1
|
Wu W, Huang J, Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb Biotechnol 2024; 17:e14487. [PMID: 38801351 PMCID: PMC11129675 DOI: 10.1111/1751-7915.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.
Collapse
Affiliation(s)
- Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Prasad K, Sasi S, Weerasinghe J, Levchenko I, Bazaka K. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 2023; 28:7481. [PMID: 38005203 PMCID: PMC10673009 DOI: 10.3390/molecules28227481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of antibiotic resistant microorganisms possesses a great threat to human health and the environment. Considering the exponential increase in the spread of antibiotic resistant microorganisms, it would be prudent to consider the use of alternative antimicrobial agents or therapies. Only a sustainable, sustained, determined, and coordinated international effort will provide the solutions needed for the future. Plant secondary metabolites show bactericidal and bacteriostatic activity similar to that of conventional antibiotics. However, to effectively eliminate infection, secondary metabolites may need to be activated by heat treatment or combined with other therapies. Cold atmospheric plasma therapy is yet another novel approach that has proven antimicrobial effects. In this review, we explore the physiochemical mechanisms that may give rise to the improved antimicrobial activity of secondary metabolites when combined with cold atmospheric plasma therapy.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Syamlal Sasi
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Janith Weerasinghe
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Igor Levchenko
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| |
Collapse
|
3
|
Rivera M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J Inorg Biochem 2023; 247:112306. [PMID: 37451083 DOI: 10.1016/j.jinorgbio.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a global public health threat. The care of chronic infections is complicated by bacterial biofilms. Biofilm embedded cells can be up to 1000-fold more tolerant to antibiotic treatment than planktonic cells. Antibiotic tolerance is a condition which does not involve mutation and enables bacteria to survive in the presence of antibiotics. The antibiotic tolerance of biofilm-cells often renders antibiotics ineffective, even against strains that do not carry resistance-impairing mutations. This review discusses bacterial iron homeostasis and the strategies being developed to target this bacterial vulnerability, with emphasis on a recently proposed approach which aims at targeting the iron storage protein bacterioferritin (Bfr) and its physiological partner, the ferredoxin Bfd. Bfr regulates cytosolic iron concentrations by oxidizing Fe2+ and storing Fe3+ in its internal cavity, and by forming a complex with Bfd to reduce Fe3+ in the internal cavity and release Fe2+ to the cytosol. Blocking the Bfr-Bfd complex in P. aeruginosa cells causes an irreversible accumulation of Fe3+ in BfrB and simultaneous cytosolic iron depletion, which leads to impaired biofilm maintenance and biofilm cell death. Recently discovered small molecule inhibitors of the Bfr-Bfd complex, which bind Bfr at the Bfd binding site, inhibit iron mobilization, and elicit biofilm cell death.
Collapse
Affiliation(s)
- Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
4
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
5
|
Wu CM, Li LH, Lin YL, Wu CJ, Lin YT, Yang TC. The sbiTRS Operon Contributes to Stenobactin-Mediated Iron Utilization in Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0267322. [PMID: 36453931 PMCID: PMC9769818 DOI: 10.1128/spectrum.02673-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Iron is an essential micronutrient for various bacterial cellular processes. Fur is a global transcriptional regulator participating in iron homeostasis. Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has emerged as an opportunistic pathogen. To elucidate the novel regulatory mechanism behind iron homeostasis in S. maltophilia, wild-type KJ and KJΔFur, a fur mutant, were subjected to transcriptome assay. A five-gene cluster, sbiBA-sbiTRS, was significantly upregulated in KJΔFur. SbiAB is an ATP type efflux pump, SbiT is an inner membrane protein, and SbiSR is a two-component regulatory system (TCS). The sbiTRS operon organization was verified by reverse transcription-PCR (RT-PCR). Localization prediction and bacterial two-hybrid studies revealed that SbiT resided in the inner membrane and had an intramembrane interaction with SbiS. In iron-replete conditions, SbiT interacted with SbiS and maintained SbiSR TCS in a resting state. In response to iron depletion stress, SbiT no longer interacted with SbiS, leading to SbiSR TCS activation. The iron source utilization assay demonstrated the contribution of SbiSR TCS to stenobactin-mediated ferric iron utilization but notto the utilization of hemin and ferric citrate. Furthermore, SmeDEF and SbiAB pumps, known stenobactin secretion outlets, were members of the SbiSR regulon. Collectively, in an iron-depleted condition, SbiSR activation is regulated by Fur at the transcriptional level and by SbiT at the posttranslational level. Activated SbiSR contributes to stenobactin-mediated ferric iron utilization by upregulating the smeDEF and sbiAB operons. SbiSR is the first TCS found to be involved in iron homeostasis in S. maltophilia. IMPORTANCE Therapeutic options for Stenotrophomonas maltophilia infections are limited because S. maltophilia is intrinsically resistant to several antibiotics. Iron is an essential element for viability, but iron overload is a lethal threat to bacteria. Therefore, disruption of iron homeostasis can be an alternative strategy to cope with S. maltophilia infection. The intricate regulatory networks involved in iron hemostasis have been reported in various pathogens; however, little is known about S. maltophilia. Herein, a novel sbiTRS operon, a member of Fur regulon, was characterized. SbiT, an inner membrane protein, negatively modulated the SbiSR two-component regulatory system by intramembrane protein-protein interaction with SbiS. In response to iron-depleted stress, SbiSR was activated via the regulation of Fur and SbiT. Activated SbiSR upregulated smeDEF and sbiAB, which contributed to stenobactin-mediated ferric iron utilization. A novel fur-sbiT-sbiSR-smeDEF/sbiAB regulatory circuit in S. maltophilia was revealed.
Collapse
Affiliation(s)
- Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ling Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
7
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
10
|
Trouillon J, Imbert L, Villard AM, Vernet T, Attrée I, Elsen S. Determination of the two-component systems regulatory network reveals core and accessory regulations across Pseudomonas aeruginosa lineages. Nucleic Acids Res 2021; 49:11476-11490. [PMID: 34718721 PMCID: PMC8599809 DOI: 10.1093/nar/gkab928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa possesses one of the most complex bacterial regulatory networks, which largely contributes to its success as a pathogen. However, most of its transcription factors (TFs) are still uncharacterized and the potential intra-species variability in regulatory networks has been mostly ignored so far. Here, we used DAP-seq to map the genome-wide binding sites of all 55 DNA-binding two-component systems (TCSs) response regulators (RRs) across the three major P. aeruginosa lineages. The resulting networks encompass about 40% of all genes in each strain and contain numerous new regulatory interactions across most major physiological processes. Strikingly, about half of the detected targets are specific to only one or two strains, revealing a previously unknown large functional diversity of TFs within a single species. Three main mechanisms were found to drive this diversity, including differences in accessory genome content, as exemplified by the strain-specific plasmid in IHMA87 outlier strain which harbors numerous binding sites of conserved chromosomally-encoded RRs. Additionally, most RRs display potential auto-regulation or RR-RR cross-regulation, bringing to light the vast complexity of this network. Overall, we provide the first complete delineation of the TCSs regulatory network in P. aeruginosa that will represent an important resource for future studies on this pathogen.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, 38044 Grenoble, France
| | - Lionel Imbert
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG UAR 3518, 38044 Grenoble, France
| | - Anne-Marie Villard
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044 Grenoble, France
| | - Thierry Vernet
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044 Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, 38044 Grenoble, France
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, 38044 Grenoble, France
| |
Collapse
|
11
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
12
|
The Xanthomonas RaxH-RaxR Two-Component Regulatory System Is Orthologous to the Zinc-Responsive Pseudomonas ColS-ColR System. Microorganisms 2021; 9:microorganisms9071458. [PMID: 34361895 PMCID: PMC8306577 DOI: 10.3390/microorganisms9071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.
Collapse
|
13
|
Cianciulli Sesso A, Lilić B, Amman F, Wolfinger MT, Sonnleitner E, Bläsi U. Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Front Microbiol 2021; 12:626715. [PMID: 33995291 PMCID: PMC8120321 DOI: 10.3389/fmicb.2021.626715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/31/2021] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is notorious for its high-level resistance toward clinically used antibiotics. In fact, Pae has rendered most antimicrobials ineffective, leaving polymyxins and aminoglycosides as last resort antibiotics. Although several resistance mechanisms of Pae are known toward these drugs, a profounder knowledge of hitherto unidentified factors and pathways appears crucial to develop novel strategies to increase their efficacy. Here, we have performed for the first time transcriptome analyses and ribosome profiling in parallel with strain PA14 grown in synthetic cystic fibrosis medium upon exposure to polymyxin E (colistin) and tobramycin. This approach did not only confirm known mechanisms involved in colistin and tobramycin susceptibility but revealed also as yet unknown functions/pathways. Colistin treatment resulted primarily in an anti-oxidative stress response and in the de-regulation of the MexT and AlgU regulons, whereas exposure to tobramycin led predominantly to a rewiring of the expression of multiple amino acid catabolic genes, lower tricarboxylic acid (TCA) cycle genes, type II and VI secretion system genes and genes involved in bacterial motility and attachment, which could potentially lead to a decrease in drug uptake. Moreover, we report that the adverse effects of tobramycin on translation are countered with enhanced expression of genes involved in stalled ribosome rescue, tRNA methylation and type II toxin-antitoxin (TA) systems.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Branislav Lilić
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Michael T Wolfinger
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
King M, Kubo A, Kafer L, Braga R, McLeod D, Khanam S, Conway T, Patrauchan MA. Calcium-Regulated Protein CarP Responds to Multiple Host Signals and Mediates Regulation of Pseudomonas aeruginosa Virulence by Calcium. Appl Environ Microbiol 2021; 87:e00061-21. [PMID: 33674436 PMCID: PMC8117776 DOI: 10.1128/aem.00061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections. Previously, we showed that elevated calcium (Ca2+) levels increase the production of virulence factors in P. aeruginosa In an effort to characterize the Ca2+ regulatory network, we identified a Ca2+-regulated β-propeller protein, CarP, and showed that expression of the encoding gene is controlled by the Ca2+-regulated two-component system CarSR. Here, by using a Galleria melonella model, we showed that CarP plays a role in regulating P. aeruginosa virulence. By using transcriptome sequencing (RNA-Seq), reverse transcription (RT)-PCR, quantitative RT-PCR (RT-qPCR), and promoter fusions, we determined that carP is transcribed into at least two transcripts and regulated by several bacterial and host factors. The transcription of carP is elevated in response to Ca2+ in P. aeruginosa cystic fibrosis isolates and PAO1 laboratory strain. Elevated Fe2+ also induces carP The simultaneous addition of Ca2+ and Fe2+ increased the carP promoter activity synergistically, which requires the presence of CarR. In silico analysis of the intergenic sequence upstream of carP predicted recognition sites of RhlR/LasR, OxyR, and LexA, suggesting regulation by quorum sensing (QS) and oxidative stress. In agreement, the carP promoter was activated in response to stationary-phase PAO1 supernatant and required the presence of elevated Ca2+ and CarR but remained silent in the triple mutant lacking rhlI, lasI, and pqsA synthases. We also showed that carP transcription is regulated by oxidative stress and that CarP contributes to P. aeruginosa Ca2+-dependent H2O2 tolerance. The multifactorial regulation of carP suggests that CarP plays an important role in P. aeruginosa adaptations to host environments.IMPORTANCEP. aeruginosa is a human pathogen causing life-threatening infections. It is particularly notorious for its ability to adapt to diverse environments within the host. Understanding the signals and the signaling pathways enabling P. aeruginosa adaptation is imperative for developing effective therapies to treat infections caused by this organism. One host signal of particular importance is calcium. Previously, we identified a component of the P. aeruginosa calcium-signaling network, CarP, whose expression is induced by elevated levels of calcium. Here, we show that carP plays an important role in P. aeruginosa virulence and is upregulated in P. aeruginosa strains isolated from sputa of patients with cystic fibrosis. We also identified several bacterial and host factors that regulate the transcription of carP Such multifactorial regulation highlights the interconnectedness between regulatory circuits and, together with the pleotropic effect of CarP on virulence, suggests the importance of this protein in P. aeruginosa adaptations to the host.
Collapse
Affiliation(s)
- Michelle King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Leah Kafer
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel McLeod
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sharmily Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
Del Valle I, Fulk EM, Kalvapalle P, Silberg JJ, Masiello CA, Stadler LB. Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Front Microbiol 2021; 11:618373. [PMID: 33633695 PMCID: PMC7901896 DOI: 10.3389/fmicb.2020.618373] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid diversification of synthetic biology tools holds promise in making some classically hard-to-solve environmental problems tractable. Here we review longstanding problems in the Earth and environmental sciences that could be addressed using engineered microbes as micron-scale sensors (biosensors). Biosensors can offer new perspectives on open questions, including understanding microbial behaviors in heterogeneous matrices like soils, sediments, and wastewater systems, tracking cryptic element cycling in the Earth system, and establishing the dynamics of microbe-microbe, microbe-plant, and microbe-material interactions. Before these new tools can reach their potential, however, a suite of biological parts and microbial chassis appropriate for environmental conditions must be developed by the synthetic biology community. This includes diversifying sensing modules to obtain information relevant to environmental questions, creating output signals that allow dynamic reporting from hard-to-image environmental materials, and tuning these sensors so that they reliably function long enough to be useful for environmental studies. Finally, ethical questions related to the use of synthetic biosensors in environmental applications are discussed.
Collapse
Affiliation(s)
- Ilenne Del Valle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
16
|
Sambrano H, Castillo JC, Ramos CW, de Mayorga B, Chen O, Durán O, Ciniglio C, Aguilar C, Cisterna O, de Chial M. Prevalence of antibiotic resistance and virulent factors in nosocomial clinical isolates of Pseudomonas aeruginosa from Panamá. Braz J Infect Dis 2020; 25:101038. [PMID: 33285136 PMCID: PMC9392144 DOI: 10.1016/j.bjid.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022] Open
Abstract
Background Pseudomonas aeruginosa is an important causative agent of nosocomial infections. As pathogen, P. aeruginosa is of increasing clinical importance due to its ability to develop high-level multidrug resistance (MDR). Methods The aim of the present study was to better understand the intrinsic virulence of circulating strains of Pseudomonas aeruginosa, by surveying and characterizing the antibiotic resistance profiles and prevalence of virulence factors in 51 clinical isolates of P. aeruginosa obtained from children admitted to Hospital del Niño-Panamá during the period of October 2016 until March 2017. Antimicrobial susceptibilities were assessed by determining the minimum inhibitory concentration for 12 antibiotics against P. aeruginosa clinical isolates using the VITEK system (https://www.biomerieux.com). Additionally, all isolates were examined by Polymerase Chain Reaction (PCR) for the presence of components of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes and betalactamases resistance genes (ESBL) using gene-specific primers. Results A total of 51 pyoverdine producing clinical isolates were analyzed, all of which expressed resistance genes such as genes of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes (fpvA). Out of 51 MDR isolates, 22 were ESBL producers. The most common ESBL gene was blaTEM expressed by 43% of the isolates. The isolates tested in this study showed increased resistance to antibiotics in the following categories: (i) penicillins (ampicillin (69%), piperacillin (22%); (ii) pyrimethamines (trimethoprim, 65%); (iii) nitrofurans (nitrofurantoin, 63%), and (iv) third-generation cephalosporin cefotaxime (53%). These results underscore a high prevalence of MDR amongst clinical isolates from Panama. Conclusions The present study indicates that prevalence of BlaTEM-carrying strains is increasing with subsequent multidrug resistance in Panamá and as well reported worldwide. The virulent factors identified in this study provide valuable information regarding the prevalence of resistance genes and their potential impact on treatments that exploit the unique physiology of the pathogen. To prevent further spread of MDR, the proportions of resistant strains of Pseudomonas aeruginosa should be constantly evaluated on healthcare institutions of Panamá. More importantly, this information can be used to better understand the evolution and dissemination of strains hoping to prevent the development of resistance in Pseudomonas aeruginosa. Future studies quantifying the expression of these virulent genes will emphasize on the acquisition of multidrug resistance.
Collapse
Affiliation(s)
- Héctor Sambrano
- Universidad de Panamá, Programa de Maestría en Ciencias Biológicas, Panama
| | - Julio César Castillo
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama; Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá (INDICASAT-AIP), Panama
| | - Carlos W Ramos
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Brenda de Mayorga
- Universidad de Panamá, Escuela de Biología, Departmento de Microbiología y Parasitología, Panama
| | - Olga Chen
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Ovidio Durán
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Carmelo Ciniglio
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Criseida Aguilar
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | | | - Magaly de Chial
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama.
| |
Collapse
|
17
|
Badal D, Jayarani AV, Kollaran MA, Kumar A, Singh V. Pseudomonas aeruginosa biofilm formation on endotracheal tubes requires multiple two-component systems. J Med Microbiol 2020; 69:906-919. [PMID: 32459613 DOI: 10.1099/jmm.0.001199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction. Indwelling medical devices such as endotracheal tubes (ETTs), urinary catheters, vascular access devices, tracheostomies and feeding tubes are often associated with hospital-acquired infections. Bacterial biofilm formed on the ETTs in intubated patients is a significant risk factor associated with ventilator-associated pneumonia. Pseudomonas aeruginosa is one of the four frequently encountered bacteria responsible for causing pneumonia, and the biofilm formation on ETTs. However, understanding of biofilm formation on ETT and interventions to prevent biofilm remains lagging. The ability to sense and adapt to external cues contributes to their success. Thus, the biofilm formation is likely to be influenced by the two-component systems (TCSs) that are composed of a membrane-associated sensor kinase and an intracellular response regulator.Aim. This study aims to establish an in vitro method to analyse the P. aeruginosa biofilm formation on ETTs, and identify the TCSs that contribute to this process.Methodology. In total, 112 P. aeruginosa PA14 TCS mutants were tested for their ability to form biofilm on ETTs, their effect on quorum sensing (QS) and motility.Results. Out of 112 TCS mutants studied, 56 had altered biofilm biomass on ETTs. Although the biofilm formation on ETTs is QS-dependent, none of the 56 loci controlled quorum signal. Of these, 18 novel TCSs specific to ETT biofilm were identified, namely, AauS, AgtS, ColR, CopS, CprR, NasT, KdpD, ParS, PmrB, PprA, PvrS, RcsC, PA14_11120, PA14_32580, PA14_45880, PA14_49420, PA14_52240, PA14_70790. The set of 56 included the GacS network, TCS proteins involved in fimbriae synthesis, TCS proteins involved in antimicrobial peptide resistance, and surface-sensing. Additionally, several of the TCS-encoding genes involved in biofilm formation on ETTs were found to be linked to flagellum-dependent swimming motility.Conclusions. Our study established an in vitro method for studying P. aeruginosa biofilm formation on the ETT surfaces. We also identified novel ETT-specific TCSs that could serve as targets to prevent biofilm formation on indwelling devices frequently used in clinical settings.
Collapse
Affiliation(s)
- Divakar Badal
- Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Abhijith Vimal Jayarani
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Mohammed Ameen Kollaran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA.,Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA.,Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| |
Collapse
|
18
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
19
|
Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. J Bacteriol 2019; 201:JB.00454-19. [PMID: 31451546 DOI: 10.1128/jb.00454-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
Iron is essential for most life forms. Under iron-limiting conditions, many bacteria produce and release siderophores-molecules with high affinity for iron-which are then transported into the cell in their iron-bound form, allowing incorporation of the metal into a wide range of cellular processes. However, free iron can also be a source of reactive oxygen species that cause DNA, protein, and lipid damage. Not surprisingly, iron capture is finely regulated and linked to oxidative-stress responses. Here, we provide evidence indicating that in the plant-beneficial bacterium Pseudomonas putida KT2440, the amino acid l-arginine is a metabolic connector between iron capture and oxidative stress. Mutants defective in arginine biosynthesis show reduced production and release of the siderophore pyoverdine and altered expression of certain pyoverdine-related genes, resulting in higher sensitivity to iron limitation. Although the amino acid is not part of the siderophore side chain, addition of exogenous l-arginine restores pyoverdine release in the mutants, and increased pyoverdine production is observed in the presence of polyamines (agmatine and spermidine), of which arginine is a precursor. Spermidine also has a protective role against hydrogen peroxide in P. putida, whereas defects in arginine and pyoverdine synthesis result in increased production of reactive oxygen species.IMPORTANCE The results of this study show a previously unidentified connection between arginine metabolism, siderophore turnover, and oxidative stress in Pseudomonas putida Although the precise molecular mechanisms involved have yet to be characterized in full detail, our data are consistent with a model in which arginine biosynthesis and the derived pathway leading to polyamine production function as a homeostasis mechanism that helps maintain the balance between iron uptake and oxidative-stress response systems.
Collapse
|
20
|
Bennett BD, Gralnick JA. Mechanisms of toxicity by and resistance to ferrous iron in anaerobic systems. Free Radic Biol Med 2019; 140:167-171. [PMID: 31251977 DOI: 10.1016/j.freeradbiomed.2019.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 12/24/2022]
Abstract
Iron is an essential element for nearly all life on Earth, primarily for its value as a redox active cofactor. Iron exists predominantly in two biologically relevant redox states: ferric iron, the oxidized state (Fe3+), and ferrous iron, the reduced state (Fe2+). Fe2+ is well known to facilitate electron transfer reactions that can lead to the generation of reactive oxygen species. Less is known about why iron is toxic to cells in the absence of oxygen, yet this phenomenon is critically important for our understanding of life on early Earth and in iron-rich ecosystems today. In this brief review, we will highlight our current understanding of anaerobic Fe2+ toxicity, focusing on molecular mechanistic studies in several model systems.
Collapse
Affiliation(s)
- B D Bennett
- Pacific Biosciences Research Center, University of Hawai‛i at Mānoa, Honolulu, HI, 96813, USA
| | - J A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
21
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
22
|
Prevention of Surface-Associated Calcium Phosphate by the Pseudomonas syringae Two-Component System CvsSR. J Bacteriol 2019; 201:JB.00584-18. [PMID: 30617243 DOI: 10.1128/jb.00584-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022] Open
Abstract
CvsSR is a Ca2+-induced two-component system (TCS) in the plant pathogen Pseudomonas syringae pv. tomato DC3000. Here, we discovered that CvsSR is induced by Fe3+, Zn2+, and Cd2+ However, only supplementation of Ca2+ to medium resulted in rugose, opaque colonies in ΔcvsS and ΔcvsR strains. This phenotype corresponded to formation of calcium phosphate precipitation on the surface of ΔcvsS and ΔcvsR colonies. CvsSR regulated swarming motility in P. syringae pv. tomato in a Ca2+-dependent manner, but swarming behavior was not influenced by Fe3+, Zn2+, or Cd2+ We hypothesized that reduced swarming displayed by ΔcvsS and ΔcvsR strains was due to precipitation of calcium phosphate on the surface of ΔcvsS and ΔcvsR cells grown on agar medium supplemented with Ca2+ By reducing the initial pH or adding glucose to the medium, calcium precipitation was inhibited, and swarming was restored to ΔcvsS and ΔcvsR strains, suggesting that calcium precipitation influences swarming ability. Constitutive expression of a CvsSR-regulated carbonic anhydrase and a CvsSR-regulated putative sulfate major facilitator superfamily transporter in ΔcvsS and ΔcvsR strains inhibited formation of calcium precipitates and restored the ability of ΔcvsS and ΔcvsR bacteria to swarm. Lastly, we found that glucose inhibited Ca2+-based induction of CvsSR. Hence, CvsSR is a key regulator that controls calcium precipitation on the surface of bacterial cells.IMPORTANCE Bacteria are capable of precipitating and dissolving minerals. We previously reported the characterization of the two-component system CvsSR in the plant-pathogenic bacterium Pseudomonas syringae CvsSR responds to the presence of calcium and is important for causing disease. Here, we show that CvsSR controls the ability of the bacterium to prevent calcium phosphate precipitation on the surface of cells. We also identified a carbonic anhydrase and transporter that modulate formation of surface-associated calcium precipitates. Furthermore, our results demonstrate that the ability of the bacterium to swarm is controlled by the formation and dissolution of calcium precipitates on the surface of cells. Our study describes new mechanisms for microbially induced mineralization and provides insights into the role of mineral deposits on bacterial physiology. The discoveries may lead to new technological and environmental applications.
Collapse
|
23
|
Yang ZK, Luo H, Zhang Y, Wang B, Gao F. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways. Bioinformatics 2018; 34:3421-3426. [PMID: 29726921 DOI: 10.1093/bioinformatics/bty376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S.cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. Results By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational double strand breaks (DSBs)-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders. By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.,SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Yanming Zhang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Baijing Wang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
24
|
Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Appl Environ Microbiol 2018; 84:AEM.01166-18. [PMID: 29915106 DOI: 10.1128/aem.01166-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
The oxidation of Fe(II) by anoxygenic photosynthetic bacteria was likely a key contributor to Earth's biosphere prior to the evolution of oxygenic photosynthesis and is still found in a diverse range of modern environments. All known phototrophic Fe(II) oxidizers can utilize a wide range of substrates, thus making them very metabolically flexible. However, the underlying adaptations required to oxidize Fe(II), a potential stressor, are not completely understood. We used a combination of quantitative proteomics and cryogenic transmission electron microscopy (cryo-TEM) to compare cells of Rhodopseudomonas palustris TIE-1 grown photoautotrophically with Fe(II) or H2 and photoheterotrophically with acetate. We observed unique proteome profiles for each condition, with differences primarily driven by carbon source. However, these differences were not related to carbon fixation but to growth and light harvesting processes, such as pigment synthesis. Cryo-TEM showed stunted development of photosynthetic membranes in photoautotrophic cultures. Growth on Fe(II) was characterized by a response typical of iron homeostasis, which included an increased abundance of proteins required for metal efflux (particularly copper) and decreased abundance of iron import proteins, including siderophore receptors, with no evidence of further stressors, such as oxidative damage. This study suggests that the main challenge facing anoxygenic phototrophic Fe(II) oxidizers comes from growth limitations imposed by autotrophy, and, once this challenge is overcome, iron stress can be mitigated using iron management mechanisms common to diverse bacteria (e.g., by control of iron influx and efflux).IMPORTANCE The cycling of iron between redox states leads to the precipitation and dissolution of minerals, which can in turn impact other major biogeochemical cycles, such as those of carbon, nitrogen, phosphorus and sulfur. Anoxygenic phototrophs are one of the few drivers of Fe(II) oxidation in anoxic environments and are thought to contribute significantly to iron cycling in both modern and ancient environments. These organisms thrive at high Fe(II) concentrations, yet the adaptations required to tolerate the stresses associated with this are unclear. Despite the general consensus that high Fe(II) concentrations pose numerous stresses on these organisms, our study of the large-scale proteome response of a model anoxygenic phototroph to Fe(II) oxidation demonstrates that common iron homeostasis strategies are adequate to manage this. The bulk of the proteome response is not driven by adaptations to Fe(II) stress but to adaptations required to utilize an inorganic carbon source. Such a global overview of the adaptation of these organisms to Fe(II) oxidation provides valuable insights into the physiology of these biogeochemically important organisms and suggests that Fe(II) oxidation may not pose as many challenges to anoxygenic phototrophs as previously thought.
Collapse
|
25
|
Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:722-733. [PMID: 29410128 DOI: 10.1016/j.bbagrm.2018.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element for almost all living organisms. In the opportunistic bacterial pathogen Pseudomonas aeruginosa, zinc has been shown to play an important role in virulence, in colonization of the host organism and has also been shown to be involved in antibiotic resistance. P. aeruginosa possesses numerous systems enabling it to thrive in zinc-depleted conditions as well as high-zinc situations, two environments that are encountered during human infection. These capabilities account for its pathogenic strength. The main aim of this review is to focus on zinc homeostasis in P. aeruginosa and the genetic regulation of the systems involved. The interconnection with virulence, as well as the mechanism of co-regulation between metal and antibiotic resistance, are of prime interest for understanding the molecular mechanisms allowing P. aeruginosa to switch from its existence as a common environmental bacterium to a severe opportunistic pathogen. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
26
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
27
|
Yan Q, Jiang D, Qian L, Zhang Q, Zhang W, Zhou W, Mi K, Guddat L, Yang H, Rao Z. Structural Insight into the Activation of PknI Kinase from M. tuberculosis via Dimerization of the Extracellular Sensor Domain. Structure 2017; 25:1286-1294.e4. [PMID: 28712808 DOI: 10.1016/j.str.2017.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/27/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
Abstract
Protein kinases play central roles in the survival of Mycobacterium tuberculosis within host. Here we report the individual high-resolution crystal structures of the sensor domain (in both monomer and dimer forms) and the kinase domain of PknI, a transmembrane protein member of the serine/threonine protein kinases (STPKs) family. PknI is the first STPK identified whose sensor domain exists in a monomer-dimer equilibrium. Inspection of the two structures of the sensor domain (PknI_SD) revealed conformational changes upon dimerization, with an arm region of critical importance for dimer formation identified. Rapamycin-induced dimerization of unphosphorylated fusions of PknI juxtamembrane and the kinase domain, intended to mimic the dimerization effect presumably imposed by PknI_SD, was observed to be able to activate auto-phosphorylation activity of the kinase domain. In vivo experiments using an M. bovis model suggested PknI functions as a dimer in the regulation of M. tuberculosis growth.
Collapse
Affiliation(s)
- Qiaoling Yan
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dunquan Jiang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lanfang Qian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingqing Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- College of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin 300071, China; National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Geisinger E, Isberg RR. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria. J Infect Dis 2017; 215:S9-S17. [PMID: 28375515 DOI: 10.1093/infdis/jiw402] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance.
Collapse
Affiliation(s)
- Edward Geisinger
- Howard Hughes Medical Institute, and.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Ralph R Isberg
- Howard Hughes Medical Institute, and.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
29
|
Reinhart AA, Oglesby-Sherrouse AG. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources. Genes (Basel) 2016; 7:genes7120126. [PMID: 27983658 PMCID: PMC5192502 DOI: 10.3390/genes7120126] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous environmental bacterium and versatile opportunistic pathogen. Like most other organisms, P. aeruginosa requires iron for survival, yet iron rapidly reacts with oxygen and water to form stable ferric (FeIII) oxides and hydroxides, limiting its availability to living organisms. During infection, iron is also sequestered by the host innate immune system, further limiting its availability. P. aeruginosa’s capacity to cause disease in diverse host environments is due to its ability to scavenge iron from a variety of host iron sources. Work over the past two decades has further shown that different iron sources can affect the expression of distinct virulence traits. This review discusses how the individual components of P. aeruginosa’s iron regulatory network allow this opportunist to adapt to a multitude of host environments during infection.
Collapse
Affiliation(s)
- Alexandria A Reinhart
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Kreamer NN, Phillips R, Newman DK, Boedicker JQ. Predicting the impact of promoter variability on regulatory outputs. Sci Rep 2015; 5:18238. [PMID: 26675057 PMCID: PMC4682146 DOI: 10.1038/srep18238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022] Open
Abstract
The increased availability of whole genome sequences calls for quantitative models of global gene expression, yet predicting gene expression patterns directly from genome sequence remains a challenge. We examine the contributions of an individual regulator, the ferrous iron-responsive regulatory element, BqsR, on global patterns of gene expression in Pseudomonas aeruginosa. The position weight matrix (PWM) derived for BqsR uncovered hundreds of likely binding sites throughout the genome. Only a subset of these potential binding sites had a regulatory consequence, suggesting that BqsR/DNA interactions were not captured within the PWM or that the broader regulatory context at each promoter played a greater role in setting promoter outputs. The architecture of the BqsR operator was systematically varied to understand how binding site parameters influence expression. We found that BqsR operator affinity was predicted by the PWM well. At many promoters the surrounding regulatory context, including overlapping operators of BqsR or the presence of RhlR binding sites, were influential in setting promoter outputs. These results indicate more comprehensive models that include local regulatory contexts are needed to develop a predictive understanding of global regulatory outputs.
Collapse
Affiliation(s)
- Naomi N Kreamer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Chemistry, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
31
|
Rodríguez-Rojas A, Makarova O, Müller U, Rolff J. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria. PLoS Genet 2015; 11:e1005546. [PMID: 26430769 PMCID: PMC4592263 DOI: 10.1371/journal.pgen.1005546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection.
Collapse
Affiliation(s)
- Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
- * E-mail: (ARR); (JR)
| | - Olga Makarova
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Uta Müller
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
- * E-mail: (ARR); (JR)
| |
Collapse
|
32
|
Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Infect Immun 2015; 83:3043-60. [PMID: 25987708 DOI: 10.1128/iai.00315-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023] Open
Abstract
Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission.
Collapse
|