1
|
Dorbani I, Berberian A, Riedel C, Duport C, Carlin F. Comparing resistance of bacterial spores and fungal conidia to pulsed light and UVC radiation at a wavelength of 254 nm. Food Microbiol 2024; 121:104518. [PMID: 38637080 DOI: 10.1016/j.fm.2024.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Pulsed light (PL) inactivates microorganisms by UV-rich, high-irradiance and short time pulses (250 μs) of white light with wavelengths from 200 nm to 1100 nm. PL is applied for disinfection of food packaging material and food-contact equipment. Spores of seven Bacillus ssp. strains and one Geobacillus stearothermophilus strain and conidia of filamentous fungi (One strain of Aspergillus brasiliensis, A. carbonarius and Penicillium rubens) were submitted to PL (fluence from 0.23 J/cm2 to 4.0 J/cm2) and UVC (at λ = 254 nm; fluence from 0.01 J/cm2 to 3.0 J/cm2). One PL flash at 3 J/cm2 allowed at least 3 log-reduction of all tested microorganisms. The emetic B. cereus strain F4810/72 was the most resistant of the tested spore-forming bacteria. The PL fluence to 3 log-reduction (F3 PL) of its spores suspended in water was 2.9 J/cm2 and F3 UVC was 0.21 J/cm2, higher than F3 PL and F3 UVC of spores of B. pumilus SAFR-032 2.0 J/cm2 and 0.15 J/cm2, respectively), yet reported as a highly UV-resistant spore-forming bacterium. PL and UVC sensitivity of bacterial spores was correlated. Aspergillus spp. conidia suspended in water were poorly sensitive to PL. In contrast, PL inactivated Aspergillus spp. conidia spread on a dry surface more efficiently than UVC. The F2 PL of A. brasiliensis DSM1988 was 0.39 J/cm2 and F2 UVC was 0.83 J/cm2. The resistance of spore-forming bacteria to PL could be reasonably predicted from the knowledge of their UVC resistance. In contrast, the sensitivity of fungal conidia to PL must be specifically explored.
Collapse
Affiliation(s)
- Imed Dorbani
- INRAE, Avignon Université, UMR SQPOV, Avignon, France; Claranor, 862 Rue André-Jean Boudoy, 84140, Avignon, France
| | | | | | | | | |
Collapse
|
2
|
Seo HW, Wassano NS, Amir Rawa MS, Nickles GR, Damasio A, Keller NP. A Timeline of Biosynthetic Gene Cluster Discovery in Aspergillus fumigatus: From Characterization to Future Perspectives. J Fungi (Basel) 2024; 10:266. [PMID: 38667937 PMCID: PMC11051388 DOI: 10.3390/jof10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34-36 BGCs. However, an examination of 264 available genomes of A. fumigatus shows up to 20 additional BGCs, with some strains showing considerable variations in BGC number and composition. These new BGCs present a new frontier in the future of secondary metabolism characterization in this important species.
Collapse
Affiliation(s)
- Hye-Won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Natalia S. Wassano
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Mira Syahfriena Amir Rawa
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
3
|
Zhou S, Ismail MAI, Aimanianda V, de Hoog GS, Kang Y, Ahmed SA. Aflatoxin profiles of Aspergillus flavus isolates in Sudanese fungal rhinosinusitis. Med Mycol 2024; 62:myae034. [PMID: 38578660 PMCID: PMC11040519 DOI: 10.1093/mmy/myae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Aspergillus flavus is a commonly encountered pathogen responsible for fungal rhinosinusitis (FRS) in arid regions. The species is known to produce aflatoxins, posing a significant risk to human health. This study aimed to investigate the aflatoxin profiles of A. flavus isolates causing FRS in Sudan. A total of 93 clinical and 34 environmental A. flavus isolates were studied. Aflatoxin profiles were evaluated by phenotypic (thin-layer and high-performance chromatography) and genotypic methods at various temperatures and substrates. Gene expression of aflD and aflR was also analyzed. A total of 42/93 (45%) isolates were positive for aflatoxin B1 and AFB2 by HPLC. When the incubation temperature changed from 28°C to 36°C, the number of positive isolates decreased to 41% (38/93). Genetic analysis revealed that 85% (79/93) of clinical isolates possessed all seven aflatoxin biosynthesis-associated genes, while 27% (14/51) of non-producing isolates lacked specific genes (aflD/aflR/aflS). Mutations were observed in aflS and aflR genes across both aflatoxin-producers and non-producers. Gene expression of aflD and aflR showed the highest expression between the 4th and 6th days of incubation on the Sabouraud medium and on the 9th day of incubation on the RPMI (Roswell Park Memorial Institute) medium. Aspergillus flavus clinical isolates demonstrated aflatoxigenic capabilities, influenced by incubation temperature and substrate. Dynamic aflD and aflR gene expression patterns over time enriched our understanding of aflatoxin production regulation. The overall findings underscored the health risks of Sudanese patients infected by this species, emphasizing the importance of monitoring aflatoxin exposure.
Collapse
Affiliation(s)
- Shaoqin Zhou
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, 561113, Guiyang, China
- Radboudumc-CWZ Centre of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
| | - Mawahib A I Ismail
- Mycology Reference Laboratory, University of Khartoum, 11115, Khartoum, Sudan
| | - Vishukumar Aimanianda
- Immunobiology of Aspergillus, Institut Pasteur, Universite ´ Paris Cite ´ 75015, Paris, France
| | - G Sybren de Hoog
- Radboudumc-CWZ Centre of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214 GP, Hilversum, The Netherlands
| | - Yingqian Kang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, 561113, Guiyang, China
| | - Sarah A Ahmed
- Radboudumc-CWZ Centre of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214 GP, Hilversum, The Netherlands
| |
Collapse
|
4
|
Alves de Castro P, Figueiredo Pinzan C, Dos Reis TF, Valero C, Van Rhijn N, Menegatti C, de Freitas Migliorini IL, Bromley M, Fleming AB, Traynor AM, Sarikaya-Bayram Ö, Bayram Ö, Malavazi I, Ebel F, Barbosa JCJ, Fill T, Pupo MT, Goldman GH. Aspergillus fumigatus mitogen-activated protein kinase MpkA is involved in gliotoxin production and self-protection. Nat Commun 2024; 15:33. [PMID: 38167253 PMCID: PMC10762094 DOI: 10.1038/s41467-023-44329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carla Menegatti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Medizinische Fakultät, LMU, 80539, München, Germany
| | | | - Taícia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Monica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
6
|
Yang X, Chen Y, Zhang L, He J, Wu Q, Li S, Wang D, Gou J, Wu Z, Zhang K, Li S, Niu X. Melanin precursors mediated adaption to temperature changes in fungus and animal via inhibition of lipid-mediated ferroptosis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1800-1817. [PMID: 36949229 DOI: 10.1007/s11427-022-2265-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 03/24/2023]
Abstract
The discovery of biological activities of natural products plays a vital part in drug development. The mechanism by which organisms respond to temperature changes via biosynthesis of natural products remained largely cryptic. A thermophilic fungus under cold stress turned black and accumulated a polyketide metabolite 1 and lipid mass. Deficiency in 1 caused melanin loss and accumulated extra lipid mass, unexpectedly leading to seriously damaged mitochondria diagnostic for ferroptosis. Further analysis revealed that lipid mass induced by cold stress intensively increased ferroptosis risk and 1 functioned as cell wall reinforcer against mass lipid accumulation and as reactive oxygen species scavenger against lipid peroxidation. We also found that melanin in mice lowered lipid level but enhanced animal resistance to cold stress. Treatment with melanin precursors significantly increased mouse cell survival rate under cold stress. Our results unveiled a metabolite-lipid-ferroptosis-cold relationship, which provided mechanistic insights into the functions of most common metabolites and into diseases related to cold stress. These findings opened a perspective for developing anti-cold and anti-ferroptosis therapeutics and agents.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Jiangbo He
- Kunming Key Laboratory of Respiratory Disease, Kunming University, Kunming, 650214, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Shuhong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Donglou Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Jianghui Gou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Zhuang Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China
| | - Shenghong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, China.
| |
Collapse
|
7
|
Verde-Yáñez L, Usall J, Teixidó N, Vall-Llaura N, Torres R. Deciphering the Effect of Light Wavelengths in Monilinia spp. DHN-Melanin Production and Their Interplay with ROS Metabolism in M. fructicola. J Fungi (Basel) 2023; 9:653. [PMID: 37367589 DOI: 10.3390/jof9060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Pathogenic fungi are influenced by many biotic and abiotic factors. Among them, light is a source of information for fungi and also a stress factor that triggers multiple biological responses, including the activation of secondary metabolites, such as the production of melanin pigments. In this study, we analyzed the melanin-like production in in vitro conditions, as well as the expression of all biosynthetic and regulatory genes of the DHN-melanin pathway in the three main Monilinia species upon exposure to light conditions (white, black, blue, red, and far-red wavelengths). On the other hand, we analyzed, for the first time, the metabolism related to ROS in M. fructicola, through the production of hydrogen peroxide (H2O2) and the expression of stress-related genes under different light conditions. In general, the results indicated a clear importance of black light on melanin production and expression in M. laxa and M. fructicola, but not in M. fructigena. Regarding ROS-related metabolism in M. fructicola, blue light highlighted by inhibiting the expression of many antioxidant genes. Overall, it represents a global description of the effect of light on the regulation of two important secondary mechanisms, essential for the adaptation of the fungus to the environment and its survival.
Collapse
Affiliation(s)
- Lucía Verde-Yáñez
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - Josep Usall
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain
| |
Collapse
|
8
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Description and Genome Characterization of Three Novel Fungal Strains Isolated from Mars 2020 Mission-Associated Spacecraft Assembly Facility Surfaces-Recommendations for Two New Genera and One Species. J Fungi (Basel) 2022; 9:jof9010031. [PMID: 36675851 PMCID: PMC9864340 DOI: 10.3390/jof9010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
National Aeronautics and Space Administration’s (NASA) spacecraft assembly facilities are monitored for the presence of any bacteria or fungi that might conceivably survive a transfer to an extraterrestrial environment. Fungi present a broad and diverse range of phenotypic and functional traits to adapt to extreme conditions, hence the detection of fungi and subsequent eradication of them are needed to prevent forward contamination for future NASA missions. During the construction and assembly for the Mars 2020 mission, three fungal strains with unique morphological and phylogenetic properties were isolated from spacecraft assembly facilities. The reconstruction of phylogenetic trees based on several gene loci (ITS, LSU, SSU, RPB, TUB, TEF1) using multi-locus sequence typing (MLST) and whole genome sequencing (WGS) analyses supported the hypothesis that these were novel species. Here we report the genus or species-level classification of these three novel strains via a polyphasic approach using phylogenetic analysis, colony and cell morphology, and comparative analysis of WGS. The strain FJI-L9-BK-P1 isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) exhibited a putative phylogenetic relationship with the strain Aaosphaeria arxii CBS175.79 but showed distinct morphology and microscopic features. Another JPL-SAF strain, FJII-L3-CM-DR1, was phylogenetically distinct from members of the family Trichomeriaceae and exhibited morphologically different features from the genera Lithohypha and Strelitziana. The strain FKI-L1-BK-DR1 isolated from the Kennedy Space Center facility was identified as a member of Dothideomycetes incertae sedis and is closely related to the family Kirschsteiniotheliaceae according to a phylogenetic analysis. The polyphasic taxonomic approach supported the recommendation for establishing two novel genera and one novel species. The names Aaosphaeria pasadenensis (FJI-L9-BK-P1 = NRRL 64424 = DSM 114621), Pasadenomyces melaninifex (FJII-L3-CM-DR1 = NRRL 64433 = DSM 114623), and Floridaphiala radiotolerans (FKI-L1-BK-DR1 = NRRL 64434 = DSM 114624) are proposed as type species. Furthermore, resistance to ultraviolet-C and presence of specific biosynthetic gene cluster(s) coding for metabolically active compounds are unique to these strains.
Collapse
|
10
|
Cho HJ, Son SH, Chen W, Son YE, Lee I, Yu JH, Park HS. Regulation of Conidiogenesis in Aspergillus flavus. Cells 2022; 11:cells11182796. [PMID: 36139369 PMCID: PMC9497164 DOI: 10.3390/cells11182796] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is a representative fungal species in the Aspergillus section Flavi and has been used as a model system to gain insights into fungal development and toxin production. A. flavus has several adverse effects on humans, including the production of the most carcinogenic mycotoxin aflatoxins and causing aspergillosis in immune-compromised patients. In addition, A. flavus infection of crops results in economic losses due to yield loss and aflatoxin contamination. A. flavus is a saprophytic fungus that disperses in the ecosystem mainly by producing asexual spores (conidia), which also provide long-term survival in the harsh environmental conditions. Conidia are composed of the rodlet layer, cell wall, and melanin and are produced from an asexual specialized structure called the conidiophore. The production of conidiophores is tightly regulated by various regulators, including the central regulatory cascade composed of BrlA-AbaA-WetA, the fungi-specific velvet regulators, upstream regulators, and developmental repressors. In this review, we summarize the findings of a series of recent studies related to asexual development in A. flavus and provide insights for a better understanding of other fungal species in the section Flavi.
Collapse
Affiliation(s)
- He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Inhyung Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5751
| |
Collapse
|
11
|
Won TH, Bok JW, Nadig N, Venkatesh N, Nickles G, Greco C, Lim FY, González JB, Turgeon BG, Keller NP, Schroeder FC. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi. Nat Commun 2022; 13:4828. [PMID: 35973982 PMCID: PMC9381783 DOI: 10.1038/s41467-022-32394-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 01/26/2023] Open
Abstract
The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.
Collapse
Affiliation(s)
- Tae Hyung Won
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nischala Nadig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nandhitha Venkatesh
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Grant Nickles
- Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jennifer B González
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- 104 Peckham Hall, Nazareth College, 4245 East Avenue, Rochester, NY, USA
| | - B Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Priyanka U, Lens PNL. Light driven Aspergillus niger-ZnS nanobiohybrids for degradation of methyl orange. CHEMOSPHERE 2022; 298:134162. [PMID: 35302000 DOI: 10.1016/j.chemosphere.2022.134162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Inorganic-microbial hybrid systems have potential to be sustainable, efficient and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with microbial cells. Here, we demonstrate light-driven photocatalytic semiconducting Aspergillus niger cells-ZnS nanoparticles for enhanced removal of the dye methyl orange. Chemically synthesized ZnS nanoparticles exhibited a zinc blende pattern in X-ray diffraction, had a dimension of 20-90 nm with a band gap (Ebg) of 3.4 eV at 1.83 × 1018 photons/second. Biologically synthesized ZnS nanoparticles of 40-90 nm showed a hexagonal pattern in the X-ray powder diffraction spectra with an Ebg 3.7 eV at 1.68 × 1018 photons/second. At a methyl orange (MO) concentration of 100 mg/L, dosage of 0.5 × 105 mol catalyst and pH 4, a 97.5% and 98% removal efficiency of MO was achieved in 90 min and 60 min for, respectively, chemically and biologically synthesized ZnS nanobiohybrids in the presence of UV-A light. The major degradation products of photocatalysis for chemically synthesized ZnS nanobiohybrids were naphtholate (C10H7O m/z 143) and hydroquinone (C9H5m/z 113). For the biologically synthesized ZnS nanobiohybrids, the degradation products were hydroquinone (C9H5m/z 113) and 2-phenylphenol (C12H10O m/z 170).
Collapse
Affiliation(s)
| | - Piet N L Lens
- National University of Ireland, University Road, Galway, Ireland.
| |
Collapse
|
13
|
Gibbons JG, D’Avino P, Zhao S, Cox GW, Rinker DC, Fortwendel JR, Latge JP. Comparative Genomics Reveals a Single Nucleotide Deletion in pksP That Results in White-Spore Phenotype in Natural Variants of Aspergillus fumigatus. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:897954. [PMID: 37746219 PMCID: PMC10512363 DOI: 10.3389/ffunb.2022.897954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is a potentially deadly opportunistic human pathogen. A. fumigatus has evolved a variety of mechanisms to evade detection by the immune system. For example, the conidium surface is covered in a layer of 1,8-dihydroxynaphthalene (DHN) melanin which masks the antigen macrophages use for recognition. DHN melanin also protects conidia from ultraviolet radiation and gives A. fumigatus conidia their characteristic green-grayish color. Here, we conducted genomic analysis of two closely related white-spore natural variants of A. fumigatus in comparison to two closely related green-spore isolates to identify a genetic basis of the white-spore phenotype. Illumina whole-genome resequencing data of the four isolates was used to identify variants that were shared in the white-spore isolates and different from both the green-spore isolates and the Af293 reference genome (which is also a green-spore isolate). We identified 4,279 single nucleotide variants and 1,785 insertion/deletions fitting this pattern. Among these, we identified 64 variants predicted to be high impact, loss-of-function mutations. One of these variants is a single nucleotide deletion that results in a frameshift in pksP (Afu2g17600), the core biosynthetic gene in the DHN melanin encoding gene cluster. The frameshift mutation in the white-spore isolates leads to a truncated protein in which a phosphopantetheine attachment site (PP-binding domain) is interrupted and an additional PP-binding domain and a thioesterase domain are omitted. Growth rate analysis of white-spore and green-spore isolates at 37°C and 48°C revealed that white-spore isolates are thermosensitive. Growth rate of A. fumigatus Af293 and a pksP null mutant in the Af293 background suggests pksP is not directly involved in the thermosensitivity phenotype. Further, our study identified a mutation in a gene (Afu4g04740) associated with thermal sensitivity in yeasts which could also be responsible for the thermosensitivity of the white-spore mutants. Overall, we used comparative genomics to identify the mutation and protein alterations responsible for the white-spore phenotype of environmental isolates of A. fumigatus.
Collapse
Affiliation(s)
- John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Paolo D’Avino
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Grace W. Cox
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | | |
Collapse
|
14
|
Blachowicz A, Mhatre S, Singh NK, Wood JM, Parker CW, Ly C, Butler D, Mason CE, Venkateswaran K. The Isolation and Characterization of Rare Mycobiome Associated With Spacecraft Assembly Cleanrooms. Front Microbiol 2022; 13:777133. [PMID: 35558115 PMCID: PMC9087587 DOI: 10.3389/fmicb.2022.777133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Ensuring biological cleanliness while assembling and launching spacecraft is critical for robotic exploration of the solar system. To date, when preventing forward contamination of other celestial bodies, NASA Planetary Protection policies have focused on endospore-forming bacteria while fungi were neglected. In this study, for the first time the mycobiome of two spacecraft assembly facilities at Jet Propulsion Laboratory (JPL) and Kennedy Space Center (KSC) was assessed using both cultivation and sequencing techniques. To facilitate enumeration of viable fungal populations and downstream molecular analyses, collected samples were first treated with chloramphenicol for 24 h and then with propidium monoazide (PMA). Among cultivable fungi, 28 distinct species were observed, 16 at JPL and 16 at KSC facilities, while 13 isolates were potentially novel species. Only four isolated species Aureobasidium melanogenum, Penicillium fuscoglaucum, Penicillium decumbens, and Zalaria obscura were present in both cleanroom facilities, which suggests that mycobiomes differ significantly between distant locations. To better visualize the biogeography of all isolated strains the network analysis was undertaken and confirmed higher abundance of Malassezia globosa and Cyberlindnera jadinii. When amplicon sequencing was performed, JPL-SAF and KSC-PHSF showed differing mycobiomes. Metagenomic fungal reads were dominated by Ascomycota (91%) and Basidiomycota (7.15%). Similar to amplicon sequencing, the number of fungal reads changed following antibiotic treatment in both cleanrooms; however, the opposite trends were observed. Alas, treatment with the antibiotic did not allow for definitive ascribing changes observed in fungal populations between treated and untreated samples in both cleanrooms. Rather, these substantial differences in fungal abundance might be attributed to several factors, including the geographical location, climate and the in-house cleaning procedures used to maintain the cleanrooms. This study is a first step in characterizing cultivable and viable fungal populations in cleanrooms to assess fungal potential as biocontaminants during interplanetary explorations. The outcomes of this and future studies could be implemented in other cleanrooms that require to reduce microbial burden, like intensive care units, operating rooms, or cleanrooms in the semiconducting and pharmaceutical industries.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Snehit Mhatre
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Cynthia Ly
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
15
|
Bitencourt TA, Hatanaka O, Pessoni AM, Freitas MS, Trentin G, Santos P, Rossi A, Martinez-Rossi NM, Alves LL, Casadevall A, Rodrigues ML, Almeida F. Fungal Extracellular Vesicles Are Involved in Intraspecies Intracellular Communication. mBio 2022; 13:e0327221. [PMID: 35012355 PMCID: PMC8749427 DOI: 10.1128/mbio.03272-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal infections are associated with high mortality rates in humans. The risk of fungal diseases creates the urgent need to broaden the knowledge base regarding their pathophysiology. In this sense, the role of extracellular vesicles (EVs) has been described to convey biological information and participate in the fungus-host interaction process. We hypothesized that fungal EVs work as an additional element in the communication routes regulating fungal responses in intraspecies interaction systems. In this respect, the aim of this study was to address the gene regulation profiles prompted by fungal EVs in intraspecies recipient cells. Our data demonstrated the intraspecies uptake of EVs in pathogenic fungi, such as Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis, and the effects triggered by EVs in fungal cells. In C. albicans, we evaluated the involvement of EVs in the yeast-to-hypha transition, while in P. brasiliensis and A. fumigatus the function of EVs as stress transducers was investigated. P. brasiliensis and A. fumigatus were exposed to an inhibitor of glycosylation or UV light, respectively. The results demonstrated the role of EVs in regulating the expression of target genes and triggering phenotypic changes. The EVs treatment induced cellular proliferation and boosted the yeast to hyphal transition in C. albicans, while they enhanced stress responsiveness in A. fumigatus and P. brasiliensis, establishing a role for EVs in fungal intraspecies communication. Thus, EVs regulate fungal behavior, acting as potent message effectors, and understanding their effects and mechanism(s) of action could be exploited in antifungal therapies. IMPORTANCE Here, we report a study about extracellular vesicles (EVs) as communication mediators in fungi. Our results demonstrated the role of EVs from Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis regulating the expression of target genes and phenotypic features. We asked whether fungal EVs play a role as message effectors. We show that fungal EVs are involved in fungal interaction systems as potent message effectors, and understanding their effects and mechanisms of action could be exploited in antifungal therapies.
Collapse
Affiliation(s)
- Tamires A. Bitencourt
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Otavio Hatanaka
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Andre M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Patrick Santos
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lysangela L. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, PR, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, PR, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
16
|
de Castro PA, Colabardini AC, Moraes M, Horta MAC, Knowles SL, Raja HA, Oberlies NH, Koyama Y, Ogawa M, Gomi K, Steenwyk JL, Rokas A, Gonçales RA, Duarte-Oliveira C, Carvalho A, Ries LNA, Goldman GH. Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genet 2022; 18:e1009965. [PMID: 35041649 PMCID: PMC8797188 DOI: 10.1371/journal.pgen.1009965] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species. A. fumigatus secretes mycotoxins that are essential for its virulence and pathogenicity. Gliotoxin (GT) is a sulfur-containing mycotoxin, which is known to impair several aspects of the human immune response. GT is also toxic to different fungal species, which have evolved several GT protection strategies. To further decipher these responses, we used transcriptional profiling aiming to compare the response to GT in the GT producer A. fumigatus and the GT non-producer A. nidulans. This analysis allowed us to identify additional genes with a potential role in GT protection. We also identified 15 transcription factors (TFs) encoded in the A. fumigatus genome that are important for conferring resistance to exogenous gliotoxin. One of these TFs, KojR, which is essential for A. oryzae kojic acid production, is also important for virulence in A. fumigatus and GT protection in A. fumigatus, A. nidulans and A. oryzae. KojR regulates the expression of genes important for gliotoxin biosynthesis and protection, and sulfur metabolism. Together, this work identified conserved components required for gliotoxin protection in Aspergillus species.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maísa Moraes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Masahiro Ogawa
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Relber A. Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- * E-mail: (LNAR); (GHG)
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- * E-mail: (LNAR); (GHG)
| |
Collapse
|
17
|
Romsdahl J, Schultzhaus Z, Cuomo CA, Dong H, Abeyratne-Perera H, Hervey WJ, Wang Z. Phenotypic Characterization and Comparative Genomics of the Melanin-Producing Yeast Exophiala lecanii-corni Reveals a Distinct Stress Tolerance Profile and Reduced Ribosomal Genetic Content. J Fungi (Basel) 2021; 7:1078. [PMID: 34947060 PMCID: PMC8709033 DOI: 10.3390/jof7121078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
The black yeast Exophiala lecanii-corni of the order Chaetothyriales is notable for its ability to produce abundant quantities of DHN-melanin. While many other Exophiala species are frequent causal agents of human infection, E. lecanii-corni CBS 102400 lacks the thermotolerance requirements that enable pathogenicity, making it appealing for use in targeted functional studies and biotechnological applications. Here, we report the stress tolerance characteristics of E. lecanii-corni, with an emphasis on the influence of melanin on its resistance to various forms of stress. We find that E. lecanii-corni has a distinct stress tolerance profile that includes variation in resistance to temperature, osmotic, and oxidative stress relative to the extremophilic and pathogenic black yeast Exophiala dermatitidis. Notably, the presence of melanin substantially impacts stress resistance in E. lecanii-corni, while this was not found to be the case in E. dermatitidis. The cellular context, therefore, influences the role of melanin in stress protection. In addition, we present a detailed analysis of the E. lecanii-corni genome, revealing key differences in functional genetic content relative to other ascomycetous species, including a significant decrease in abundance of genes encoding ribosomal proteins. In all, this study provides insight into how genetics and physiology may underlie stress tolerance and enhances understanding of the genetic diversity of black yeasts.
Collapse
Affiliation(s)
- Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Zachary Schultzhaus
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
| | - Hong Dong
- Biotechnology Branch, CCDC Army Research Laboratory, Adelphi, MD 20783, USA;
| | - Hashanthi Abeyratne-Perera
- American Society for Engineering Education Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - W. Judson Hervey
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Zheng Wang
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| |
Collapse
|
18
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
19
|
Steenwyk JL, Mead ME, de Castro PA, Valero C, Damasio A, dos Santos RAC, Labella AL, Li Y, Knowles SL, Raja HA, Oberlies NH, Zhou X, Cornely OA, Fuchs F, Koehler P, Goldman GH, Rokas A. Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiol Spectr 2021; 9:e0001021. [PMID: 34106569 PMCID: PMC8552514 DOI: 10.1128/spectrum.00010-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), first described in Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as opportunistic fungal pathogens from the genus Aspergillus. To gain insight into COVID-19-associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit significant differences from the genome of the Af293 reference strain. By examining a number of factors, including virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, secondary metabolite biosynthesis, and the MIC of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss-of-function mutations in genes known to increase virulence when deleted. Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains Af293 and CEA17, but similarly virulent to two other clinical strains of A. fumigatus. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA. IMPORTANCE The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has already killed millions of people. COVID-19 patient outcome can be further complicated by secondary infections, such as COVID-19-associated pulmonary aspergillosis (CAPA). CAPA is caused by Aspergillus fungal pathogens, but there is little information about the genomic and phenotypic characteristics of CAPA isolates. We conducted genome sequencing and extensive phenotyping of four CAPA isolates of Aspergillus fumigatus from Germany. We found that CAPA isolates were often, but not always, similar to other reference strains of A. fumigatus across 206 genetic determinants of infection-relevant phenotypes, including virulence. For example, CAPA isolate D was more virulent than other CAPA isolates and reference strains in an invertebrate model of fungal disease, but similarly virulent to two other clinical strains. These results expand our understanding of COVID-19-associated pulmonary aspergillosis.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Renato A. C. dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail L. Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Oliver A. Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- ZKS Köln, Clinical Trials Centre Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn‐Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Palmer JM, Wiemann P, Greco C, Chiang YM, Wang CCC, Lindner DL, Keller NP. The sexual spore pigment asperthecin is required for normal ascospore production and protection from UV light in Aspergillus nidulans. J Ind Microbiol Biotechnol 2021; 48:6355442. [PMID: 34415047 PMCID: PMC8762651 DOI: 10.1093/jimb/kuab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022]
Abstract
Many fungi develop both asexual and sexual spores that serve as propagules for dissemination and/or recombination of genetic traits. Asexual spores are often heavily pigmented and this pigmentation provides protection from UV light. However, little is known about any purpose pigmentation may serve for sexual spores. The model Ascomycete Aspergillus nidulans produces both green pigmented asexual spores (conidia) and red pigmented sexual spores (ascospores). Here we find that the previously characterized red pigment, asperthecin, is the A. nidulans ascospore pigment. The asperthecin biosynthetic gene cluster is composed of three genes, aptA, aptB, and aptC where deletion of either aptA (encoding a polyketide synthase) or aptB (encoding a thioesterase) yields small, mishappen hyaline ascospores while deletion of aptC (encoding a monooxygenase) yields morphologically normal but purple ascospores. ∆aptA and ∆aptB but not ∆aptC or WT ascospores are extremely sensitive to UV light. We find that two historical ascospore color mutants, clA6 and clB1, possess mutations in aptA and aptB sequences respectively.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI 53726, USA
| | - Philipp Wiemann
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudio Greco
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yi Ming Chiang
- Departments of Chemistry and Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Clay C C Wang
- Departments of Chemistry and Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI 53726, USA
| | - Nancy P Keller
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
21
|
Singh G, Calchera A, Schulz M, Drechsler M, Bode HB, Schmitt I, Dal Grande F. Climate-specific biosynthetic gene clusters in populations of a lichen-forming fungus. Environ Microbiol 2021; 23:4260-4275. [PMID: 34097344 DOI: 10.1111/1462-2920.15605] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Natural products can contribute to abiotic stress tolerance in plants and fungi. We hypothesize that biosynthetic gene clusters (BGCs), the genomic elements that underlie natural product biosynthesis, display structured differences along elevation gradients. We analysed biosynthetic gene variation in natural populations of the lichen-forming fungus Umbilicaria pustulata. We collected a total of 600 individuals from the Mediterranean and cold-temperate climates. Population genomic analyses indicate that U. pustulata contains three clusters that are highly differentiated between the Mediterranean and cold-temperate populations. One entire cluster is exclusively present in cold-temperate populations, and a second cluster is putatively dysfunctional in all cold-temperate populations. In the third cluster variation is fixed in all cold-temperate populations due to hitchhiking. In these two clusters the presence of consistent allele frequency differences among replicate populations/gradients suggests that selection rather than drift is driving the pattern. We advocate that the landscape of fungal biosynthetic genes is shaped by both positive and hitchhiking selection. We demonstrate, for the first time, the presence of climate-associated BGCs and BGC variations in lichen-forming fungi. While the associated secondary metabolites of the candidate clusters are presently unknown, our study paves the way for targeted discovery of natural products with ecological significance.
Collapse
Affiliation(s)
- Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, 60325, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, 60325, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, 60325, Germany
| | - Meike Schulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, 60325, Germany
| | - Moritz Drechsler
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt, 60438, Germany.,Department Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Helge B Bode
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, 60325, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, 60325, Germany.,Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt, 60438, Germany.,Department Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, 35043, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt, 60438, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, 60325, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, 60325, Germany.,Institute of Ecology, Evolution and Diversity, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt, 60438, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, 60325, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, 60325, Germany
| |
Collapse
|
22
|
Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One 2021; 16:e0250954. [PMID: 33983974 PMCID: PMC8118457 DOI: 10.1371/journal.pone.0250954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.
Collapse
Affiliation(s)
- Maria da Luz Calado
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Patrícia Susano
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Débora Santos
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Alice Martins
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Maria Jorge Campos
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| |
Collapse
|
23
|
Rocha MC, Fabri JHTM, Silva LP, Angolini CFF, Bertolini MC, da Cunha AF, Valiante V, Goldman GH, Fill TP, Malavazi I. Transcriptional Control of the Production of Aspergillus fumigatus Conidia-Borne Secondary Metabolite Fumiquinazoline C Important for Phagocytosis Protection. Genetics 2021; 218:6168429. [PMID: 33705521 DOI: 10.1093/genetics/iyab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
Aspergillus fumigatus produces diverse secondary metabolites whose biological functions and regulation remain to be understood. Despite the importance of the conidia for this fungus, the role of the conidia-born metabolite fumiquinazoline C (FqC) is unclear. Here, we describe a dual function of the cell-wall integrity pathway in regulating FqC biosynthesis dictated by the MAPK kinase MpkA, which phosphorylates one of the nonribosomal peptide synthetases enzymes of the cluster (FmqC), and the transcription factor RlmA, which directly regulates the expression of fmq genes. Another level of crosstalk between the FqC regulation and the cell physiology is described since the deletion of the stress-responsive transcription factor sebA provokes derepression of the fmq cluster and overproduction of FqC. Thus, we describe a mechanism by which A. fumigatus controls FqC biosynthesis orchestrated by MpkA-RlmA and SebA and hence enabling survival and adaptation to the environmental niche, given that FqC is a deterrent of ameba predation.
Collapse
Affiliation(s)
- Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - João Henrique Tadini Marilhano Fabri
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Lilian Pereira Silva
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia, Instituto de Química de Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Vito Valiante
- Leibniz Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taicia Pacheco Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
24
|
Cortesão M, Siems K, Koch S, Beblo-Vranesevic K, Rabbow E, Berger T, Lane M, James L, Johnson P, Waters SM, Verma SD, Smith DJ, Moeller R. MARSBOx: Fungal and Bacterial Endurance From a Balloon-Flown Analog Mission in the Stratosphere. Front Microbiol 2021; 12:601713. [PMID: 33692763 PMCID: PMC7937622 DOI: 10.3389/fmicb.2021.601713] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
Whether terrestrial life can withstand the martian environment is of paramount interest for planetary protection measures and space exploration. To understand microbial survival potential in Mars-like conditions, several fungal and bacterial samples were launched in September 2019 on a large NASA scientific balloon flight to the middle stratosphere (∼38 km altitude) where radiation levels resembled values at the equatorial Mars surface. Fungal spores of Aspergillus niger and bacterial cells of Salinisphaera shabanensis, Staphylococcus capitis subsp. capitis, and Buttiauxella sp. MASE-IM-9 were launched inside the MARSBOx (Microbes in Atmosphere for Radiation, Survival, and Biological Outcomes Experiment) payload filled with an artificial martian atmosphere and pressure throughout the mission profile. The dried microorganisms were either exposed to full UV-VIS radiation (UV dose = 1148 kJ m-2) or were shielded from radiation. After the 5-h stratospheric exposure, samples were assayed for survival and metabolic changes. Spores from the fungus A. niger and cells from the Gram-(-) bacterium S. shabanensis were the most resistant with a 2- and 4-log reduction, respectively. Exposed Buttiauxella sp. MASE-IM-9 was completely inactivated (both with and without UV exposure) and S. capitis subsp. capitis only survived the UV shielded experimental condition (3-log reduction). Our results underscore a wide variation in survival phenotypes of spacecraft associated microorganisms and support the hypothesis that pigmented fungi may be resistant to the martian surface if inadvertently delivered by spacecraft missions.
Collapse
Affiliation(s)
- Marta Cortesão
- Aerospace Microbiology Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Katharina Siems
- Aerospace Microbiology Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Stella Koch
- Aerospace Microbiology Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Kristina Beblo-Vranesevic
- Astrobiology Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Elke Rabbow
- Astrobiology Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Thomas Berger
- Biophysics Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Michael Lane
- NASA Kennedy Space Center, Engineering Directorate, Kennedy Space Center, Merritt Island, FL, United States
| | - Leandro James
- NASA Kennedy Space Center, Engineering Directorate, Kennedy Space Center, Merritt Island, FL, United States
| | - Prital Johnson
- NASA Kennedy Space Center, Engineering Directorate, Kennedy Space Center, Merritt Island, FL, United States
| | - Samantha M. Waters
- Universities Space Research Association, Moffett Field, CA, United States
- NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA, United States
| | - Sonali D. Verma
- NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Moffett Field, CA, United States
| | - David J. Smith
- NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA, United States
| | - Ralf Moeller
- Aerospace Microbiology Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
25
|
Roy A, Ahuja S, Garg S. Fungal Secondary Metabolites: Biological Activity and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Steenwyk JL, Mead ME, de Castro PA, Valero C, Damasio A, dos Santos RAC, Labella AL, Li Y, Knowles SL, Raja HA, Oberlies NH, Zhou X, Cornely OA, Fuchs F, Koehler P, Goldman GH, Rokas A. Genomic and phenotypic analysis of COVID-19-associated pulmonary aspergillosis isolates of Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.06.371971. [PMID: 33173866 PMCID: PMC7654854 DOI: 10.1101/2020.11.06.371971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) first described from Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as fungal opportunistic pathogens from the genus Aspergillus . To gain insight into COVID-19 associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit major differences from the genome of the Af293 reference strain. By examining virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, and the minimum inhibitory concentration of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss of function mutations in genes known to increase virulence when deleted (e.g., in the FLEA gene, which encodes a lectin recognized by macrophages). Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains tested. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Renato A. C. dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail L. Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Oliver A. Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- ZKS Köln, Clinical Trials Centre Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Steenwyk JL, Mead ME, Knowles SL, Raja HA, Roberts CD, Bader O, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Variation Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of Virulence Across Aspergillus Species. Genetics 2020; 216:481-497. [PMID: 32817009 PMCID: PMC7536862 DOI: 10.1534/genetics.120.303549] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is a major human pathogen. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the genetic determinants of virulence (or "cards of virulence") that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. To examine whether secondary metabolism-associated cards of virulence vary between these species, we conducted extensive genomic and secondary metabolite profiling analyses of multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains. We identified two cards of virulence (gliotoxin and fumitremorgin) shared by all three species and three cards of virulence (trypacidin, pseurotin, and fumagillin) that are variable. For example, we found that all species and strains examined biosynthesized gliotoxin, which is known to contribute to virulence, consistent with the conservation of the gliotoxin biosynthetic gene cluster (BGC) across genomes. For other secondary metabolites, such as fumitremorgin, a modulator of host biology, we found that all species produced the metabolite but that there was strain heterogeneity in its production within species. Finally, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis. A. fumigatus biosynthesized fumagillin and pseurotin, while A. oerlinghausenensis biosynthesized fumagillin and A. fischeri biosynthesized neither. These biochemical differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075, Germany
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-900 Brazil
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
28
|
Zetina-Serrano C, Rocher O, Naylies C, Lippi Y, Oswald IP, Lorber S, Puel O. The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum. Int J Mol Sci 2020; 21:E6660. [PMID: 32932988 PMCID: PMC7555563 DOI: 10.3390/ijms21186660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Dissemination and survival of ascomycetes is through asexual spores. The brlA gene encodes a C2H2-type zinc-finger transcription factor, which is essential for asexual development. Penicillium expansum causes blue mold disease and is the main source of patulin, a mycotoxin that contaminates apple-based food. A P. expansum PeΔbrlA deficient strain was generated by homologous recombination. In vivo, suppression of brlA completely blocked the development of conidiophores that takes place after the formation of coremia/synnemata, a required step for the perforation of the apple epicarp. Metabolome analysis displayed that patulin production was enhanced by brlA suppression, explaining a higher in vivo aggressiveness compared to the wild type (WT) strain. No patulin was detected in the synnemata, suggesting that patulin biosynthesis stopped when the fungus exited the apple. In vitro transcriptome analysis of PeΔbrlA unveiled an up-regulated biosynthetic gene cluster (PEXP_073960-PEXP_074060) that shares high similarity with the chaetoglobosin gene cluster of Chaetomium globosum. Metabolome analysis of PeΔbrlA confirmed these observations by unveiling a greater diversity of chaetoglobosin derivatives. We observed that chaetoglobosins A and C were found only in the synnemata, located outside of the apple, whereas other chaetoglobosins were detected in apple flesh, suggesting a spatial-temporal organization of the chaetoglobosin biosynthesis pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.Z.-S.); (O.R.); (C.N.); (Y.L.); (I.P.O.); (S.L.)
| |
Collapse
|
29
|
Cortesão M, de Haas A, Unterbusch R, Fujimori A, Schütze T, Meyer V, Moeller R. Aspergillus niger Spores Are Highly Resistant to Space Radiation. Front Microbiol 2020; 11:560. [PMID: 32318041 PMCID: PMC7146846 DOI: 10.3389/fmicb.2020.00560] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The filamentous fungus Aspergillus niger is one of the main contaminants of the International Space Station (ISS). It forms highly pigmented, airborne spores that have thick cell walls and low metabolic activity, enabling them to withstand harsh conditions and colonize spacecraft surfaces. Whether A. niger spores are resistant to space radiation, and to what extent, is not yet known. In this study, spore suspensions of a wild-type and three mutant strains (with defects in pigmentation, DNA repair, and polar growth control) were exposed to X-rays, cosmic radiation (helium- and iron-ions) and UV-C (254 nm). To assess the level of resistance and survival limits of fungal spores in a long-term interplanetary mission scenario, we tested radiation doses up to 1000 Gy and 4000 J/m2. For comparison, a 360-day round-trip to Mars yields a dose of 0.66 ± 0.12 Gy. Overall, wild-type spores of A. niger were able to withstand high doses of X-ray (LD90 = 360 Gy) and cosmic radiation (helium-ion LD90 = 500 Gy; and iron-ion LD90 = 100 Gy). Drying the spores before irradiation made them more susceptible toward X-ray radiation. Notably, A. niger spores are highly resistant to UV-C radiation (LD90 = 1038 J/m2), which is significantly higher than that of other radiation-resistant microorganisms (e.g., Deinococcus radiodurans). In all strains, UV-C treated spores (1000 J/m2) were shown to have decreased biofilm formation (81% reduction in wild-type spores). This study suggests that A. niger spores might not be easily inactivated by exposure to space radiation alone and that current planetary protection guidelines should be revisited, considering the high resistance of fungal spores.
Collapse
Affiliation(s)
- Marta Cortesão
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Aram de Haas
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Rebecca Unterbusch
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tabea Schütze
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|