1
|
McDonald MD, Owusu-Ansah C, Ellenbogen JB, Malone ZD, Ricketts MP, Frolking SE, Ernakovich JG, Ibba M, Bagby SC, Weissman JL. What is microbial dormancy? Trends Microbiol 2024; 32:142-150. [PMID: 37689487 DOI: 10.1016/j.tim.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Life can be stressful. One way to deal with stress is to simply wait it out. Microbes do this by entering a state of reduced activity and increased resistance commonly called 'dormancy'. But what is dormancy? Different scientific disciplines emphasize distinct traits and phenotypic ranges in defining dormancy for their microbial species and system-specific questions of interest. Here, we propose a unified definition of microbial dormancy, using a broad framework to place earlier discipline-specific definitions in a new context. We then discuss how this new definition and framework may improve our ability to investigate dormancy using multi-omics tools. Finally, we leverage our framework to discuss the diversity of genomic mechanisms for dormancy in an extreme environment that challenges easy definitions - the permafrost.
Collapse
Affiliation(s)
- Mark D McDonald
- Argonne National Laboratory, Environmental Sciences Division, Lemont, IL 60439, USA
| | | | - Jared B Ellenbogen
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Colorado State University, Department of Soil and Crop Sciences, Fort Collins, CO 80523, USA
| | - Zachary D Malone
- University of California, Merced Environmental Systems Graduate Group, Merced, CA 95343, USA
| | - Michael P Ricketts
- Argonne National Laboratory, Environmental Sciences Division, Lemont, IL 60439, USA
| | - Steve E Frolking
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; University of New Hampshire, Institute for the Study of Earth, Oceans, and Space, Durham, NH 03824, USA
| | - Jessica Gilman Ernakovich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; University of New Hampshire, Natural Resources and the Environment, Durham, NH 03824, USA
| | - Michael Ibba
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Chapman University, Schmid College of Science and Technology, Orange, CA 92866, USA
| | - Sarah C Bagby
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Case Western Reserve University, Department of Biology, Cleveland, OH 44106, USA
| | - J L Weissman
- Chapman University, Schmid College of Science and Technology, Orange, CA 92866, USA; University of Southern California, Department of Biological Sciences, Los Angeles, CA 90007, USA.
| |
Collapse
|
2
|
Xin Y, Wu Y, Zhang H, Li X, Qu X. Soil depth exerts a stronger impact on microbial communities and the sulfur biological cycle than salinity in salinized soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164898. [PMID: 37343848 DOI: 10.1016/j.scitotenv.2023.164898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
The distribution of microbial communities along salinity gradients in the surface layer of salinized soils has been widely studied. However, it is unknown whether microbial communities exhibit similar distribution patterns in surface and deep soils. Additionally, the relationship between soil depth, salinity, and sulfur metabolism remains unclear. Herein, bulk soils in the surface (S, 5-10 cm) and deep (D, 20-25 cm) layers from high- and low-salinity soils were analyzed using metagenomic and physicochemical analyses. Soil depth was significantly correlated to the concentration of sulfur compounds in the soil and exerted a stronger effect than salinity. Non-metric multidimensional scaling analysis revealed significant differences in microbial community structure with varying soil depths and salinities. However, soil depth clearly influenced microbial community abundance, homogeneity, and diversity, while salinity had a limited effect on microbial abundance. Archaea and bacteria were enriched in the surface and deep soils, respectively. Gene abundance analysis revealed significant differences in the abundance of sulfur-related genes at different soil depths. The abundance of sulfur oxidation genes was lower in deep soil than in surface soil, whereas the abundance of other sulfur-related genes showed the opposite trend. Redundancy analysis (RDA) showed that environmental factors and sulfur compounds have a significant impact on sulfur metabolism genes, with sulfide significantly affecting low-salinity soils in the surface and deep layers, whereas salinity and sulfane sulfur had a greater correlation with high-salinity soils. Correlation analysis further showed that Euryarchaeota clustered with Bacteroidetes and Balneolaeota, while Proteobacteria clustered with many phyla, such as Acidobacteria. Various sulfur metabolism genes were widely distributed in both clusters. Our results indicate that microorganisms actively participate in the sulfur cycle in saline soils and that soil depth can affect these processes and the structure of microbial communities to a greater extent than soil salinity.
Collapse
Affiliation(s)
- Yufeng Xin
- School of Life Sciences, Qufu Normal University, Qufu, China.
| | - Yu Wu
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Honglin Zhang
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Xinxin Li
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Xiaohua Qu
- School of Life Sciences, Qufu Normal University, Qufu, China.
| |
Collapse
|
3
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|
4
|
Frey B, Varliero G, Qi W, Stierli B, Walthert L, Brunner I. Shotgun Metagenomics of Deep Forest Soil Layers Show Evidence of Altered Microbial Genetic Potential for Biogeochemical Cycling. Front Microbiol 2022; 13:828977. [PMID: 35300488 PMCID: PMC8921678 DOI: 10.3389/fmicb.2022.828977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Soil microorganisms such as Bacteria and Archaea play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of soil metagenomes to a depth of 1.5 m in Swiss forests of European beech and oak species on calcareous bedrock. We explored the functional genetic potential of soil microorganisms with the aim to disentangle the effects of tree genus and soil depth on the genetic repertoire, and to gain insight into the microbial C and N cycling. The relative abundance of reads assigned to taxa at the domain level indicated a 5-10 times greater abundance of Archaea in the deep soil, while Bacteria showed no change with soil depth. In the deep soil there was an overrepresentation of genes for carbohydrate-active enzymes, which are involved in the catalyzation of the transfer of oligosaccharides, as well as in the binding of carbohydrates such as chitin or cellulose. In addition, N-cycling genes (NCyc) involved in the degradation and synthesis of N compounds, in nitrification and denitrification, and in nitrate reduction were overrepresented in the deep soil. Consequently, our results indicate that N-transformation in the deep soil is affected by soil depth and that N is used not only for assimilation but also for energy conservation, thus indicating conditions of low oxygen in the deep soil. Using shotgun metagenomics, our study provides initial findings on soil microorganisms and their functional genetic potential, and how this may change depending on soil properties, which shift with increasing soil depth. Thus, our data provide novel, deeper insight into the "dark matter" of the soil.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Gilda Varliero
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Centre for Microbial Ecology and Genomics, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Weihong Qi
- Functional Genomics Center Zurich (FGCZ), ETH Zürich/University of Zurich, Zurich, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Lorenz Walthert
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
5
|
Liu L, Wu W, Chen S. Species Diversity and Distribution Characteristics of Calonectria in Five Soil Layers in a Eucalyptus Plantation. J Fungi (Basel) 2021; 7:857. [PMID: 34682278 PMCID: PMC8541508 DOI: 10.3390/jof7100857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
The genus Calonectria includes pathogens of various agricultural, horticultural, and forestry crops. Species of Calonectria are commonly collected from soils, fruits, leaves, stems, and roots. Some species of Calonectria isolated from soils are considered as important plant pathogens. Understanding the species diversity and distribution characteristics of Calonectria species in different soil layers will help us to clarify their long-term potential harm to plants and their patterns of dissemination. To our knowledge, no systematic research has been conducted concerning the species diversity and distribution characteristics of Calonectria in different soil layers. In this study, 1000 soil samples were collected from five soil layers (0-20, 20-40, 40-60, 60-80, and 80-100 cm) at 100 sampling points in one 15-year-old Eucalyptus urophylla hybrid plantation in southern China. A total of 1037 isolates of Calonectria present in all five soil layers were obtained from 93 of 100 sampling points. The 1037 isolates were identified based on DNA sequence comparisons of the translation elongation factor 1-alpha (tef1), β-tubulin (tub2), calmodulin (cmdA), and histone H3 (his3) gene regions, as well as the combination of morphological characteristics. These isolates were identified as C. hongkongensis (665 isolates; 64.1%), C. aconidialis (250 isolates; 24.1%), C. kyotensis (58 isolates; 5.6%), C. ilicicola (47 isolates; 4.5%), C. chinensis (2 isolates; 0.2%), and C. orientalis (15 isolates; 1.5%). With the exception of C. orientalis, which resides in the C. brassicae species complex, the other five species belonged to the C. kyotensis species complex. The results showed that the number of sampling points that yielded Calonectria and the number (and percentage) of Calonectria isolates obtained decreased with increasing depth of the soil. More than 84% of the isolates were obtained from the 0-20 and 20-40 cm soil layers. The deeper soil layers had comparatively lower numbers but still harbored a considerable number of Calonectria. The diversity of five species in the C. kyotensis species complex decreased with increasing soil depth. The genotypes of isolates in each Calonectria species were determined by tef1 and tub2 gene sequences. For each species in the C. kyotensis species complex, in most cases, the number of genotypes decreased with increasing soil depth. The 0-20 cm soil layer contained all of the genotypes of each species. To our knowledge, this study presents the first report of C. orientalis isolated in China. This species was isolated from the 40-60 and 60-80 cm soil layers at only one sampling point, and only one genotype was present. This study has enhanced our understanding of the species diversity and distribution characteristics of Calonectria in different soil layers.
Collapse
Affiliation(s)
- LingLing Liu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China; (L.L.); (W.W.)
- Nanjing Forestry University (NJFU), Nanjing 210037, Jiangsu Province, China
| | - WenXia Wu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China; (L.L.); (W.W.)
| | - ShuaiFei Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China; (L.L.); (W.W.)
| |
Collapse
|
6
|
Montgomery K, Williams TJ, Brettle M, Berengut JF, Zhang E, Zaugg J, Hugenholtz P, Ferrari BC. Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils. Environ Microbiol 2021; 23:4276-4294. [PMID: 34029441 DOI: 10.1111/1462-2920.15610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
Candidatus Dormibacterota is an uncultured bacterial phylum found predominantly in soil that is present in high abundances within cold desert soils. Here, we interrogate nine metagenome-assembled genomes (MAGs), including six new MAGs derived from soil metagenomes obtained from two eastern Antarctic sites. Phylogenomic and taxonomic analyses revealed these MAGs represent four genera and five species, representing two order-level clades within Ca. Dormibacterota. Metabolic reconstructions of these MAGs revealed the potential for aerobic metabolism, and versatile adaptations enabling persistence in the 'extreme' Antarctic environment. Primary amongst these adaptations were abilities to scavenge atmospheric H2 and CO as energy sources, as well as using the energy derived from H2 oxidation to fix atmospheric CO2 via the Calvin-Bassham-Benson cycle, using a RuBisCO type IE. We propose that these allow Ca. Dormibacterota to persist using H2 oxidation and grow using atmospheric chemosynthesis in terrestrial Antarctica. Fluorescence in situ hybridization revealed Ca. Dormibacterota to be coccoid cells, 0.3-1.4 μm in diameter, with some cells exhibiting the potential for a symbiotic or syntrophic lifestyle.
Collapse
Affiliation(s)
- Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Merryn Brettle
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Randwick, NSW, 2052, Australia
| |
Collapse
|
7
|
Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I. Deep Soil Layers of Drought-Exposed Forests Harbor Poorly Known Bacterial and Fungal Communities. Front Microbiol 2021; 12:674160. [PMID: 34025630 PMCID: PMC8137989 DOI: 10.3389/fmicb.2021.674160] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Soil microorganisms such as bacteria and fungi play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of the soil microbiome to a depth of 2 m in Swiss drought-exposed forests of European beech and oaks on calcareous bedrock. We aimed to disentangle the effects of soil depth, tree (beech, oak), and substrate (soil, roots) on microbial abundance, diversity, and community structure. With increasing soil depth, organic carbon, nitrogen, and clay content decreased significantly. Similarly, fine root biomass, microbial biomass (DNA content, fungal abundance), and microbial alpha-diversity decreased and were consequently significantly related to these physicochemical parameters. In contrast, bacterial abundance tended to increase with soil depth, and the bacteria to fungi ratio increased significantly with greater depth. Tree species was only significantly related to the fungal Shannon index but not to the bacterial Shannon index. Microbial community analyses revealed that bacterial and fungal communities varied significantly across the soil layers, more strongly for bacteria than for fungi. Both communities were also significantly affected by tree species and substrate. In deep soil layers, poorly known bacterial taxa from Nitrospirae, Chloroflexi, Rokubacteria, Gemmatimonadetes, Firmicutes and GAL 15 were overrepresented. Furthermore, archaeal phyla such as Thaumarchaeota and Euryarchaeota were more abundant in subsoils than topsoils. Fungal taxa that were predominantly found in deep soil layers belong to the ectomycorrhizal Boletus luridus and Hydnum vesterholtii. Both taxa are reported for the first time in such deep soil layers. Saprotrophic fungal taxa predominantly recorded in deep soil layers were unknown species of Xylaria. Finally, our results show that the microbial community structure found in fine roots was well represented in the bulk soil. Overall, we recorded poorly known bacterial and archaeal phyla, as well as ectomycorrhizal fungi that were not previously known to colonize deep soil layers. Our study contributes to an integrated perspective on the vertical distribution of the soil microbiome at a fine spatial scale in drought-exposed forests.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lorenz Walthert
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roger Köchli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alexander Dharmarajah
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
8
|
Rainfall Alters Permafrost Soil Redox Conditions, but Meta-Omics Show Divergent Microbial Community Responses by Tundra Type in the Arctic. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils, particularly when soils are saturated, and supports anaerobic microbial metabolism and methane (CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall-induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4 production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil O2 concentration, but in tussock tundra there was a 2.5-fold greater increase in soil O2 compared to wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular growth. In contrast, the wet sedge tundra community showed no significant changes in microbial gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall, despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not accumulate or remain in wet sedge tundra soils long enough to induce a community-wide shift from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that promote CH4 production in low-lying wet sedge tundra soils across the Arctic.
Collapse
|