethylthiourea rescued the pilE mutant from streptonigrin-mediated killing, suggesting that the elevated labile iron pool in non-piliated bacteria leads to streptonigrin-dependent reactive oxygen species production. These antioxidants did not affect LL-37-mediated killing. We confirmed that the pilE mutant is not more sensitive to other antibiotics showing that the streptonigrin phenotypes are not due to general bacterial envelope disruption. The total iron content of the cell was unaltered by piliation when measured using ICP-MS suggesting that only the labile iron pool is affected by piliation. These results support the hypothesis that piliation state affects N. gonorrhoeae iron homeostasis and influences sensitivity to various host-derived antimicrobial agents. Neisseria gonorrhoeae is a bacterium that causes the sexually transmitted infection, gonorrhea. The bacteria express a fiber on their surface called a pilus that mediates many interactions of the bacterial cell with host cells and tissues. The ability to resist killing by white cells is one important ability that N. gonorrhoeae uses to allow infection of otherwise healthy people. We show here that the pilus help resist white cell killing by modulating the levels of iron within the bacterial cell.
Collapse
Affiliation(s)
- Linda I. Hu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elizabeth A. Stohl
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Thöming JG, Häussler S. Pseudomonas aeruginosa Is More Tolerant Under Biofilm Than Under Planktonic Growth Conditions: A Multi-Isolate Survey. Front Cell Infect Microbiol 2022; 12:851784. [PMID: 35295755 PMCID: PMC8920030 DOI: 10.3389/fcimb.2022.851784] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Biofilm-associated bacteria exhibit profound changes in bacterial physiology. They thrive in the environment but also in the human host in protected sessile communities. Antimicrobial therapy usually fails, despite the absence of genotypic resistance, and it is commonly accepted that biofilm-grown bacteria are up to 1,000-fold more resistant than planktonic cells. We are only at the beginning to understand the reasons for biofilm recalcitrance, and systematic approaches to describe biofilm-induced tolerance phenotypes are lacking. In this study, we investigated a large and highly diverse collection of 352 clinical Pseudomonas aeruginosa isolates for their antimicrobial susceptibility profiles under biofilm growth conditions towards the antibiotics ciprofloxacin, tobramycin, and colistin. We discovered characteristic patterns of drug-specific killing activity and detected conditional tolerance levels far lower (in the range of the minimal inhibitory concentration (MIC)), but also far higher (up to 16,000-fold increase compared to planktonic cells) than generally believed. This extremely broad distribution of biofilm-induced tolerance phenotypes across the clinical isolates was greatly influenced by the choice of the antibiotic. We furthermore describe cross-tolerance against ciprofloxacin and tobramycin, but not colistin, and observed an additive activity between biofilm-induced tolerance and genetically determined resistance. This became less evident when the biofilm-grown cells were exposed to very high antibiotic concentrations. Although much more remains to be learned on the molecular mechanisms underlying biofilm-induced tolerance, our data on intra-species variations in tolerance profiles provide valuable new insights. Furthermore, our observation that colistin appears to act independently of the tolerance mechanisms of individual clinical strains could make colistin a valuable therapeutic option in chronic biofilm-associated infections characterized by the presence of particularly tolerant strains.
Collapse
Affiliation(s)
- Janne G. Thöming
- Department of Clinical Microbiology, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Molecular Bacteriology, Twincore Center for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| | - Susanne Häussler
- Department of Clinical Microbiology, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Molecular Bacteriology, Twincore Center for Experimental and Clinical Infection Research GmbH, Hannover, Germany
- Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- *Correspondence: Susanne Häussler,
| |
Collapse
|
12
|
Transcriptional Profiling of Pseudomonas aeruginosa Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:303-323. [DOI: 10.1007/978-3-031-08491-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|