1
|
Scholin C, Calvin AD, Shweta F, Tallarita T. Capnocytophaga canimorsus in Iliac Artery Mycotic Aneurysm: The Role of Molecular Diagnostics. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e946054. [PMID: 39806795 PMCID: PMC11742453 DOI: 10.12659/ajcr.946054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/07/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The bacterial organism Capnocytophaga canimorsus is an oral commensal of cats and dogs and can cause life-threatening infections like mycotic aneurysm, meningitis, and sepsis. Mycotic aneurysms occur when microbial infections cause arterial wall degeneration. Difficulty in diagnosing Capnocytophaga canimorsus infection can occur due to the bacteria's fastidious nature and laboratory testing limitations, contributing to the infection's high morbidity and mortality. This report describes the case of a patient with an iliac artery mycotic aneurysm 2 months after a dog bite. Identification of Capnocytophaga canimorsus was achieved through polymerase chain reaction. CASE REPORT The 67-year-old female patient presented initially with nonspecific abdominal pain. Imaging revealed a right iliac artery abnormality suspicious for mycotic aneurysm. Capnocytophaga canimorsus was identified through broad-range bacterial polymerase chain reaction after standard culture failed to determine the infectious etiology. A history of dog bite was discovered after diagnosis. When standard culture cannot provide a diagnosis, 16s rRNA polymerase chain reaction is the preferred molecular-based test at our institution. CONCLUSIONS Through presentation of a case of Capnocytophaga canimorsus mycotic aneurysm in an immunocompetent woman, this report illustrates the importance of familiarity with Capnocytophaga canimorsus and molecular laboratory methods in achieving favorable outcomes when faced with Capnocytophaga canimorsus infection. In these difficult cases, 16s rRNA polymerase chain reaction and similar molecular technologies are becoming essential. This case also highlights thorough history-taking as essential for guiding correct diagnosis and reinforces that infection with Capnocytophaga canimorsus should be investigated when there is a history of dog bite.
Collapse
Affiliation(s)
- Celine Scholin
- Doctor of Medicine Program, Medical College of Wisconsin – Central Wisconsin, Marshfield, WI, USA
| | - Andrew D. Calvin
- Department of Cardiovascular Medicine, Mayo Clinic Health System, Eau Claire, WI, USA
| | - F.N.U. Shweta
- Department of Infectious Diseases, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Tiziano Tallarita
- Vascular and Endovascular Surgery, Department of Cardiovascular Surgery, Mayo Clinic Health System, Eau Claire, WI, USA
| |
Collapse
|
2
|
Katayama T, Nobu MK, Imachi H, Hosogi N, Meng XY, Morinaga K, Yoshioka H, Takahashi HA, Kamagata Y, Tamaki H. A Marine Group A isolate relies on other growing bacteria for cell wall formation. Nat Microbiol 2024; 9:1954-1963. [PMID: 38831032 DOI: 10.1038/s41564-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Most of Earth's prokaryotes live under energy limitation, yet the full breadth of strategies that enable survival under such conditions remain poorly understood. Here we report the isolation of a bacterial strain, IA91, belonging to the candidate phylum Marine Group A (SAR406 or 'Candidatus Marinimicrobia') that is unable to synthesize the central cell wall compound peptidoglycan itself. Using cultivation experiments and microscopy, we show that IA91 growth and cell shape depend on other bacteria, deriving peptidoglycan, energy and carbon from exogenous muropeptide cell wall fragments released from growing bacteria. Reliance on exogenous muropeptides is traceable to the phylum's ancestor, with evidence of vertical inheritance across several classes. This dependency may be widespread across bacteria (16 phyla) based on the absence of key peptidoglycan synthesis genes. These results suggest that uptake of exogenous cell wall components could be a relevant and potentially common survival strategy in energy-limited habitats like the deep biosphere.
Collapse
Affiliation(s)
- Taiki Katayama
- Research Institute for Geo-Resources and Environment, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Masaru K Nobu
- Bioproduction Research Institute, AIST, Tsukuba, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroyuki Imachi
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Naoki Hosogi
- EM Application Department, EM Business Unit, JEOL, Ltd., Akishima, Japan
| | | | - Kana Morinaga
- Bioproduction Research Institute, AIST, Tsukuba, Japan
| | - Hideyoshi Yoshioka
- Research Institute for Geo-Resources and Environment, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroshi A Takahashi
- Research Institute of Earthquake and Volcano Geology, GSJ, AIST, Tsukuba, Japan
| | | | | |
Collapse
|
3
|
Zhang K, He C, Wang L, Suo L, Guo M, Guo J, Zhang T, Xu Y, Lei Y, Liu G, Qian Q, Mao Y, Kalds P, Wu Y, Cuoji A, Yang Y, Brugger D, Gan S, Wang M, Wang X, Zhao F, Chen Y. Compendium of 5810 genomes of sheep and goat gut microbiomes provides new insights into the glycan and mucin utilization. MICROBIOME 2024; 12:104. [PMID: 38845047 PMCID: PMC11155115 DOI: 10.1186/s40168-024-01806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.
Collapse
Affiliation(s)
- Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chong He
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Mengmeng Guo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611100, China
| | - Ting Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongwei Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quan Qian
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yunrui Mao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Awang Cuoji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Yuxin Yang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meili Wang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 102206, China.
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Ahsen A, Korsun P, Albahra F, Nair R, Tariq Z. Capnocytophaga canimorsus Infection in a 38-Year-Old Male after a Dog Bite. Case Rep Infect Dis 2023; 2023:9917898. [PMID: 37876860 PMCID: PMC10593545 DOI: 10.1155/2023/9917898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/26/2023] Open
Abstract
Here, we present a unique case of a 38-year-old male with a history of alcohol use disorder and multiple sexual partners, who presented with fulminant sepsis with shock, multiorgan failure, and livedo racemosa after a dog bite the week prior. The patient was intubated on arrival and was started on vasopressors and antibiotics. Eventually, the patient's clinical status improved, and he was transferred out of the intensive care unit. Blood cultures tested positive for oxidase-positive Gram-negative rods two days after collection, and species identification showed Capnocytophaga canimorsus.
Collapse
Affiliation(s)
- Ahmad Ahsen
- Department of Internal Medicine, Medical City Fort Worth, Fort Worth, TX, USA
| | - Philip Korsun
- Department of Internal Medicine, Medical City Fort Worth, Fort Worth, TX, USA
| | - Fadi Albahra
- Department of Internal Medicine, Medical City Fort Worth, Fort Worth, TX, USA
| | - Ranjit Nair
- Department of Critical Care, Medical City Fort Worth, Fort Worth, TX, USA
| | - Zain Tariq
- Department of Infectious Disease, Medical City Fort Worth, Fort Worth, TX, USA
| |
Collapse
|
5
|
Soni V, Rosenn EH, Venkataraman R. Insights into the central role of N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) in peptidoglycan metabolism and its potential as a therapeutic target. Biochem J 2023; 480:1147-1164. [PMID: 37498748 DOI: 10.1042/bcj20230173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.
Collapse
Affiliation(s)
- Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Eric H Rosenn
- Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
6
|
Lai CH, Lin YS, Wang CM, Chang PC, Shia WY. A Novel 16S rRNA PCR-Restriction Fragment Length Polymorphism Assay to Accurately Distinguish Zoonotic Capnocytophaga canimorsus and C. cynodegmi. Microbiol Spectr 2023; 11:e0291622. [PMID: 37195221 PMCID: PMC10269634 DOI: 10.1128/spectrum.02916-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The zoonotic bacteria Capnocytophaga canimorsus and C. cynodegmi, the predominant Capnocytophaga species in the canine oral biota, can cause human local wound infections or lethal sepsis, usually transmitted through dog bites. Molecular surveying of these Capnocytophaga species using conventional 16S rRNA-based PCR is not always accurate due to their high genetic homogeneity. In this study, we isolated Capnocytophaga spp. from the canine oral cavity and identified them using 16S rRNA and phylogenetic analysis. A novel 16S rRNA PCR-restriction fragment length polymorphism (RFLP) method was designed based on our isolates and validated using published C. canimorsus and C. cynodegmi 16S rRNA sequences. The results showed that 51% of dogs carried Capnocytophaga spp. Among these, C. cynodegmi (47/98, 48%) was the predominant isolated species along with one strain of C. canimorsus (1/98, 1%). Alignment analysis of 16S rRNA sequences revealed specific site nucleotide diversity in 23% (11/47) of the C. cynodegmi isolates, which were misidentified as C. canimorsus using previously reported species-specific PCR. Four RFLP types could be classified from all the isolated Capnocytophaga strains. The proposed method demonstrates superior resolution in distinguishing C. cynodegmi (with site-specific polymorphism) from C. canimorsus and especially in distinguishing C. canimorsus from other Capnocytophaga species. After in silico validation, this method was revealed to have an overall detection accuracy of 84%; notably, accuracy reached 100% in C. canimorsus strains isolated from human patients. Overall, the proposed method is a useful molecular tool for the epidemiological study of Capnocytophaga in small animals and for the rapid diagnosis of human C. canimorsus infections. IMPORTANCE With the increased number of small animal breeding populations, zoonotic infections associated with small animals need to be taken more seriously. Capnocytophaga canimorsus and C. cynodegmi are part of common biota in the mouths of small animals and can cause human infections through bites or scratches. In this study, C. cynodegmi with site-specific 16S rRNA sequence polymorphisms was erroneously identified as C. canimorsus during the investigation of canine Capnocytophaga by conventional PCR. Consequently, the prevalence of C. canimorsus is incorrectly overestimated in epidemiological studies in small animals. We designed a new 16S rRNA PCR-RFLP method to accurately distinguish zoonotic C. canimorsus from C. cynodegmi. After validation against published Capnocytophaga strains, this novel molecular method had high accuracy and could detect 100% of C. canimorsus-strain infections in humans. This novel method can be used for epidemiological studies and the diagnosis of human Capnocytophaga infection following exposure to small animals.
Collapse
Affiliation(s)
- Cheng-Hung Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Sin Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Poa-Chun Chang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Yau Shia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Garrigues Q, Apper E, Chastant S, Mila H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front Vet Sci 2022; 9:964649. [PMID: 36118341 PMCID: PMC9478664 DOI: 10.3389/fvets.2022.964649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms of the gastrointestinal tract play a crucial role in the health, metabolism and development of their host by modulating vital functions such as digestion, production of key metabolites or stimulation of the immune system. This review aims to provide an overview on the current knowledge of factors shaping the gut microbiota of young dogs. The composition of the gut microbiota is modulated by many intrinsic (i.e., age, physiology, pathology) and extrinsic factors (i.e., nutrition, environment, medication) which can cause both beneficial and harmful effects depending on the nature of the changes. The composition of the gut microbiota is quickly evolving during the early development of the dog, and some crucial bacteria, mostly anaerobic, progressively colonize the gut before the puppy reaches adulthood. Those bacterial communities are of paramount importance for the host health, with disturbance in their composition potentially leading to altered metabolic states such as acute diarrhea or inflammatory bowel disease. While many studies focused on the microbiota of young children, there is still a lack of knowledge concerning the development of gut microbiota in puppies. Understanding this early evolution is becoming a key aspect to improve dogs' short and long-term health and wellbeing.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
- *Correspondence: Quentin Garrigues
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
8
|
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542-556. [PMID: 35347288 DOI: 10.1038/s41579-022-00712-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The 1013-1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rajneesh K Bains
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Linares-Pastén JA, Hero JS, Pisa JH, Teixeira C, Nyman M, Adlercreutz P, Martinez MA, Karlsson EN. Novel xylan-degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205. Glycobiology 2021; 31:1330-1349. [PMID: 34142143 PMCID: PMC8631079 DOI: 10.1093/glycob/cwab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Prevotella copri is a bacterium that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber-induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions. These findings raised our interest in investigating the possibility of P. copri to grow on xylan, and identify the enzyme systems playing a role in digestion of xylan-based dietary fibers. Two xylan degrading polysaccharide utilizing loci (PUL10 and 15) were found in the genome, with three and eight glycoside hydrolase (GH) -encoding genes, respectively. Three of them were successfully produced in Escherichia coli: One extracellular enzyme from GH43 (subfamily 12, in PUL10, 60 kDa) and two enzymes from PUL15, one extracellular GH10 (41 kDa), and one intracellular GH43 (subfamily 137 kDa). Based on our results, we propose that in PUL15, GH10 (1) is an extracellular endo-1,4-β-xylanase, that hydrolazes mainly glucuronosylated xylan polymers to xylooligosaccharides (XOS); while, GH43_1 in the same PUL, is an intracellular β-xylosidase, catalyzing complete hydrolysis of the XOS to xylose. In PUL10, the characterized GH43_12 is an arabinofuranosidase, with a role in degradation of arabinoxylan, catalyzing removal of arabinose-residues on xylan.
Collapse
Affiliation(s)
| | - Johan Sebastian Hero
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
| | - José Horacio Pisa
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
| | - Cristina Teixeira
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and
Nutrition, Lund University, P.O. Box 124, SE-221
00 Lund, Sweden
| | - Patrick Adlercreutz
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| | - M Alejandra Martinez
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
- Facultad de Ciencias Exactas y
Tecnología, UNT. Av. Independencia 1800, San Miguel de
Tucumán 4000, Argentina
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| |
Collapse
|
10
|
Hottmann I, Borisova M, Schäffer C, Mayer C. Peptidoglycan Salvage Enables the Periodontal Pathogen Tannerella forsythia to Survive within the Oral Microbial Community. Microb Physiol 2021; 31:123-134. [PMID: 34107471 DOI: 10.1159/000516751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
Tannerella forsythia is an anaerobic, fusiform Gram-negative oral pathogen strongly associated with periodontitis, a multibacterial inflammatory disease that leads to the destruction of the teeth-supporting tissue, ultimately causing tooth loss. To survive in the oral habitat, T. forsythia depends on cohabiting bacteria for the provision of nutrients. For axenic growth under laboratory conditions, it specifically relies on the external supply of N-acetylmuramic acid (MurNAc), which is an essential constituent of the peptidoglycan (PGN) of bacterial cell walls. T. forsythia comprises a typical Gram-negative PGN; however, as evidenced by genome sequence analysis, the organism lacks common enzymes required for the de novo synthesis of precursors of PGN, which rationalizes its MurNAc auxotrophy. Only recently insights were obtained into how T. forsythia gains access to MurNAc in its oral habitat, enabling synthesis of the own PGN cell wall. This report summarizes T. forsythia's strategies to survive in the oral habitat by means of PGN salvage pathways, including recovery of exogenous MurNAc and PGN-derived fragments but also polymeric PGN, which are all derived from cohabiting bacteria either via cell wall turnover or decay of cells. Salvage of polymeric PGN presumably requires the removal of peptides from PGN by an unknown amidase, concomitantly with the translocation of the polymer across the outer membrane. Two recently identified exo-lytic N-acetylmuramidases (Tf_NamZ1 and Tf_NamZ2) specifically cleave the peptide-free, exogenous (nutrition source) PGN in the periplasm and release the MurNAc and disaccharide substrates for the transporters Tf_MurT and Tf_AmpG, respectively, whereas the peptide-containing, endogenous (the self-cell wall) PGN stays unattached. This review also outlines how T. forsythia synthesises the PGN precursors UDP-MurNAc and UDP-N-acetylglucosamine (UDP-GlcNAc), involving homologs of the Pseudomonas sp. recycling enzymes AmgK/MurU and a monofunctional uridylyl transferase (named Tf_GlmU*), respectively.
Collapse
Affiliation(s)
- Isabel Hottmann
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Non-oral Prevotella stepping into the spotlight. Anaerobe 2021; 68:102321. [PMID: 33482304 DOI: 10.1016/j.anaerobe.2021.102321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Species now affiliated to genus Prevotella have been known for decades as an integral part of human oral cavity microbiota. They were frequently isolated from patients with periodontitis or from dental root canals but also from healthy subjects. With the exception of Prevotella intermedia, they were considered opportunistic pathogens, as they were isolated also from various bacterial abscesses from the head, neck, breast, skin and various other body sites. Consequently, Prevotella were not in the focus of research activities. On the other hand, the four species found in the rumen never caused any disease and seemed early on to be numerous and important part of the rumen ecosystem indicating this genus harbored bacteria with enormously diverse habitats and lifestyles. The purpose of this review is to illustrate the main research themes performed in Prevotella on a path from less noted oral bacteria and from hard to cultivate and study rumen organisms to important mutualistic bacteria in guts of various mammals warranting major research efforts.
Collapse
|
12
|
Basco SA, Steele GM, Henao-Martínez AF, Franco-Paredes C, Chastain DB. Unexpected etiology of a pleural empyema in a patient with chronic lymphocytic leukemia (CLL): Capnocytophaga ochracea. IDCases 2020; 20:e00747. [PMID: 32300526 PMCID: PMC7152719 DOI: 10.1016/j.idcr.2020.e00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/26/2022] Open
Abstract
Pleural effusions and empyemas caused by Capnocytophaga spp. are uncommon with few cases previously reported. Here, we present the case of a 62-year-old man with untreated chronic lymphocytic leukemia (CLL) complicated by a pleural empyema caused by C. ochracea. The route of acquisition was likely the result of aspiration of C. ochracea coupled with the immune defects associated with untreated CLL.
Collapse
|
13
|
Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, Henrissat B. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res 2019; 46:D677-D683. [PMID: 29088389 PMCID: PMC5753385 DOI: 10.1093/nar/gkx1022] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
The Polysaccharide Utilization Loci (PUL) database was launched in 2015 to present PUL predictions in ∼70 Bacteroidetes species isolated from the human gastrointestinal tract, as well as PULs derived from the experimental data reported in the literature. In 2018 PULDB offers access to 820 genomes, sampled from various environments and covering a much wider taxonomical range. A Krona dynamic chart was set up to facilitate browsing through taxonomy. Literature surveys now allows the presentation of the most recent (i) PUL repertoires deduced from RNAseq large-scale experiments, (ii) PULs that have been subjected to in-depth biochemical analysis and (iii) new Carbohydrate-Active enzyme (CAZyme) families that contributed to the refinement of PUL predictions. To improve PUL visualization and genome browsing, the previous annotation of genes encoding CAZymes, regulators, integrases and SusCD has now been expanded to include functionally relevant protein families whose genes are significantly found in the vicinity of PULs: sulfatases, proteases, ROK repressors, epimerases and ATP-Binding Cassette and Major Facilitator Superfamily transporters. To cope with cases where susCD may be absent due to incomplete assemblies/split PULs, we present ‘CAZyme cluster’ predictions. Finally, a PUL alignment tool, operating on the tagged families instead of amino-acid sequences, was integrated to retrieve PULs similar to a query of interest. The updated PULDB website is accessible at www.cazy.org/PULDB_new/
Collapse
Affiliation(s)
- Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Élodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Saad Al-Masaudi
- Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Minniti G, Rød Sandve S, Padra JT, Heldal Hagen L, Lindén S, Pope PB, Ø Arntzen M, Vaaje-Kolstad G. The Farmed Atlantic Salmon ( Salmo salar) Skin-Mucus Proteome and Its Nutrient Potential for the Resident Bacterial Community. Genes (Basel) 2019; 10:genes10070515. [PMID: 31284681 PMCID: PMC6678340 DOI: 10.3390/genes10070515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/29/2022] Open
Abstract
Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In particular, the microbial temporal proteome dynamics during nine days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment. At the start of the incubation period, the largest proportion of proteins (~99%) belonged to the salmon and many of these proteins were assigned to protecting functions, confirming the defensive role of mucus. On the contrary, after nine days of incubation, most of the proteins detected were assigned to bacteria, mainly to the genera Vibrio and Pseudoalteromonas. Most of the predicted secreted proteins were affiliated with transport and metabolic processes. In particular, a large abundance and variety of bacterial proteases were observed, highlighting the capacity of bacteria to degrade the skin-mucus proteins of Atlantic salmon.
Collapse
Affiliation(s)
- Giusi Minniti
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Simen Rød Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - János Tamás Padra
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Sara Lindén
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway.
| |
Collapse
|
15
|
Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun 2019; 10:2043. [PMID: 31053724 PMCID: PMC6499787 DOI: 10.1038/s41467-019-10068-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/18/2019] [Indexed: 01/21/2023] Open
Abstract
Unlike proteins, glycan chains are not directly encoded by DNA, but by the specificity of the enzymes that assemble them. Theoretical calculations have proposed an astronomical number of possible isomers (> 1012 hexasaccharides) but the actual diversity of glycan structures in nature is not known. Bacteria of the Bacteroidetes phylum are considered primary degraders of polysaccharides and they are found in all ecosystems investigated. In Bacteroidetes genomes, carbohydrate-degrading enzymes (CAZymes) are arranged in gene clusters termed polysaccharide utilization loci (PULs). The depolymerization of a given complex glycan by Bacteroidetes PULs requires bespoke enzymes; conversely, the enzyme composition in PULs can provide information on the structure of the targeted glycans. Here we group the 13,537 PULs encoded by 964 Bacteroidetes genomes according to their CAZyme composition. We find that collectively Bacteroidetes have elaborated a few thousand enzyme combinations for glycan breakdown, suggesting a global estimate of diversity of glycan structures much smaller than the theoretical one. Bacteroidetes genomes contain polysaccharide utilization loci (PULs), each of which encodes enzymes for the breakdown of one particular glycan. By analyzing the enzyme composition of 13,537 PULs, the authors suggest that the natural glycan diversity is orders of magnitude lower than previously proposed.
Collapse
Affiliation(s)
- Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Kelly BC, Constantinescu DS, Foster W. Capnocytophaga canimorsus Periprosthetic Joint Infection in an Immunocompetent Patient: A Case Report. Geriatr Orthop Surg Rehabil 2019; 10:2151459318825199. [PMID: 31041114 PMCID: PMC6484232 DOI: 10.1177/2151459318825199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022] Open
Abstract
Introduction: A periprosthetic joint infection (PJI) is a potentially devastating complication following an arthroplasty procedure. There are many organisms that commonly cause this complication; in this case report, we will discuss a PJI caused by an unusual bacteria found in the mouths of domestic pets. Objective: To present a case report of a patient with a periprosthetic hip infection from Capnocytophaga canimorsus and review the literature. Methods: We present a case of C canimorsus PJI in an immunocompetent woman who had undergone a total hip arthroplasty. The patient was doing well postoperatively for many years until she was bitten on the foot by a domestic canine. Patient diagnosed using Musculoskeletal Infection Society criteria, then treated with explant of the hip prosthesis, irrigation and debridement, placement of an antibiotic cement spacer, and a 6-week course of intravenous antibiotics. Results: Unfortunately, while awaiting replant, this patient had a massive myocardial infarction and died. Discussion: Current literature suggests treating canine bites with amoxicillinas well as a discussion with patients pre-/postoperatively from a lower extremity arthroplasty specialist. Conclusion: Capnocytophaga canimorsus is a rare cause of infection, even more unusual in an immunocompetent patient. This study highlights the importance of considering C canimorsus as a cause of PJI, regardless of the immunologic status of the patient.
Collapse
Affiliation(s)
- Blane C Kelly
- Virginia Commonwealth University Health System, Richmond, VA, USA
| | | | - William Foster
- Virginia Commonwealth University Health System, Richmond, VA, USA
| |
Collapse
|
17
|
SAĞKAN ÖZTÜRK A, KÖSE Sİ. Gizli Tehdit: Et Yiyen Zoonoz Bakteriler. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2019. [DOI: 10.17517/ksutfd.438344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Ledbetter EC, Franklin-Guild RJ, Edelmann ML. Capnocytophaga keratitis in dogs: clinical, histopathologic, and microbiologic features of seven cases. Vet Ophthalmol 2018; 21:638-645. [PMID: 29360230 DOI: 10.1111/vop.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To describe the clinical, microbiologic, and histopathologic features of Capnocytophaga keratitis in dogs. ANIMALS STUDIED Seven dogs with naturally acquired Capnocytophaga keratitis. PROCEDURES Medical records of dogs with a clinical diagnosis of keratitis and corneal cultures positive for Capnocytophaga spp. were reviewed. Dog signalment, medical history, clinical findings, and diagnostic assay results were recorded. RESULTS Breeds included Boston terrier (n = 3 dogs), Rat terrier (n = 2), and single cases of mixed breed and Pug. All dogs examined had expansive corneal ulceration involving the majority of the corneal surface. Marked corneal infiltrates, keratomalacia, and hypopyon were present. Progression of corneal disease was rapid with extensive dissolution of the corneal stroma. Corneal lesions progressed to catastrophic perforations within 24 h of the initial examination in three dogs, requiring enucleation. One globe was enucleated after failure to resolve with long-term medical therapy. Globes and vision were retained in three dogs following aggressive medical therapy (two dogs) or 360° conjunctival graft surgery (one dog). Capnocytophaga cynodegmi, Capnocytophaga canimorsus, or unspeciated Capnocytophaga spp. were cultured from corneal samples of all dogs. Long, thin, gram-negative rods were present during cytological evaluation of the cornea in some dogs. Histopathologic evaluation of enucleated globes revealed severe and diffuse neutrophilic and collagenolytic keratitis. CONCLUSIONS Capnocytophaga keratitis is a severe, rapidly progressive corneal infection in dogs that is associated with diffuse corneal involvement, extensive keratomalacia, and a relatively poor prognosis. Clinical features of canine Capnocytophaga keratitis are similar to human cases of this infection.
Collapse
Affiliation(s)
- Eric C Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Rebecca J Franklin-Guild
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Michele L Edelmann
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Abstract
The complex carbohydrates of terrestrial and marine biomass represent a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic saccharification of these diverse substrates is of critical importance for fueling a variety of complex microbial communities, including marine, soil, ruminant, and monogastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recognition proteins, and transporters are enriched in the genomes of certain species and are of critical importance in competitive environments. In Bacteroidetes bacteria, these systems are organized as polysaccharide utilization loci (PULs), which are strictly regulated, colocalized gene clusters that encode enzyme and protein ensembles required for the saccharification of complex carbohydrates. This review provides historical perspectives and summarizes key findings in the study of these systems, highlighting a critical shift from sequence-based PUL discovery to systems-based analyses combining reverse genetics, biochemistry, enzymology, and structural biology to precisely illuminate the molecular mechanisms underpinning PUL function. The ecological implications of dynamic PUL deployment by key species in the human gastrointestinal tract are explored, as well as the wider distribution of these systems in other gut, terrestrial, and marine environments.
Collapse
|
20
|
Abstract
Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes. Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2. We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. Bacteria of the phylum Bacteroidetes are important human commensals and pathogens. Understanding their biology is therefore a key question for human health. A main feature of these bacteria is the presence of abundant lipoproteins at their surface that play a role in nutrient acquisition. To date, the underlying mechanism of lipoprotein transport is unknown. We show for the first time that Bacteroidetes surface lipoproteins share an N-terminal signal that drives surface localization. The localization and overall negative charge of the lipoprotein export signal (LES) are crucial for its role. Overall, our findings provide the first evidence that Bacteroidetes are endowed with a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane.
Collapse
|
21
|
Soni V, Upadhayay S, Suryadevara P, Samla G, Singh A, Yogeeswari P, Sriram D, Nandicoori VK. Depletion of M. tuberculosis GlmU from Infected Murine Lungs Effects the Clearance of the Pathogen. PLoS Pathog 2015; 11:e1005235. [PMID: 26489015 PMCID: PMC4619583 DOI: 10.1371/journal.ppat.1005235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/27/2015] [Indexed: 01/06/2023] Open
Abstract
M. tuberculosis N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmUMtb) is a bi-functional enzyme engaged in the synthesis of two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc, catalyzed by the C- and N-terminal domains respectively. UDP-GlcNAc is a key metabolite essential for the synthesis of peptidoglycan, disaccharide linker, arabinogalactan and mycothiols. While glmUMtb was predicted to be an essential gene, till date the role of GlmUMtb in modulating the in vitro growth of Mtb or its role in survival of pathogen ex vivo / in vivo have not been deciphered. Here we present the results of a comprehensive study dissecting the role of GlmUMtb in arbitrating the survival of the pathogen both in vitro and in vivo. We find that absence of GlmUMtb leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. Complementation studies show that the acetyl- and uridyl- transferase activities of GlmUMtb are independently essential for bacterial survival in vitro, and GlmUMtb is also found to be essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmUMtb from infected murine lungs, four weeks post infection, led to significant reduction in the bacillary load. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice resulted in significant decrease in the bacillary load. Thus our study establishes GlmUMtb as a strong candidate for intervention measures against established tuberculosis infections. The synthesis of the Mtb cell wall involves a cascade of reactions catalyzed by cytosolic and cell membrane-bound enzymes. The reaction catalyzed by GlmUMtb (an enzyme with acetyltransferase and uridyltransferase activities) generates UDP-GlcNAc, a central nucleotide-sugar building block of the cell wall. Apart from cell wall synthesis UDP-GlcNAc is an essential metabolite participating in other cellular processes including disaccharide linker and mycothiol biosynthesis. GlmUMtb shares very little sequence similarity with eukaryotic acetyltransferase and uridyltransferase enzymes. Many pathogens have alternative pathway(s) for foraging GlcNAc from the host. The present study was undertaken to see the effects of depleting GlmUMtb on pathogen survival in the host animal. We have generated a conditional gene replacement mutant of glmUMtb and find that depletion of GlmUMtb at any stage of bacterial growth or in mice infected with Mtb including a well-established infection, results in irreversible bacterial death due to perturbation of cell wall synthesis. We have developed a novel anti-GlmUMtb inhibitor (Oxa33), identified its binding site on GlmUMtb, and shown its specificity for GlmUMtb. The study demonstrates that GlmUMtb is a promising target for therapeutic intervention and Oxa33 can be pursued as a lead molecule.
Collapse
Affiliation(s)
- Vijay Soni
- National Institute of Immunology, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | | | - Priyanka Suryadevara
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Ganesh Samla
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | | |
Collapse
|
22
|
Only a subset of C. canimorsus strains is dangerous for humans. Emerg Microbes Infect 2015; 4:e48. [PMID: 26421271 PMCID: PMC4576167 DOI: 10.1038/emi.2015.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 02/01/2023]
Abstract
Capnocytophaga canimorsus are gram-negative bacteria living as commensals in the mouth of dogs and cats. C. canimorsus cause rare but life-threatening generalized infections in humans that have been in contact with a dog or a cat. Over the last years we collected 105 C. canimorsus strains from different geographical origins and from severe human infections or healthy dogs. All these strains were analyzed by 16S rDNA sequencing and a phylogenetic tree revealed two main groups of bacteria instead of one with no relation to the geographical origin. This branching was confirmed by the whole-genome sequencing of 10 strains, supporting the evidence of a new Capnocytophaga species in dogs. Interestingly, 19 out of 19 C. canimorsus strains isolated from human infections belonged to the same species. Furthermore, most strains from this species could grow in heat-inactivated human serum (HIHS) (40/46 tested), deglycosylate IgM (48/66) and were cytochrome-oxidase positive (60/66) while most strains from the other species could not grow in HIHS (22/23 tested), could not deglycosylate IgM (33/34) and were cytochrome-oxidase negative (33/34). Here, we propose to call Capnocytophaga canis (Latin: dog) the novel, presumably less virulent dog-hosted Capnocytophaga species and to keep the name C. canimorsus for the species including human pathogens.
Collapse
|
23
|
Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity. Appl Environ Microbiol 2015; 81:5471-6. [PMID: 26048943 DOI: 10.1128/aem.01180-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 11/20/2022] Open
Abstract
Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva.
Collapse
|