1
|
Mathur S, Kaushik S, Kothari SL, Srivastava VK. Role of various virulence factors involved in the pathogenesis of Entamoeba histolytica. Exp Parasitol 2024; 266:108841. [PMID: 39362393 DOI: 10.1016/j.exppara.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Developing countries continuously face challenges to get rid of amoebiasis, a protozoan disease caused by Entamoeba histolytica. Every year around 900 million people get affected by amoebiasis, among them only 10 % of people show the symptoms of the disease while 90 % of people do not show any symptoms but still, serve as carriers of the disease. Asymptomatic persons carry cysts of Entamoeba in their fecal matter, which is carried by house flies to contaminate the food and water. Entamoeba histolytica is a very successful pathogen because it has very well-developed virulence factors that function in infection to host as well as in overcoming the host's immune response. However, researchers have very little information about the clear relationship between virulence factors and the virulence of Entamoeba histolytica, through various research, researchers have been able to identify key pathogenic factors that are crucial to the pathogenesis of amoebiasis and have provided valuable insights into the development of the disease. The objective of this review is to underscore various virulence factors (Monosaccharides, Gal/GalNAc lectin, extracellular vesicles, cysteine proteases, amoeba-pores, and actin microfilament) involved in pathogenesis which may be helpful for designing of future drug or therapy.
Collapse
Affiliation(s)
- Shubham Mathur
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | | |
Collapse
|
2
|
Mi-ichi F, Tsugawa H, Vo TK, Kurizaki Y, Yoshida H, Arita M. Characterization of Entamoeba fatty acid elongases; validation as targets and provision of promising leads for new drugs against amebiasis. PLoS Pathog 2024; 20:e1012435. [PMID: 39172749 PMCID: PMC11340893 DOI: 10.1371/journal.ppat.1012435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Entamoeba histolytica is a protozoan parasite belonging to the phylum Amoebozoa that causes amebiasis, a global public health problem. E. histolytica alternates its form between a proliferative trophozoite and a dormant cyst. Trophozoite proliferation is closely associated with amebiasis symptoms and pathogenesis whereas cysts transmit the disease. Drugs are available for clinical use; however, they have issues of adverse effects and dual targeting of disease symptoms and transmission remains to be improved. Development of new drugs is therefore urgently needed. An untargeted lipidomics analysis recently revealed structural uniqueness of the Entamoeba lipidome at different stages of the parasite's life cycle involving very long (26-30 carbons) and/or medium (8-12 carbons) acyl chains linked to glycerophospholipids and sphingolipids. Here, we investigated the physiology of this unique acyl chain diversity in Entamoeba, a non-photosynthetic protist. We characterized E. histolytica fatty acid elongases (EhFAEs), which are typically components of the fatty acid elongation cycle of photosynthetic protists and plants. An approach combining genetics and lipidomics revealed that EhFAEs are involved in the production of medium and very long acyl chains in E. histolytica. This approach also showed that the K3 group herbicides, flufenacet, cafenstrole, and fenoxasulfone, inhibited the production of very long acyl chains, thereby impairing Entamoeba trophozoite proliferation and cyst formation. Importantly, none of these three compounds showed toxicity to a human cell line; therefore, EhFAEs are reasonable targets for developing new anti-amebiasis drugs and these compounds are promising leads for such drugs. Interestingly, in the Amoebazoan lineage, gain and loss of the genes encoding two different types of fatty acid elongase have occurred during evolution, which may be relevant to parasite adaptation. Acyl chain diversity in lipids is therefore a unique and indispensable feature for parasitic adaptation of Entamoeba.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tam Kha Vo
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuto Kurizaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
3
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
5
|
Köhsler M, Kniha E, Wagner A, Walochnik J. Pilot Study on the Prevalence of Entamoeba gingivalis in Austria-Detection of a New Genetic Variant. Microorganisms 2023; 11:1094. [PMID: 37317068 DOI: 10.3390/microorganisms11051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 06/16/2023] Open
Abstract
Entamoeba gingivalis is a parasitic protist that resides in the oral cavity. Although E. gingivalis has been frequently detected in individuals with periodontitis, its precise role in this context remains to be established, since E. gingivalis is also regularly found in healthy individuals. Sequence data on E. gingivalis are still scarce, with only a limited number of sequences available in public databases. In this study, a diagnostic PCR protocol was established in order to obtain a first impression on the prevalence of E. gingivalis in Austria and enable a differentiation of isolates by targeting the variable internal transcribed spacer regions. In total, 59 voluntary participants were screened for E. gingivalis and almost 50% of the participants were positive, with a significantly higher prevalence of participants with self-reported gingivitis. Moreover, in addition to the established subtypes ST1 and ST2, a potentially new subtype was found, designated ST3. 18S DNA sequencing and phylogenetic analyses clearly supported a separate position of ST3. Interestingly, subtype-specific PCRs revealed that, in contrast to ST2, ST3 only occurred in association with ST1. ST2 and ST1/ST3 were more often associated with gingivitis; however, more data will be necessary to corroborate this observation.
Collapse
Affiliation(s)
- Martina Köhsler
- Institute of Specific Prophylaxis und Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Edwin Kniha
- Institute of Specific Prophylaxis und Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Angelika Wagner
- Institute of Specific Prophylaxis und Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis und Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The Defensive Interactions of Prominent Infectious Protozoan Parasites: The Host's Complement System. Biomolecules 2022; 12:1564. [PMID: 36358913 PMCID: PMC9687244 DOI: 10.3390/biom12111564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2023] Open
Abstract
The complement system exerts crucial functions both in innate immune responses and adaptive humoral immunity. This pivotal system plays a major role dealing with pathogen invasions including protozoan parasites. Different pathogens including parasites have developed sophisticated strategies to defend themselves against complement killing. Some of these strategies include the employment, mimicking or inhibition of host's complement regulatory proteins, leading to complement evasion. Therefore, parasites are proven to use the manipulation of the complement system to assist them during infection and persistence. Herein, we attempt to study the interaction´s mechanisms of some prominent infectious protozoan parasites including Plasmodium, Toxoplasma, Trypanosoma, and Leishmania dealing with the complement system. Moreover, several crucial proteins that are expressed, recruited or hijacked by parasites and are involved in the modulation of the host´s complement system are selected and their role for efficient complement killing or lysis evasion is discussed. In addition, parasite's complement regulatory proteins appear as plausible therapeutic and vaccine targets in protozoan parasitic infections. Accordingly, we also suggest some perspectives and insights useful in guiding future investigations.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein 38811, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein 38811, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
7
|
Arora G, Lynn GE, Tang X, Rosen CE, Hoornstra D, Sajid A, Hovius JW, Palm NW, Ring AM, Fikrig E. CD55 Facilitates Immune Evasion by Borrelia crocidurae, an Agent of Relapsing Fever. mBio 2022; 13:e0116122. [PMID: 36036625 PMCID: PMC9600505 DOI: 10.1128/mbio.01161-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey E. Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dieuwertje Hoornstra
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joppe W. Hovius
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Pleiotropic Roles of Cholesteryl Sulfate during Entamoeba Encystation: Involvement in Cell Rounding and Development of Membrane Impermeability. mSphere 2022; 7:e0029922. [PMID: 35943216 PMCID: PMC9429911 DOI: 10.1128/msphere.00299-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica, a protozoan parasite, causes amoebiasis, which is a global public health problem. The major route of infection is oral ingestion of cysts, the only form that is able to transmit to a new host. Cysts are produced by cell differentiation from proliferative trophozoites in a process termed "encystation." During encystation, cell morphology is markedly changed; motile amoeboid cells become rounded, nonmotile cells. Concomitantly, cell components change and significant fluctuations of metabolites occur. Cholesteryl sulfate (CS) is a crucial metabolite for encystation. However, its precise role remains uncertain. To address this issue, we used in vitro culture of Entamoeba invadens as the model system for the E. histolytica encystation study and identified serum-free culture conditions with CS supplementation at concentrations similar to intracellular CS concentrations during natural encystation. Using this culture system, we show that CS exerts pleiotropic effects during Entamoeba encystation, affecting cell rounding and development of membrane impermeability. CS dose dependently induced and maintained encysting cells as spherical maturing cysts with almost no phagocytosis activity. Consequently, the percentage of mature cysts was increased. CS treatment also caused time- and dose-dependent development of membrane impermeability in encysting cells via induction of de novo synthesis of dihydroceramides containing very long N-acyl chains (≥26 carbons). These results indicate that CS-mediated morphological and physiological changes are necessary for the formation of mature cysts and the maintenance of the Entamoeba life cycle. Our findings also reveal important morphological aspects of the process of dormancy and the control of membrane structure. IMPORTANCE Entamoeba histolytica causes a parasitic infectious disease, amoebiasis. Amoebiasis is a global public health problem with a high occurrence of infection and inadequate clinical options. The parasite alternates its form between a proliferative trophozoite and a dormant cyst that enables the parasite to adapt to new environments. The transition stage in which trophozoites differentiate into cysts is termed "encystation." Cholesteryl sulfate is essential for encystation; however, its precise role remains to be determined. Here, we show that cholesteryl sulfate is a multifunctional metabolite exerting pleiotropic roles during Entamoeba encystation, including the rounding of cells and the development of membrane impermeability. Such morphological and physiological changes are required for Entamoeba to produce cysts that are transmissible to a new host, which is essential for maintenance of the Entamoeba life cycle. Our findings are therefore relevant not only to Entamoeba biology but also to general cell and lipid biology.
Collapse
|
9
|
Lee YA, Sim S, Kim KA, Shin MH. Signaling Role of NADPH Oxidases in ROS-Dependent Host Cell Death Induced by Pathogenic Entamoeba histolytica. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:155-161. [PMID: 35772733 PMCID: PMC9256287 DOI: 10.3347/kjp.2022.60.3.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
All living organisms are destined to die. Cells, the core of those living creatures, move toward the irresistible direction of death. The question of how to die is critical and is very interesting. There are various types of death in life, including natural death, accidental death, questionable death, suicide, and homicide. The mechanisms and molecules involved in cell death also differ depending on the type of death. The dysenteric amoeba, E. histolytica, designated by the German zoologist Fritz Schaudinn in 1903, has the meaning of tissue lysis; i.e., tissue destroying, in its name. It was initially thought that the amoebae lyse tissue very quickly leading to cell death called necrosis. However, advances in measuring cell death have allowed us to more clearly investigate the various forms of cell death induced by amoeba. Increasing evidence has shown that E. histolytica can cause host cell death through induction of various intracellular signaling pathways. Understanding of the mechanisms and signaling molecules involved in host cell death induced by amoeba can provide new insights on the tissue pathology and parasitism in human amoebiasis. In this review, we emphasized on the signaling role of NADPH oxidases in reactive oxygen species (ROS)-dependent cell death by pathogenic E. histolytica.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Yonsei University, Seoul 03722,
Korea
- Institue of Tropical Medicine, College of Medicine, Yonsei University, Seoul 03722,
Korea
| | - Seobo Sim
- KU Open Innovation Center, Department of Environmental and Tropical Medicine, School of Medicine, Konkuk University, Chungju 27478,
Korea
| | - Kyeong Ah Kim
- Gachon Biomedical & Convergence Institute, Gil Medical Center, Gachon University College of Medicine, Incheon 21565,
Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Yonsei University, Seoul 03722,
Korea
- Institue of Tropical Medicine, College of Medicine, Yonsei University, Seoul 03722,
Korea
- Corresponding author ()
| |
Collapse
|