1
|
Shi W, Maqsood I, Liu K, Yu M, Si Y, Rong K. Community Diversity of Fungi Carried by Four Common Woodpeckers in Heilongjiang Province, China. J Fungi (Basel) 2024; 10:389. [PMID: 38921375 PMCID: PMC11204829 DOI: 10.3390/jof10060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Woodpeckers exhibit selectivity when choosing tree cavities for nest development in forest ecosystems, and fungi play a significant and important role in this ecological process. Therefore, there is a complex and intricate relationship between the various behaviors of woodpeckers and the occurrence of fungal species. Research into the complex bond between fungi and woodpeckers was undertaken to provide more information about this remarkable ecological relationship. Through the process of line transect sampling, woodpecker traces were searched for, and mist nets were set up to capture them. A total of 21 woodpeckers belonging to four species were captured. High-throughput sequencing of the ITS region was performed on fungal-conserved samples to enable an in-depth analysis of the fungal communities linked to the woodpeckers' nests. Members of Ascomycota were the most abundant in the samples, accounting for 91.96% of the total, demonstrating the importance of this group in the forest ecosystem of this station. The statistical results indicate significant differences in the fungal diversity carried by woodpeckers among the different groups. Species of Cladosporium were found to be the most prevalent of all the detected fungal genera, accounting for 49.3%. The top 15 most abundant genera were Cladosporium, Trichoderma, Beauveria, Epicococcum, Hypoxylon, Penicillium, Nigrospora, Aspergillus, Oidiodendron, Cercospora, Talaromyces, Phialemo-nium, Petriella, Cordyceps, and Sistotrema. The standard Bray-Curtis statistical technique was used in a hierarchical clustering analysis to compute inter-sample distances, allowing for the identification of patterns and correlations within the dataset. We discovered that in the grouped samples from woodpeckers, there were differences in the diversity of fungal communities carried by four woodpecker species, but the less dominant fungal species were still similar. The findings highlight the need to consider these diverse ecological linkages in woodpecker research and conservation efforts.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Women University Peshawar Pakistan, Peshawar 25000, Pakistan
| | - Keying Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Meichen Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yuhui Si
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Ke Rong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Wildlife Conservation Biology, National Forestry and Grassland Administration, Beijing 100013, China
| |
Collapse
|
2
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector CD8 T cells during chronic infection and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.579535. [PMID: 38659890 PMCID: PMC11042319 DOI: 10.1101/2024.04.18.579535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During chronic infections and tumor progression, CD8 T cells gradually lose their effector functions and become exhausted. These exhausted CD8 T cells are heterogeneous and comprised of different subsets, including self-renewing progenitors that give rise to Ly108 - CX3CR1 + effector-like cells. Generation of these effector-like cells is essential for the control of chronic infections and tumors, albeit limited. However, the precise cues and mechanisms directing the formation and maintenance of exhausted effector-like are incompletely understood. Using genetic mouse models challenged with LCMV Clone 13 or syngeneic tumors, we show that the expression of a transcriptional repressor, growth factor independent 1 (Gfi1) is dynamically regulated in exhausted CD8 T cells, which in turn regulates the formation of exhausted effector-like cells. Gfi1 deletion in T cells dysregulates the chromatin accessibility and transcriptomic programs associated with the differentiation of LCMV Clone 13-specific CD8 T cell exhaustion, preventing the formation of effector-like and terminally exhausted cells while maintaining progenitors and a newly identified Ly108 + CX3CR1 + state. These Ly108 + CX3CR1 + cells have a distinct chromatin profile and may represent an alternative target for therapeutic interventions to combat chronic infections and cancer. In sum, we show that Gfi1 is a critical regulator of the formation of exhausted effector-like cells.
Collapse
|
3
|
Venhuizen J, van Bergen MGJM, Bergevoet SM, Gilissen D, Spruijt CG, Wingens L, van den Akker E, Vermeulen M, Jansen JH, Martens JHA, van der Reijden BA. GFI1B and LSD1 repress myeloid traits during megakaryocyte differentiation. Commun Biol 2024; 7:374. [PMID: 38548886 PMCID: PMC10978956 DOI: 10.1038/s42003-024-06090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.
Collapse
Affiliation(s)
- Jeron Venhuizen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Maaike G J M van Bergen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Daan Gilissen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Wingens
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Vcelkova T, Reiter W, Zylka M, Hollenstein D, Schuckert S, Hartl M, Seiser C. GSE1 links the HDAC1/CoREST co-repressor complex to DNA damage. Nucleic Acids Res 2023; 51:11748-11769. [PMID: 37878419 PMCID: PMC10681733 DOI: 10.1093/nar/gkad911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Post-translational modifications of histones are important regulators of the DNA damage response (DDR). By using affinity purification mass spectrometry (AP-MS) we discovered that genetic suppressor element 1 (GSE1) forms a complex with the HDAC1/CoREST deacetylase/demethylase co-repressor complex. In-depth phosphorylome analysis revealed that loss of GSE1 results in impaired DDR, ATR signalling and γH2AX formation upon DNA damage induction. Altered profiles of ATR target serine-glutamine motifs (SQ) on DDR-related hallmark proteins point to a defect in DNA damage sensing. In addition, GSE1 knock-out cells show hampered DNA damage-induced phosphorylation on SQ motifs of regulators of histone post-translational modifications, suggesting altered histone modification. While loss of GSE1 does not affect the histone deacetylation activity of CoREST, GSE1 appears to be essential for binding of the deubiquitinase USP22 to CoREST and for the deubiquitination of H2B K120 in response to DNA damage. The combination of deacetylase, demethylase, and deubiquitinase activity makes the USP22-GSE1-CoREST subcomplex a multi-enzymatic eraser that seems to play an important role during DDR. Since GSE1 has been previously associated with cancer progression and survival our findings are potentially of high medical relevance.
Collapse
Affiliation(s)
- Terezia Vcelkova
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Martha Zylka
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - David M Hollenstein
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Schuckert
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Herchenröther A, Gossen S, Friedrich T, Reim A, Daus N, Diegmüller F, Leers J, Sani HM, Gerstner S, Schwarz L, Stellmacher I, Szymkowiak LV, Nist A, Stiewe T, Borggrefe T, Mann M, Mackay JP, Bartkuhn M, Borchers A, Lan J, Hake SB. The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs. Nat Commun 2023; 14:472. [PMID: 36709316 PMCID: PMC9884267 DOI: 10.1038/s41467-023-36114-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
Specialized chromatin-binding proteins are required for DNA-based processes during development. We recently established PWWP2A as a direct histone variant H2A.Z interactor involved in mitosis and craniofacial development. Here, we identify the H2A.Z/PWWP2A-associated protein HMG20A as part of several chromatin-modifying complexes, including NuRD, and show that it localizes to distinct genomic regulatory regions. Hmg20a depletion causes severe head and heart developmental defects in Xenopus laevis. Our data indicate that craniofacial malformations are caused by defects in neural crest cell (NCC) migration and cartilage formation. These developmental failures are phenocopied in Hmg20a-depleted mESCs, which show inefficient differentiation into NCCs and cardiomyocytes (CM). Consequently, loss of HMG20A, which marks open promoters and enhancers, results in chromatin accessibility changes and a striking deregulation of transcription programs involved in epithelial-mesenchymal transition (EMT) and differentiation processes. Collectively, our findings implicate HMG20A as part of the H2A.Z/PWWP2A/NuRD-axis and reveal it as a key modulator of intricate developmental transcription programs that guide the differentiation of NCCs and CMs.
Collapse
Affiliation(s)
| | - Stefanie Gossen
- Department of Biology, Molecular Embryology, Philipps University Marburg, Marburg, Germany
| | - Tobias Friedrich
- Institute for Biochemistry, Justus-Liebig University Giessen, Giessen, Germany.,Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Institute for lung health, Justus-Liebig University Giessen, Giessen, Germany
| | - Alexander Reim
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Nadine Daus
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Felix Diegmüller
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Hakimeh Moghaddas Sani
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps University Marburg, Marburg, Germany
| | - Leah Schwarz
- Department of Biology, Molecular Embryology, Philipps University Marburg, Marburg, Germany
| | - Inga Stellmacher
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Laura Victoria Szymkowiak
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany.,Institute for Physiological Chemistry, Technical University Dresden, Dresden, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Tilman Borggrefe
- Institute for Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Institute for lung health, Justus-Liebig University Giessen, Giessen, Germany.
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps University Marburg, Marburg, Germany.
| | - Jie Lan
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Dreher RD, Theisen ER. Lysine specific demethylase 1 is a molecular driver and therapeutic target in sarcoma. Front Oncol 2023; 12:1076581. [PMID: 36686841 PMCID: PMC9846348 DOI: 10.3389/fonc.2022.1076581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcomas are a diverse group of tumors with numerous oncogenic drivers, and display varied clinical behaviors and prognoses. This complexity makes diagnosis and the development of new and effective treatments challenging. An incomplete understanding of both cell of origin and the biological drivers of sarcomas complicates efforts to develop clinically relevant model systems and find new molecular targets. Notably, the histone lysine specific demethylase 1 (LSD1) is overexpressed in a number of different sarcomas and is a potential therapeutic target in these malignancies. With the ability to modify histone marks, LSD1 is a key player in many protein complexes that epigenetically regulate gene expression. It is a largely context dependent enzyme, having vastly different and often opposing roles depending on the cellular environment and which interaction partners are involved. LSD1 has been implicated in the development of many different types of cancer, but its role in bone and soft tissue sarcomas remains poorly understood. In this review, we compiled what is known about the LSD1 function in various sarcomas, to determine where knowledge is lacking and to find what theme emerge to characterize how LSD1 is a key molecular driver in bone and soft tissue sarcoma. We further discuss the current clinical landscape for the development of LSD1 inhibitors and where sarcomas have been included in early clinical trials.
Collapse
Affiliation(s)
- Rachel D. Dreher
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
| | - Emily R. Theisen
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Casey MJ, Call AM, Thorpe AV, Jette CA, Engel ME, Stewart RA. The scaffolding function of LSD1/KDM1A reinforces a negative feedback loop to repress stem cell gene expression during primitive hematopoiesis. iScience 2022; 26:105737. [PMID: 36594016 PMCID: PMC9803847 DOI: 10.1016/j.isci.2022.105737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lsd1/Kdm1a functions both as a histone demethylase enzyme and as a scaffold for assembling chromatin modifier and transcription factor complexes to regulate gene expression. The relative contributions of Lsd1's demethylase and scaffolding functions during embryogenesis are not known. Here, we analyze two independent zebrafish lsd1/kdm1a mutant lines and show Lsd1 is required to repress primitive hematopoietic stem cell gene expression. Lsd1 rescue constructs containing point mutations that selectively abrogate its demethylase or scaffolding capacity demonstrate the scaffolding function of Lsd1, not its demethylase activity, is required for repression of gene expression in vivo. Lsd1's SNAG-binding domain mediates its scaffolding function and reinforces a negative feedback loop to repress the expression of SNAG-domain-containing genes during embryogenesis, including gfi1 and snai1/2. Our findings reveal a model in which the SNAG-binding and scaffolding function of Lsd1, and its associated negative feedback loop, provide transient and reversible regulation of gene expression during hematopoietic development.
Collapse
Affiliation(s)
- Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Alexandra M. Call
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Annika V. Thorpe
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Michael E. Engel
- Department of Pediatric Hematology/Oncology, Emily Couric Cancer Center, University of Virginia, Charlottesville, VA 22903, USA,Corresponding author
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA,Corresponding author
| |
Collapse
|
8
|
Maiques-Diaz A, Nicosia L, Basma NJ, Romero-Camarero I, Camera F, Spencer GJ, Amaral FMR, Simeoni F, Wingelhofer B, Williamson AJK, Pierce A, Whetton AD, Somervaille TCP. HMG20B stabilizes association of LSD1 with GFI1 on chromatin to confer transcription repression and leukemia cell differentiation block. Oncogene 2022; 41:4841-4854. [PMID: 36171271 PMCID: PMC7613766 DOI: 10.1038/s41388-022-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
Abstract
Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.
Collapse
Affiliation(s)
- Alba Maiques-Diaz
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Luciano Nicosia
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Naseer J Basma
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bettina Wingelhofer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
- School of Medical and Health Sciences, College of Human Sciences, Fron Heulog Bangor University, Bangor, LL57 2TH, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
- School of Veterinary Medicine and School of Biosciences and Medicine, University of Surrey, VSM Building, University of Surrey, Guildford, GU2 7AL, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
9
|
Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 2022; 139:2450-2459. [PMID: 34936695 PMCID: PMC9029096 DOI: 10.1182/blood.2021011044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
To enable effective oxygen transport, ∼200 billion red blood cells (RBCs) need to be produced every day in the bone marrow through the fine-tuned process of erythropoiesis. Erythropoiesis is regulated at multiple levels to ensure that defective RBC maturation or overproduction can be avoided. Here, we provide an overview of different layers of this control, ranging from cytokine signaling mechanisms that enable extrinsic regulation of RBC production to intrinsic transcriptional pathways necessary for effective erythropoiesis. Recent studies have also elucidated the importance of posttranscriptional regulation and highlighted additional gatekeeping mechanisms necessary for effective erythropoiesis. We additionally discuss the insights gained by studying human genetic variation affecting erythropoiesis and highlight the discovery of BCL11A as a regulator of hemoglobin switching through genetic studies. Finally, we provide an outlook of how our ability to measure multiple facets of this process at single-cell resolution, while accounting for the impact of human variation, will continue to refine our knowledge of erythropoiesis and how this process is perturbed in disease. As we learn more about this intricate and important process, additional opportunities to modulate erythropoiesis for therapeutic purposes will undoubtedly emerge.
Collapse
Affiliation(s)
- Alexis L Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
10
|
Sun W, Guo J, McClellan D, Poeschla A, Bareyan D, Casey MJ, Cairns BR, Tantin D, Engel ME. GFI1 Cooperates with IKZF1/IKAROS to Activate Gene Expression in T-cell Acute Lymphoblastic Leukemia. Mol Cancer Res 2022; 20:501-514. [PMID: 34980595 PMCID: PMC8983472 DOI: 10.1158/1541-7786.mcr-21-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Growth factor independence-1 (GFI1) is a transcriptional repressor and master regulator of normal and malignant hematopoiesis. Repression by GFI1 is attributable to recruitment of LSD1-containing protein complexes via its SNAG domain. However, the full complement of GFI1 partners in transcriptional control is not known. We show that in T-acute lymphoblastic leukemia (ALL) cells, GFI1 and IKAROS are transcriptional partners that co-occupy regulatory regions of hallmark T-cell development genes. Transcriptional profiling reveals a subset of genes directly transactivated through the GFI1-IKAROS partnership. Among these is NOTCH3, a key factor in T-ALL pathogenesis. Surprisingly, NOTCH3 expression by GFI1 and IKAROS requires the GFI1 SNAG domain but occurs independent of SNAG-LSD1 binding. GFI1 variants deficient in LSD1 binding fail to activate NOTCH3, but conversely, small molecules that disrupt the SNAG-LSD1 interaction while leaving the SNAG primary structure intact stimulate NOTCH3 expression. These results identify a noncanonical transcriptional control mechanism in T-ALL which supports GFI1-mediated transactivation in partnership with IKAROS and suggest competition between LSD1-containing repressive complexes and others favoring transactivation. IMPLICATIONS Combinatorial diversity and cooperation between DNA binding proteins and complexes assembled by them can direct context-dependent transcriptional outputs to control cell fate and may offer new insights for therapeutic targeting in cancer.
Collapse
Affiliation(s)
- Wenxiang Sun
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David McClellan
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alexandra Poeschla
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Diana Bareyan
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mattie J. Casey
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R. Cairns
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael E. Engel
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Primary Children’s Hospital, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Nicosia L, Boffo FL, Ceccacci E, Conforti F, Pallavicini I, Bedin F, Ravasio R, Massignani E, Somervaille TCP, Minucci S, Bonaldi T. Pharmacological inhibition of LSD1 triggers myeloid differentiation by targeting GSE1 oncogenic functions in AML. Oncogene 2022; 41:878-894. [PMID: 34862459 PMCID: PMC8830420 DOI: 10.1038/s41388-021-02123-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
The histone demethylase LSD1 is over-expressed in hematological tumors and has emerged as a promising target for anticancer treatment, so that several LSD1 inhibitors are under development and testing, in preclinical and clinical settings. However, the complete understanding of their complex mechanism of action is still unreached. Here, we unraveled a novel mode of action of the LSD1 inhibitors MC2580 and DDP-38003, showing that they can induce differentiation of AML cells through the downregulation of the chromatin protein GSE1. Analysis of the phenotypic effects of GSE1 depletion in NB4 cells showed a strong decrease of cell viability in vitro and of tumor growth in vivo. Mechanistically, we found that a set of genes associated with immune response and cytokine-signaling pathways are upregulated by LSD1 inhibitors through GSE1-protein reduction and that LSD1 and GSE1 colocalize at promoters of a subset of these genes at the basal state, enforcing their transcriptional silencing. Moreover, we show that LSD1 inhibitors lead to the reduced binding of GSE1 to these promoters, activating transcriptional programs that trigger myeloid differentiation. Our study offers new insights into GSE1 as a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Luciano Nicosia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Francesca Ludovica Boffo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Conforti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, 20133, Italy.
| |
Collapse
|
12
|
Helness A, Fraszczak J, Joly-Beauparlant C, Bagci H, Trahan C, Arman K, Shooshtarizadeh P, Chen R, Ayoub M, Côté JF, Oeffinger M, Droit A, Möröy T. GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors. Commun Biol 2021; 4:1356. [PMID: 34857890 PMCID: PMC8639993 DOI: 10.1038/s42003-021-02889-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes. Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.
Collapse
Affiliation(s)
- Anne Helness
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | - Jennifer Fraszczak
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | - Halil Bagci
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Institute for Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Christian Trahan
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | - Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | - Riyan Chen
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | - Marina Ayoub
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Hôpital pour Enfants, Ste Justine, Montreal, QC, Canada
| | - Jean-François Côté
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.,Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
13
|
Rossmann MP, Zon LI. 'Enhancing' red cell fate through epigenetic mechanisms. Curr Opin Hematol 2021; 28:129-137. [PMID: 33741760 PMCID: PMC8695091 DOI: 10.1097/moh.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Transcription of erythroid-specific genes is regulated by the three-dimensional (3D) structure and composition of chromatin, which dynamically changes during erythroid differentiation. Chromatin organization and dynamics are regulated by several epigenetic mechanisms involving DNA (de-)methylation, posttranslational modifications (PTMs) of histones, chromatin-associated structural proteins, and higher-order structural changes and interactions. This review addresses examples of recent developments in several areas delineating the interface of chromatin regulation and erythroid-specific lineage transcription. RECENT FINDINGS We survey and discuss recent studies that focus on the erythroid chromatin landscape, erythroid enhancer-promotor interactions, super-enhancer functionality, the role of chromatin modifiers and epigenetic crosstalk, as well as the progress in mapping red blood cell (RBC) trait-associated genetic variants within cis-regulatory elements (CREs) identified in genome-wide association study (GWAS) efforts as a step toward determining their impact on erythroid-specific gene expression. SUMMARY As one of the best characterized and accessible cell differentiation systems, erythropoiesis has been at the forefront of studies aiming to conceptualize how chromatin dynamics regulate transcription. New emerging technologies that bring a significantly enhanced spatial and temporal resolution of chromatin structure, and allow investigation of small cell numbers, have advanced our understanding of chromatin dynamics during erythroid differentiation in vivo.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
14
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
15
|
AlAbdi L, Saha D, He M, Dar MS, Utturkar SM, Sudyanti PA, McCune S, Spears BH, Breedlove JA, Lanman NA, Gowher H. Oct4-Mediated Inhibition of Lsd1 Activity Promotes the Active and Primed State of Pluripotency Enhancers. Cell Rep 2021; 30:1478-1490.e6. [PMID: 32023463 DOI: 10.1016/j.celrep.2019.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
An aberrant increase in pluripotency gene (PpG) expression due to enhancer reactivation could induce stemness and enhance the tumorigenicity of cancer stem cells. Silencing of PpG enhancers (PpGe) during embryonic stem cell differentiation involves Lsd1-mediated H3K4me1 demethylation and DNA methylation. Here, we observed retention of H3K4me1 and DNA hypomethylation at PpGe associated with a partial repression of PpGs in F9 embryonal carcinoma cells (ECCs) post-differentiation. H3K4me1 demethylation in F9 ECCs could not be rescued by Lsd1 overexpression. Given our observation that H3K4me1 demethylation is accompanied by strong Oct4 repression in P19 ECCs, we tested if Oct4 interaction with Lsd1 affects its catalytic activity. Our data show a dose-dependent inhibition of Lsd1 activity by Oct4 and retention of H3K4me1 at PpGe in Oct4-overexpressing P19 ECCs. These data suggest that Lsd1-Oct4 interaction in cancer stem cells could establish a "primed" enhancer state that is susceptible to reactivation, leading to aberrant PpG expression.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Putu Ayu Sudyanti
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen McCune
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brice H Spears
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - James A Breedlove
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nadia A Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
17
|
Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR, Pliner HA, Aldinger KA, Pokholok D, Zhang F, Milbank JH, Zager MA, Glass IA, Steemers FJ, Doherty D, Trapnell C, Cusanovich DA, Shendure J. A human cell atlas of fetal chromatin accessibility. Science 2020; 370:eaba7612. [PMID: 33184180 PMCID: PMC7785298 DOI: 10.1126/science.aba7612] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type-specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type-specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.
Collapse
Affiliation(s)
- Silvia Domcke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Jennifer H Milbank
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Darren A Cusanovich
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
18
|
Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat Protoc 2020; 15:3971-3999. [PMID: 33139955 DOI: 10.1038/s41596-020-0399-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
This protocol describes the use of TurboID and split-TurboID in proximity labeling applications for mapping protein-protein interactions and subcellular proteomes in live mammalian cells. TurboID is an engineered biotin ligase that uses ATP to convert biotin into biotin-AMP, a reactive intermediate that covalently labels proximal proteins. Optimized using directed evolution, TurboID has substantially higher activity than previously described biotin ligase-related proximity labeling methods, such as BioID, enabling higher temporal resolution and broader application in vivo. Split-TurboID consists of two inactive fragments of TurboID that can be reconstituted through protein-protein interactions or organelle-organelle interactions, which can facilitate greater targeting specificity than full-length enzymes alone. Proteins biotinylated by TurboID or split-TurboID are then enriched with streptavidin beads and identified by mass spectrometry. Here, we describe fusion construct design and characterization (variable timing), proteomic sample preparation (5-7 d), mass spectrometric data acquisition (2 d), and proteomic data analysis (1 week).
Collapse
|
19
|
Beauchemin H, Möröy T. Multifaceted Actions of GFI1 and GFI1B in Hematopoietic Stem Cell Self-Renewal and Lineage Commitment. Front Genet 2020; 11:591099. [PMID: 33193732 PMCID: PMC7649360 DOI: 10.3389/fgene.2020.591099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Growth factor independence 1 (GFI1) and the closely related protein GFI1B are small nuclear proteins that act as DNA binding transcriptional repressors. Both recognize the same consensus DNA binding motif via their C-terminal zinc finger domains and regulate the expression of their target genes by recruiting chromatin modifiers such as histone deacetylases (HDACs) and demethylases (LSD1) by using an N-terminal SNAG domain that comprises only 20 amino acids. The only region that is different between both proteins is the region that separates the zinc finger domains and the SNAG domain. Both proteins are co-expressed in hematopoietic stem cells (HSCs) and, to some extent, in multipotent progenitors (MPPs), but expression is specified as soon as early progenitors and show signs of lineage bias. While expression of GFI1 is maintained in lymphoid primed multipotent progenitors (LMPPs) that have the potential to differentiate into both myeloid and lymphoid cells, GFI1B expression is no longer detectable in these cells. By contrast, GFI1 expression is lost in megakaryocyte precursors (MKPs) and in megakaryocyte-erythrocyte progenitors (MEPs), which maintain a high level of GFI1B expression. Consequently, GFI1 drives myeloid and lymphoid differentiation and GFI1B drives the development of megakaryocytes, platelets, and erythrocytes. How such complementary cell type- and lineage-specific functions of GFI1 and GFI1B are maintained is still an unresolved question in particular since they share an almost identical structure and very similar biochemical modes of actions. The cell type-specific accessibility of GFI1/1B binding sites may explain the fact that very similar transcription factors can be responsible for very different transcriptional programming. An additional explanation comes from recent data showing that both proteins may have additional non-transcriptional functions. GFI1 interacts with a number of proteins involved in DNA repair and lack of GFI1 renders HSCs highly susceptible to DNA damage-induced death and restricts their proliferation. In contrast, GFI1B binds to proteins of the beta-catenin/Wnt signaling pathway and lack of GFI1B leads to an expansion of HSCs and MKPs, illustrating the different impact that GFI1 or GFI1B has on HSCs. In addition, GFI1 and GFI1B are required for endothelial cells to become the first blood cells during early murine development and are among those transcription factors needed to convert adult endothelial cells or fibroblasts into HSCs. This role of GFI1 and GFI1B bears high significance for the ongoing effort to generate hematopoietic stem and progenitor cells de novo for the autologous treatment of blood disorders such as leukemia and lymphoma.
Collapse
Affiliation(s)
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
20
|
Bosch JA, Chen CL, Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e392. [PMID: 32909689 DOI: 10.1002/wdev.392] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiao-Lin Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
22
|
Ummethum H, Hamperl S. Proximity Labeling Techniques to Study Chromatin. Front Genet 2020; 11:450. [PMID: 32477404 PMCID: PMC7235407 DOI: 10.3389/fgene.2020.00450] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Mammals contain over 200 different cell types, yet nearly all have the same genomic DNA sequence. It is a key question in biology how the genetic instructions in DNA are selectively interpreted by cells to specify various transcriptional programs and therefore cellular identity. The structural and functional organization of chromatin governs the transcriptional state of individual genes. To understand how genomic loci adopt different levels of gene expression, it is critical to characterize all local chromatin factors as well as long-range interactions in the 3D nuclear compartment. Much of our current knowledge regarding protein interactions in a chromatin context is based on affinity purification of chromatin components coupled to mass spectrometry (AP-MS). AP-MS has been invaluable to map strong protein-protein interactions in the nucleus. However, the interaction is detected after cell lysis and biochemical enrichment, allowing for loss or gain of false positive or negative interaction partners. Recently, proximity-dependent labeling methods have emerged as powerful tools for studying chromatin in its native context. These methods take advantage of engineered enzymes that are fused to a chromatin factor of interest and can directly label all factors in proximity. Subsequent pull-down assays followed by mass spectrometry or sequencing approaches provide a comprehensive snapshot of the proximal chromatin interactome. By combining this method with dCas9, this approach can also be extended to study chromatin at specific genomic loci. Here, we review and compare current proximity-labeling approaches available for studying chromatin, with a particular focus on new emerging technologies that can provide important insights into the transcriptional and chromatin interaction networks essential for cellular identity.
Collapse
Affiliation(s)
- Henning Ummethum
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
23
|
van Bergen MGJM, van der Reijden BA. Targeting the GFI1/1B-CoREST Complex in Acute Myeloid Leukemia. Front Oncol 2019; 9:1027. [PMID: 31649884 PMCID: PMC6794713 DOI: 10.3389/fonc.2019.01027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation. Recent studies have shown that small molecules targeting Lysine Specific Demethylase 1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a core component of the chromatin binding CoREST complex. Together with histone deacetylases CoREST regulates gene expression by histone 3 demethylation and deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence) are major interaction partners of KDM1A and recruit the CoREST complex to chromatin in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt the GFI1/1B-CoREST interaction and that this is key to inducing terminal differentiation of leukemia cells.
Collapse
Affiliation(s)
| | - Bert A. van der Reijden
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|