1
|
Godsil M, Ritz NL, Venkatesh S, Meeske AJ. Gut phages and their interactions with bacterial and mammalian hosts. J Bacteriol 2025; 207:e0042824. [PMID: 39846747 DOI: 10.1128/jb.00428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The mammalian gut microbiome is a dense and diverse community of microorganisms that reside in the distal gastrointestinal tract. In recent decades, the bacterial members of the gut microbiome have been the subject of intense research. Less well studied is the large community of bacteriophages that reside in the gut, which number in the billions of viral particles per gram of feces, and consist of considerable unknown viral "dark matter." This community of gut-residing bacteriophages, called the gut "phageome," plays a central role in the gut microbiome through predation and transformation of native gut bacteria, and through interactions with their mammalian hosts. In this review, we will summarize what is known about the composition and origins of the gut phageome, as well as its role in microbiome homeostasis and host health. Furthermore, we will outline the interactions of gut phages with their bacterial and mammalian hosts, and plot a course for the mechanistic study of these systems.
Collapse
Affiliation(s)
- Marshall Godsil
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Alexander J Meeske
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
3
|
Basu S, Bhattacharya D, Pramanik A, Saha M, Mukherjee J. In-silico whole-genome sequence analysis of a halotolerant filamentous mangrove cyanobacterium revealed CRISPR-Cas systems with unique properties. JOURNAL OF PHYCOLOGY 2023; 59:1339-1346. [PMID: 37795780 DOI: 10.1111/jpy.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Novel CRISPR systems capable of cleaving both DNA and RNA are progressively emerging as attractive tools for genome manipulation of prokaryotic and eukaryotic organisms. We report specific characteristics of CRISPR systems present in Oxynema aestuarii AP17, a halotolerant, filamentous cyanobacterium and the second known member of the Oxynema genus. In-silico analyses of its whole-genome sequence revealed the presence of multiple Type I and Type III CRISPR loci with one Type I-G system previously unreported in cyanobacteria. We further identified the leader sequences at the 5' end of multiple CRISPR loci, many of which were distinct from previously reported cyanobacterial CRISPR leaders. Phylogenetic analyses of the O. aestuarii AP17 Cas1 proteins revealed two protein sequences that were unique and distantly related to other cyanobacterial Cas1 protein sequences. Our findings are significant because novel Class 1 CRISPR systems possess multi-subunit effectors and are highly flexible for repurposing by protein domain fusions made to the effector complex. Additionally, Type III CRISPRs are particularly useful for genome editing in certain extremophiles for which mesophilic Type II CRISPRs are ineffective.
Collapse
Affiliation(s)
- Shayontani Basu
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | - Arnab Pramanik
- Jagadis Bose National Science Talent Search, Kolkata, India
| | - Malay Saha
- Department of Botany, Sovarani Memorial College, Howrah, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Deng X, Yuan J, Chen L, Chen H, Wei C, Nielsen PH, Wuertz S, Qiu G. CRISPR-Cas phage defense systems and prophages in Candidatus Accumulibacter. WATER RESEARCH 2023; 235:119906. [PMID: 37004306 DOI: 10.1016/j.watres.2023.119906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Candidatus Accumulibacter plays a major role in enhanced biological phosphorus removal (EBPR) from wastewater. Although bacteriophages have been shown to represent fatal threats to Ca. Accumulibacter organisms and thus interfere with the stability of the EBPR process, little is known about the ability of different Ca. Accumulibacter strains to resist phage infections. We conducted a systematic analysis of the occurrence and characteristics of clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR-Cas) systems and prophages in Ca. Accumulibacter lineage members (43 in total, including 10 newly recovered genomes). Results indicate that 28 Ca. Accumulibacter genomes encode CRISPR-Cas systems. They were likely acquired via horizontal gene transfer, conveying a distinct adaptivity to phage predation to different Ca. Accumulibacter members. Major differences in the number of spacers show the unique phage resistance of these members. A comparison of the spacers in closely related Ca. Accumulibacter members from distinct geographical locations indicates that habitat isolation may have resulted in the acquisition of resistance to different phages by different Ca. Accumulibacter. Long-term operation of three laboratory-scale EBPR bioreactors revealed high relative abundances of Ca. Accumulibacter with CRISPSR-Cas systems. Their specific resistance to phages in these reactors was indicated by spacer analysis. Metatranscriptomic analyses showed the activation of the CRISPR-Cas system under both anaerobic and aerobic conditions. Additionally, 133 prophage regions were identified in 43 Ca. Accumulibacter genomes. Twenty-seven of them (in 19 genomes) were potentially active. Major differences in the occurrence of CRISPR-Cas systems and prophages in Ca. Accumulibacter will lead to distinct responses to phage predation. This study represents the first systematic analysis of CRISPR-Cas systems and prophages in the Ca. Accumulibacter lineage, providing new perspectives on the potential impacts of phages on Ca. Accumulibacter and EBPR systems.
Collapse
Affiliation(s)
- Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
5
|
Evseev P, Tikhonova I, Krasnopeev A, Sorokovikova E, Gladkikh A, Timoshkin O, Miroshnikov K, Belykh O. Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages. Viruses 2023; 15:442. [PMID: 36851656 PMCID: PMC9958718 DOI: 10.3390/v15020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial expansion is harmful to the environment, the ecology of Lake Baikal and the economy of nearby regions and can be dangerous to people and animals. Since 2011, the process of colonisation of the lake with potentially toxic cyanobacteria belonging to the genus Tychonema has continued. An understanding of the mechanism of successful expansion of Tychonema requires scrutiny of biological and genomic features. Tychonema sp. BBK16 was isolated from the coastal zone of Lake Baikal. The morphology of BBK16 biofilm was studied with light, scanning electron and confocal microscopy. The biofilm is based on filaments of cyanobacteria, which are intertwined like felt; there are also dense fascicles of rope-like twisted filaments that impart heterogeneity to the surface of the biofilm. Genome sequencing, intergenomic comparisons and phylogenetic analyses indicated that Tychonema sp. BBK16 represent a new species related to planktic cyanobacterium Tychonema bourrellyi, isolated from Alpine lentic freshwater. Genome investigation revealed the genes possibly responsible for the mixotrophic lifestyle. The presence of CRISPR-Cas and restriction modification defence mechanisms allowed to suggest the existence of phages infecting Tychonema sp. BBK16. Analysis of CRISPR spacers and prophage-derived regions allowed to suggest related cyanophages. Genomic analysis supported the assumption that mobile elements and horizontal transfer participate in shaping the Tychonema sp. BBK16 genome. The findings of the current research suggest that the aptitude of Tychonema sp. BBK16 for biofilm formation and, possibly, its mixotrophic lifestyle provide adaptation advantages that lead to the successful expansion of this cyanobacterium in the Baikal's conditions of freshwater lake environments.
Collapse
Affiliation(s)
- Peter Evseev
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, Moscow 117997, Russia
| | - Irina Tikhonova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Andrei Krasnopeev
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Ekaterina Sorokovikova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Anna Gladkikh
- Saint-Petersburg Pasteur Institute, 14 Mira Str., Saint-Petersburg 197101, Russia
| | - Oleg Timoshkin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, Moscow 117997, Russia
| | - Olga Belykh
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| |
Collapse
|
6
|
van der Gulik PT, Egas M, Kraaijeveld K, Dombrowski N, Groot AT, Spang A, Hoff WD, Gallie J. On distinguishing between canonical tRNA genes and tRNA gene fragments in prokaryotes. RNA Biol 2023; 20:48-58. [PMID: 36727270 PMCID: PMC9897764 DOI: 10.1080/15476286.2023.2172370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.
Collapse
Affiliation(s)
- Peter T.S. van der Gulik
- Department of Algorithms and Complexity, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands,CONTACT Peter T.S. van der Gulik Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Astrid T. Groot
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Spang
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA,Wouter Hoff
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany,Jenna Gallie
| |
Collapse
|
7
|
Ngo VQH, Enault F, Midoux C, Mariadassou M, Chapleur O, Mazéas L, Loux V, Bouchez T, Krupovic M, Bize A. Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics. Environ Microbiol 2022; 24:4853-4868. [PMID: 35848130 PMCID: PMC9796341 DOI: 10.1111/1462-2920.16120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 01/01/2023]
Abstract
Diversity of viruses infecting non-extremophilic archaea has been grossly understudied. This is particularly the case for viruses infecting methanogenic archaea, key players in the global carbon biogeochemical cycle. Only a dozen of methanogenic archaeal viruses have been isolated so far. In the present study, we implemented an original coupling between stable isotope probing and complementary shotgun metagenomic analyses to identify viruses of methanogens involved in the bioconversion of formate, which was used as the sole carbon source in batch anaerobic digestion microcosms. Under our experimental conditions, the microcosms were dominated by methanogens belonging to the order Methanobacteriales (Methanobacterium and Methanobrevibacter genera). Metagenomic analyses yielded several previously uncharacterized viral genomes, including a complete genome of a head-tailed virus (class Caudoviricetes, proposed family Speroviridae, Methanobacterium host) and several near-complete genomes of spindle-shaped viruses. The two groups of viruses are predicted to infect methanogens of the Methanobacterium and Methanosarcina genera and represent two new virus families. The metagenomics results are in good agreement with the electron microscopy observations, which revealed the dominance of head-tailed virus-like particles and the presence of spindle-shaped particles. The present study significantly expands the knowledge on the viral diversity of viruses of methanogens.
Collapse
Affiliation(s)
- Vuong Quoc Hoang Ngo
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGEClermont‐FerrandFrance
| | - Cédric Midoux
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
- Université Paris‐Saclay, INRAE, MaIAGEJouy‐en‐JosasFrance
- Université Paris‐Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics FacilityJouy‐en‐JosasFrance
| | - Mahendra Mariadassou
- Université Paris‐Saclay, INRAE, MaIAGEJouy‐en‐JosasFrance
- Université Paris‐Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics FacilityJouy‐en‐JosasFrance
| | - Olivier Chapleur
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - Laurent Mazéas
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - Valentin Loux
- Université Paris‐Saclay, INRAE, MaIAGEJouy‐en‐JosasFrance
- Université Paris‐Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics FacilityJouy‐en‐JosasFrance
| | - Théodore Bouchez
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, CNRS UMR6047, Archaeal Virology UnitParisFrance
| | - Ariane Bize
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| |
Collapse
|
8
|
Prajapati A, Yogisharadhya R, Mohanty NN, Mendem SK, Nizamuddin A, Chanda MM, Shivachandra SB. Whole-genome sequence analysis of Clostridium chauvoei isolated from clinical case of black quarter (BQ) from India. Arch Microbiol 2022; 204:328. [PMID: 35576020 DOI: 10.1007/s00203-022-02924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
Black quarter (BQ) is an infectious disease affecting cattle and small ruminants worldwide caused by Gram-positive anaerobic bacterium Clostridium chauvoei. In this study, a draft genome sequence of C. chauvoei NIVEDIBQ1 strain isolated from clinical case of black quarter was analyzed. Sequence analysis indicated that genome had 2653 predicted coding DNA sequences, harbored numerous genes, mobile genetic elements for pathogenesis, and virulence factors. Computational analysis revealed that strain contained 30 virulence-associated genes. An intact genomic region highly similar to the Clostridium phage was present in the genome. Presence of CRISPR systems and the transposon components likely contribute to the genome plasticity. Strain encode diverse spectrum of degradative carbohydrate-active enzymes (CAZymes). Comparative SNP analysis revealed that the genomes of the C. chauvoei strains analyzed were highly conserved. Phylogenetic analysis of strains and available genome (n = 21) based on whole-genome multi-locus sequence typing (wgMLST) and core orthologous genes showed the clustering of strains into two different clusters suggesting geographical links.
Collapse
Affiliation(s)
- Awadhesh Prajapati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Revanaiah Yogisharadhya
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Nihar Nalini Mohanty
- CCS-National Institute of Animal Health (NIAH), Baghpat, Uttar Pradesh, 250609, India
| | - Suresh Kumar Mendem
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Azharuddin Nizamuddin
- Department of Animal Husbandry and Veterinary Services, State Semen Collection Centre, Hessarghatta, Bengaluru, Karnataka, 560089, India
| | - Mohammed Mudassar Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Sathish Bhadravati Shivachandra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India.
| |
Collapse
|
9
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2022; 50:4315-4328. [PMID: 34606604 DOI: 10.1093/nar/gkab859/40506127/gkab859.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 05/27/2023] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Buckley D, Odamaki T, Xiao J, Mahony J, van Sinderen D, Bottacini F. Diversity of Human-Associated Bifidobacterial Prophage Sequences. Microorganisms 2021; 9:microorganisms9122559. [PMID: 34946160 PMCID: PMC8705816 DOI: 10.3390/microorganisms9122559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Members of Bifidobacterium play an important role in the development of the immature gut and are associated with positive long-term health outcomes for their human host. It has previously been shown that intestinal bacteriophages are detected within hours of birth, and that induced prophages constitute a significant source of such gut phages. The gut phageome can be vertically transmitted from mother to newborn and is believed to exert considerable selective pressure on target prokaryotic hosts affecting abundance levels, microbiota composition, and host characteristics. The objective of the current study was to investigate prophage-like elements and predicted CRISPR-Cas viral immune systems present in publicly available, human-associated Bifidobacterium genomes. Analysis of 585 fully sequenced bifidobacterial genomes identified 480 prophage-like elements with an occurrence of 0.82 prophages per genome. Interestingly, we also detected the presence of very similar bifidobacterial prophages and corresponding CRISPR spacers across different strains and species, thus providing an initial exploration of the human-associated bifidobacterial phageome. Our analyses show that closely related and likely functional prophages are commonly present across four different species of human-associated Bifidobacterium. Further comparative analysis of the CRISPR-Cas spacer arrays against the predicted prophages provided evidence of historical interactions between prophages and different strains at an intra- and inter-species level. Clear evidence of CRISPR-Cas acquired immunity against infection by bifidobacterial prophages across several bifidobacterial strains and species was obtained. Notably, a spacer representing a putative major capsid head protein was found on different genomes representing multiple strains across B. adolescentis, B. breve, and B. bifidum, suggesting that this gene is a preferred target to provide bifidobacterial phage immunity.
Collapse
Affiliation(s)
- Darren Buckley
- INFANT Research Centre, University College Cork, Cork, Ireland;
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (T.O.); (J.X.)
| | - Jinzhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (T.O.); (J.X.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
- Correspondence: (D.v.S.); (F.B.)
| | - Francesca Bottacini
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
- Biological Sciences, Munster Technological University, Cork, Ireland
- Correspondence: (D.v.S.); (F.B.)
| |
Collapse
|
11
|
Kong H, Ju E, Yi K, Xu W, Lao Y, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102051. [PMID: 34665528 PMCID: PMC8693080 DOI: 10.1002/advs.202102051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia University3960 Broadway Lasker Room 450New YorkNY10032USA
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen University135 Xingangxi RoadGuangzhou510275P. R. China
| | - Qi Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
12
|
Bhattarai B, Bhattacharjee AS, Coutinho FH, Goel RK. Viruses and Their Interactions With Bacteria and Archaea of Hypersaline Great Salt Lake. Front Microbiol 2021; 12:701414. [PMID: 34650523 PMCID: PMC8506154 DOI: 10.3389/fmicb.2021.701414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023] Open
Abstract
Viruses play vital biogeochemical and ecological roles by (a) expressing auxiliary metabolic genes during infection, (b) enhancing the lateral transfer of host genes, and (c) inducing host mortality. Even in harsh and extreme environments, viruses are major players in carbon and nutrient recycling from organic matter. However, there is much that we do not yet understand about viruses and the processes mediated by them in the extreme environments such as hypersaline habitats. The Great Salt Lake (GSL) in Utah, United States is a hypersaline ecosystem where the biogeochemical role of viruses is poorly understood. This study elucidates the diversity of viruses and describes virus–host interactions in GSL sediments along a salinity gradient. The GSL sediment virosphere consisted of Haloviruses (32.07 ± 19.33%) and members of families Siphoviridae (39.12 ± 19.8%), Myoviridae (13.7 ± 6.6%), and Podoviridae (5.43 ± 0.64%). Our results demonstrate that salinity alongside the concentration of organic carbon and inorganic nutrients (nitrogen and phosphorus) governs the viral, bacteria, and archaeal diversity in this habitat. Computational host predictions for the GSL viruses revealed a wide host range with a dominance of viruses that infect Proteobacteria, Actinobacteria, and Firmicutes. Identification of auxiliary metabolic genes for photosynthesis (psbA), carbon fixation (rbcL, cbbL), formaldehyde assimilation (SHMT), and nitric oxide reduction (NorQ) shed light on the roles played by GSL viruses in biogeochemical cycles of global relevance.
Collapse
Affiliation(s)
- Bishav Bhattarai
- Department of Civil and Environmental Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Ananda S Bhattacharjee
- Carl R. Woese Institute for Genomic Biology, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Felipe H Coutinho
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Ramesh K Goel
- Department of Civil and Environmental Engineering, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2021; 50:4315-4328. [PMID: 34606604 PMCID: PMC9071438 DOI: 10.1093/nar/gkab859] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Characterization and Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in Pandemic and Non-Pandemic Vibrio parahaemolyticus Isolates from Seafood Sources. Microorganisms 2021; 9:microorganisms9061220. [PMID: 34199972 PMCID: PMC8226915 DOI: 10.3390/microorganisms9061220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Vibrio parahaemolyticus is one of the significant seafood-borne pathogens causing gastroenteritis in humans. Clustered regularly interspaced short palindromic repeats (CRISPR) are commonly detected in the genomes of V. parahaemolyticus and the polymorphism of CRISPR patterns has been applied as a genetic marker for tracking its evolution. In this work, a total of 15 pandemic and 36 non-pandemic V. parahaemolyticus isolates obtained from seafood between 2000 and 2012 were characterized based on hemolytic activity, antimicrobial susceptibility, and CRISPR elements. The results showed that 15/17 of the V. parahaemolyticus seafood isolates carrying the thermostable direct hemolysin gene (tdh+) were Kanagawa phenomenon (KP) positive. The Multiple Antibiotic Resistance (MAR) index ranged between 0.1 and 0.4, and 45% of the isolates have an MAR index ≥ 0.2. A total of 19 isolates were positive for CRISPR detection, including all tdh+ trh− isolates, two of tdh− trh+, and each of tdh+ trh+ and tdh− trh−. Four spacer types (Sp1 to Sp4) were identified, and CRISPR-positive isolates had at least one type of spacer homolog to the region of Vibrio alginolyticus megaplasmid. It is of interest that a specific CRISPR profile and spacer sequence type was observed with correlations to the hemolysin genotype (tdh/trh). Thus, these provide essential data on the exposure of foreign genetic elements and indicate shared ancestry within different genotypes of V. parahaemolyticus isolates.
Collapse
|
15
|
Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents. ISME JOURNAL 2020; 15:1271-1286. [PMID: 33328652 PMCID: PMC8114936 DOI: 10.1038/s41396-020-00849-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.
Collapse
|
16
|
Lenskaia T, Boley D. Prokaryote autoimmunity in the context of self-targeting by CRISPR-Cas systems. J Bioinform Comput Biol 2020; 18:2050033. [PMID: 33078994 DOI: 10.1142/s021972002050033x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prokaryote adaptive immunity (CRISPR-Cas systems) can be a threat to its carriers. We analyze the risks of autoimmune reactions related to adaptive immunity in prokaryotes by computational methods. We found important differences between bacteria and archaea with respect to autoimmunity potential. According to the results of our analysis, CRISPR-Cas systems in bacteria are more prone to self-targeting even though they possess fewer spacers per organism on average than archaea. The results of our study provide opportunities to use self-targeting in prokaryotes for biological and medical applications.
Collapse
Affiliation(s)
- Tatiana Lenskaia
- Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street SE, Minneapolis, Minnesota 55455, USA
| | - Daniel Boley
- Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
17
|
Feng Y, Fan X, Zhu L, Yang X, Liu Y, Gao S, Jin X, Liu D, Ding J, Guo Y, Hu Y. Phylogenetic and genomic analysis reveals high genomic openness and genetic diversity of Clostridium perfringens. Microb Genom 2020; 6:mgen000441. [PMID: 32975504 PMCID: PMC7660258 DOI: 10.1099/mgen.0.000441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridium perfringens is associated with a variety of diseases in both humans and animals. Recent advances in genomic sequencing make it timely to re-visit this important pathogen. Although the genome sequence of C. perfringens was first determined in 2002, large-scale comparative genomics with isolates of different origins is still lacking. In this study, we used whole-genome sequencing of 45 C. perfringens isolates with isolation time spanning an 80-year period and performed comparative analysis of 173 genomes from worldwide strains. We also conducted phylogenetic lineage analysis and introduced an openness index (OI) to evaluate the openness of bacterial genomes. We classified all these genomes into five lineages and hypothesized that the origin of C. perfringens dates back to ~80 000 years ago. We showed that the pangenome of the 173 C. perfringens strains contained a total of 26 954 genes, while the core genome comprised 1020 genes, accounting for about a third of the genome of each isolate. We demonstrated that C. perfringens had the highest OI compared with 51 other bacterial species. Intact prophage sequences were found in nearly 70.0 % of C. perfringens genomes, while CRISPR sequences were found only in ~40.0 %. Plasmids were prevalent in C. perfringens isolates, and half of the virulence genes and antibiotic resistance genes (ARGs) identified in all the isolates could be found in plasmids. ARG-sharing network analysis showed that C. perfringens shared its 11 ARGs with 55 different bacterial species, and a high frequency of ARG transfer may have occurred between C. perfringens and species in the genera Streptococcus and Staphylococcus. Correlation analysis showed that the ARG number in C. perfringens strains increased with time, while the virulence gene number was relative stable. Our results, taken together with previous studies, revealed the high genome openness and genetic diversity of C. perfringens and provide a comprehensive view of the phylogeny, genomic features, virulence gene and ARG profiles of worldwide strains.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xuezheng Fan
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | | | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jiabo Ding
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
18
|
Kim M, Cha IT, Lee KE, Lee EY, Park SJ. Genomics Reveals the Metabolic Potential and Functions in the Redistribution of Dissolved Organic Matter in Marine Environments of the Genus Thalassotalea. Microorganisms 2020; 8:microorganisms8091412. [PMID: 32937826 PMCID: PMC7564069 DOI: 10.3390/microorganisms8091412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Members of the bacterial genus Thalassotalea have been isolated recently from various marine environments, including marine invertebrates. A metagenomic study of the Deepwater Horizon oil plume has identified genes involved in aromatic hydrocarbon degradation in the Thalassotalea genome, shedding light on its potential role in the degradation of crude oils. However, the genomic traits of the genus are not well-characterized, despite the ability of the species to degrade complex natural compounds, such as agar, gelatin, chitin, or starch. Here, we obtained a complete genome of a new member of the genus, designated PS06, isolated from marine sediments containing dead marine benthic macroalgae. Unexpectedly, strain PS06 was unable to grow using most carbohydrates as sole carbon sources, which is consistent with the finding of few ABC transporters in the PS06 genome. A comparative analysis of 12 Thalassotalea genomes provided insights into their metabolic potential (e.g., microaerobic respiration and carbohydrate utilization) and evolutionary stability [including a low abundance of clustered regularly interspaced short palindromic repeats (CRISPR) loci and prophages]. The diversity and frequency of genes encoding extracellular enzymes for carbohydrate metabolism in the 12 genomes suggest that members of Thalassotalea contribute to nutrient cycling by the redistribution of dissolved organic matter in marine environments. Our study improves our understanding of the ecological and genomic properties of the genus Thalassotalea.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea;
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (I.-T.C.); (K.-E.L.)
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (I.-T.C.); (K.-E.L.)
| | - Eun-Young Lee
- Exhibition & Education Division, National Institute of Biological Resources, Incheon 22689, Korea;
| | - Soo-Je Park
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-64-753-3524; Fax: +82-64-756-3541
| |
Collapse
|
19
|
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000-2012. [PMID: 31879772 PMCID: PMC7038947 DOI: 10.1093/nar/gkz1197] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Lennart Randau
- Philipps-Universität Marburg, Faculty of Biology, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| |
Collapse
|
20
|
Chopyk J, Nasko DJ, Allard S, Bui A, Treangen T, Pop M, Mongodin EF, Sapkota AR. Comparative metagenomic analysis of microbial taxonomic and functional variations in untreated surface and reclaimed waters used in irrigation applications. WATER RESEARCH 2020; 169:115250. [PMID: 31726395 DOI: 10.1016/j.watres.2019.115250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 05/08/2023]
Abstract
The use of irrigation water sourced from reclamation facilities and untreated surface water bodies may be a practical solution to attenuate the burden on diminishing groundwater aquifers. However, comprehensive microbial characterizations of these water sources are generally lacking, especially with regard to variations through time and across multiple water types. To address this knowledge gap we used a shotgun metagenomic approach to characterize the taxonomic and functional variations of microbial communities within two agricultural ponds, two freshwater creeks, two brackish rivers, and three water reclamation facilities located in the Mid-Atlantic, United States. Water samples (n = 24) were collected from all sites between October and November 2016, and filtered onto 0.2 μm membrane filters. Filters were then subjected to total DNA extraction and shotgun sequencing on the Illumina HiSeq platform. From these data, we found that Betaproteobacteria dominated the majority of freshwater sites, while Alphaproteobacteria were abundant at times in the brackish waters. One of these brackish sites was also host to a greater abundance of the bacterial genera Gimesia and Microcystis. Furthermore, predicted microbial features (e.g. antibiotic resistance genes (ARGs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays) varied based on specific site and sampling date. ARGs were found across samples, with the diversity and abundance highest in those from a reclamation facility and a wastewater-impacted freshwater creek. Additionally, we identified over 600 CRISPR arrays, containing ∼2600 unique spacers, suggestive of a diverse and often site-specific phage community. Overall, these results provide a better understanding of the complex microbial community in untreated surface and reclaimed waters, while highlighting possible environmental and human health impacts associated with their use in agriculture.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
21
|
A phylogenetic test of the role of CRISPR-Cas in limiting plasmid acquisition and prophage integration in bacteria. Plasmid 2019; 104:102418. [PMID: 31195029 DOI: 10.1016/j.plasmid.2019.102418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas is a prokaryotic defense system capable of protecting the cell from damaging foreign genetic elements. However, some genetic elements can be beneficial, which suggests the hypothesis that bacteria with CRISPR-Cas incur a cost of reduced intake of mutualistic plasmids and prophage. Here we present the first robust test of this hypothesis that controls for phylogenic and ecological biases in the distribution of CRISPR-Cas. We filtered the available genomic data (~7000 strains from ~2100 species) by first selecting all pairs of conspecific strains, one with and one without CRISPR-Cas (controlling ecological bias), and second by retaining only one such pair per bacterial family (controlling phylogenetic bias), resulting in pairs representing 38 bacterial families. Analysis of these pairs of bacterial strains showed that on average the CRISPR-Cas strain of each pair contained significantly fewer plasmids than its CRISPR-Cas negative partner (0.86 vs. 1.86). It also showed that the CRISPR-Cas positive strains had 31% fewer intact prophage (1.17 vs. 1.75), but the effect was highly variable and not significant. These results support the hypothesis that CRISPR-Cas reduces the rate of plasmid-mediated HGT and, given the abundant evidence of beneficial genes carried by plasmids, provide a clear example of a cost associated with the CRISPR-Cas system.
Collapse
|