1
|
Puja R, Dutta S, Bose K. Elucidating the interaction of C-terminal domain of Vaccinia-Related Kinase 2A (VRK2A) with B-cell lymphoma-extra Large (Bcl-xL) to decipher its anti-apoptotic role in cancer. Biochem J 2023; 480:1871-1885. [PMID: 37943248 DOI: 10.1042/bcj20230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Vaccinia-Related Kinase 2 (VRK2) is an anti-apoptotic Ser/Thr kinase that enhances drug sensitivity in cancer cells. This protein exists in two isoforms: VRK2A, the longer variant, and VRK2B, which lacks the C-terminal region and transmembrane domain. While the therapeutic importance of VRK2 family proteins is known, the specific roles of VRK2A and its interplay with apoptotic regulator Bcl-xL (B-cell lymphoma-extra Large) remain elusive. Bcl-xL regulates cell death by interacting with BAX (B-cell lymphoma-2 Associated X-protein), controlling its cellular localization and influencing BAX-associated processes and signaling pathways. As VRK2A interacts with the Bcl-xL-BAX complex, comprehending its regulatory engagement with Bcl-xL presents potential avenues for intervening in diseases. Using a multi-disciplinary approach, this study provides information on the cellular localization of VRK2A and establishes its interaction with Bcl-xL in the cellular milieu, pinpointing the interacting site and elucidating its anti-apoptotic property within the complex. Furthermore, this study also put forth a model that highlights the importance of VRK2A in stabilizing the ternary complex, formed with Bcl-xL and BAX, thereby impeding BAX dissociation and hence apoptosis. Therefore, further investigations associated with this important revelation will provide cues for designing cancer therapeutics in the future.
Collapse
Affiliation(s)
- Rashmi Puja
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shubhankar Dutta
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Puja R, Chakraborty A, Dutta S, Bose K. Purification, Characterization and Functional Site Prediction of the Vaccinia-related Kinase 2A Small Transmembrane Domain. MethodsX 2022; 9:101704. [PMID: 35518920 PMCID: PMC9062753 DOI: 10.1016/j.mex.2022.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
Vaccinia-related kinases (VRK) are serine-threonine kinases that regulate several signaling pathways. The isoform-VRK2A of one such kinase VRK2 controls cell stress response by interacting with TAK1, a mitogen-activated protein 3 kinase (MAP3K), via its partly cytosolic C-terminal transmembrane domain (VTMD). To establish the driving force and identify the key residues of the VRK2A-TAK1 interaction, we expressed and purified the standalone 3.6 kDa VTMD in the bacterial system using a unique and atypical two-step approach, when the effort to obtain full-length VRK2A remained unsuccessful. Characterization of biophysical properties demonstrated that VTMD domain maintains its structural integrity. Furthermore, dissecting the VRK2A-TAK1 binding interface using in silico tools provided important cues toward engineering the VRK2A-TAK1 interface to modulate its functions with desired characteristics. Most importantly, this novel purification strategy demonstrates its universal applicability in protein biochemistry research by serving as a model system for obtaining difficult-to-purify small proteins or domains.VRK2A is a highly disordered transmembrane (TM) kinase, whose TM domain interacts with TAK1 (transforming growth factor-β-activated kinase). The standalone VRK2A-TM domain (VTMD) was purified using affinity chromatography followed by two-step centricon based approach. Biophysical and in silico analyses confirmed structural integrity of the domain.
Collapse
|
3
|
Chen J, Qiao K, Zhang C, Zhou X, Du Q, Deng Y, Cao L. VRK2 activates TNFα/NF-κB signaling by phosphorylating IKKβ in pancreatic cancer. Int J Biol Sci 2022; 18:1288-1302. [PMID: 35173553 PMCID: PMC8771851 DOI: 10.7150/ijbs.66313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022] Open
Abstract
NF-κB signaling is active in more than 50% of patients with pancreatic cancer and plays an important role in promoting the progression of pancreatic cancer. Revealing the activation mechanism of NF-κB signaling is important for the treatment of pancreatic cancer. In this study, the regulation of TNFα/NF-κB signaling by VRK2 (vaccinia-related kinase 2) was investigated. The levels of VRK2 protein were examined by immunohistochemistry (IHC). The functions of VRK2 in the progression of pancreatic cancer were examined using CCK8 assay, anchorage-independent assay, EdU assay and tumorigenesis assay. The regulation of VRK2 on the NF-κB signaling was investigated by immunoprecipitation and invitro kinase assay. It was discovered in this study that the expression of VRK2 was upregulated in pancreatic cancer and that the VRK2 expression level was significantly correlated with the pathological characteristics and the survival time of patients. VRK2 promoted the growth, sphere formation and subcutaneous tumorigenesis of pancreatic carcinoma cells as well as the organoid growth derived from the pancreatic cancer mouse model. Investigation of the molecular mechanism indicated that VRK2 interacts with IKKβ, phosphorylating its Ser177 and Ser181 residues and thus activating the TNFα/NF-κB signaling pathway. An IKKβ inhibitors abolished the promotive effect of VRK2 on the growth of organoids. The findings of this study indicate that VRK2 promotes the progression of pancreatic cancer by activating the TNFα/NF-κB signaling pathway, suggesting that VRK2 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexiong Qiao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Du
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis 2021; 24:453-470. [PMID: 33973075 DOI: 10.1007/s10456-021-09787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Angiogenesis plays a critical role in both physiological responses and disease pathogenesis. Excessive angiogenesis can promote neoplastic diseases and retinopathies, while inadequate angiogenesis can lead to aberrant perfusion and impaired wound healing. Transforming growth factor β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is a key modulator involved in a range of cellular functions including the immune responses, cell survival and death. TAK1 is activated in response to various stimuli such as proinflammatory cytokines, hypoxia, and oxidative stress. Emerging evidence has recently suggested that TAK1 is intimately involved in angiogenesis and mediates pathogenic processes related to angiogenesis. Several detailed mechanisms by which TAK1 regulates pathological angiogenesis have been clarified, and potential therapeutics targeting TAK1 have emerged. In this review, we summarize recent studies of TAK1 in angiogenesis and discuss the crosstalk between TAK1 and signaling pathways involved in pathological angiogenesis. We also discuss the approaches for selectively targeting TAK1 and highlight the rationales of therapeutic strategies based on TAK1 inhibition for the treatment of pathological angiogenesis.
Collapse
|
5
|
He WR, Cao LB, Yang YL, Hua D, Hu MM, Shu HB. VRK2 is involved in the innate antiviral response by promoting mitostress-induced mtDNA release. Cell Mol Immunol 2021; 18:1186-1196. [PMID: 33785841 PMCID: PMC8093274 DOI: 10.1038/s41423-021-00673-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial stress (mitostress) triggered by viral infection or mitochondrial dysfunction causes the release of mitochondrial DNA (mtDNA) into the cytosol and activates the cGAS-mediated innate immune response. The regulation of mtDNA release upon mitostress remains uncharacterized. Here, we identified mitochondria-associated vaccinia virus-related kinase 2 (VRK2) as a key regulator of this process. VRK2 deficiency inhibited the induction of antiviral genes and caused earlier and higher mortality in mice after viral infection. Upon viral infection, VRK2 associated with voltage-dependent anion channel 1 (VDAC1) and promoted VDAC1 oligomerization and mtDNA release, leading to the cGAS-mediated innate immune response. VRK2 was also required for mtDNA release and cGAS-mediated innate immunity triggered by nonviral factors that cause Ca2+ overload but was not required for the cytosolic nucleic acid-triggered innate immune response. Thus, VRK2 plays a crucial role in the mtDNA-triggered innate immune response and may be a potential therapeutic target for infectious and autoimmune diseases associated with mtDNA release.
Collapse
Affiliation(s)
- Wen-Rui He
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Li-Bo Cao
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yu-Lin Yang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Duo Hua
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
6
|
Peled M, Tocheva AS, Adam K, Mor A. VRK2 inhibition synergizes with PD-1 blockade to improve T cell responses. Immunol Lett 2021; 233:42-47. [PMID: 33741379 DOI: 10.1016/j.imlet.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/11/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Therapeutic programmed cell death protein 1 (PD-1) blockade enhances T cell mediated anti-tumor immunity but many patients do not respond and a significant proportion develops inflammatory toxicities. To develop better therapeutics and to understand the signaling pathways downstream of PD-1 we performed phosphoproteomic analysis of PD-1 and identified vaccinia related kinase 2 (VRK2) as a key mediator of PD-1 signaling. Using genetic and pharmacological approaches, we discovered that VRK2 is required for PD-1-induced phosphorylation of the protein p21 activated kinase 2 (PAK2), and for the inhibition of IL-2, IL-8, and IFN-γ secretion. Moving into in vivo syngeneic tumor models, pharmacologic inhibition of VRK2 in combination with PD-1 blockade enhanced tumor clearance through T cell activation. This study suggests that VRK2 is a unique therapeutic target and that combination of VRK2 inhibitors with PD-1 blockade may improve cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Peled
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna S Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kieran Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA; Division of Rheumatology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Suzuki M, Asai Y, Kagi T, Noguchi T, Yamada M, Hirata Y, Matsuzawa A. TAK1 Mediates ROS Generation Triggered by the Specific Cephalosporins through Noncanonical Mechanisms. Int J Mol Sci 2020; 21:ijms21249497. [PMID: 33327477 PMCID: PMC7764951 DOI: 10.3390/ijms21249497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
It is known that a wide variety of antibacterial agents stimulate generation of reactive oxygen species (ROS) in mammalian cells. However, its mechanisms are largely unknown. In this study, we unexpectedly found that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is involved in the generation of mitochondrial ROS (mtROS) initiated by cefotaxime (CTX), one of specific antibacterial cephalosporins that can trigger oxidative stress-induced cell death. TAK1-deficient macrophages were found to be sensitive to oxidative stress-induced cell death stimulated by H2O2. Curiously, however, TAK1-deficient macrophages exhibited strong resistance to oxidative stress-induced cell death stimulated by CTX. Microscopic analysis revealed that CTX-induced ROS generation was overridden by knockout or inhibition of TAK1, suggesting that the kinase activity of TAK1 is required for CTX-induced ROS generation. Interestingly, pharmacological blockade of the TAK1 downstream pathways, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, did not affect the CTX-induced ROS generation. In addition, we observed that CTX promotes translocation of TAK1 to mitochondria. Together, these observations suggest that mitochondrial TAK1 mediates the CTX-induced mtROS generation through noncanonical mechanisms. Thus, our data demonstrate a novel and atypical function of TAK1 that mediates mtROS generation triggered by the specific cephalosporins.
Collapse
Affiliation(s)
| | | | | | - Takuya Noguchi
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| | | | | | - Atsushi Matsuzawa
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| |
Collapse
|
8
|
Almarzooq S, Kwon J, Willis A, Craig J, Morris BJ. Novel alternatively-spliced exons of the VRK2 gene in mouse brain and microglial cells. Mol Biol Rep 2020; 47:5127-5136. [PMID: 32583282 PMCID: PMC7417415 DOI: 10.1007/s11033-020-05584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
Common sequence variations in the VRK2 gene contribute to genetic risk for various psychiatric diseases including schizophrenia and major depressive disorder. Despite the clear importance of studying the regulation and function of VRK2 for understanding the causes of these diseases, the organisation and expression of the gene remain poorly characterised. Using reverse-transcriptase-PCR, we have amplifed exons of Vrk2 mRNA from regions of mouse brain, and from different cell classes comprising neurones, astrocytes and microglial cells. We find that Vrk2 mRNA is expressed in all cell types, and that the splicing of the mouse Vrk2 gene is much more complex than previously appreciated. In addition to the predicted alternative splicing (absence/presence) of the penultimate 3 prime exon, we also detected a variety of 5 prime structures, including two novel exons spanning the first characterised exon (exon 1), which we term exons 1a and 1b. While expressed in neurones and astrocytes, exon 1b was not expressed in microglial cells. Expression of transcripts containing exon 1a in microglia was increased by immune stimulation. An additional truncated transcript lacking 7 central exons was also identified. As with the human gene, the results confirm complex patterns of alternative splicing which are likely to be relevant for understanding the physiological and pathological function of the gene in the CNS.
Collapse
Affiliation(s)
- Salsabil Almarzooq
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - Jaedeok Kwon
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - Ashleigh Willis
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - John Craig
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, G12 8QQ, Glasgow, UK.
| |
Collapse
|
9
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
10
|
Multifaceted roles of TAK1 signaling in cancer. Oncogene 2019; 39:1402-1413. [PMID: 31695153 PMCID: PMC7023988 DOI: 10.1038/s41388-019-1088-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
Context-specific signaling is a prevalent theme in cancer biology wherein individual molecules and pathways can have multiple or even opposite effects depending on the tumor type. TAK1 represents a particularly notable example of such signaling diversity in cancer progression. Originally discovered as a TGF-β-activated kinase, over the years it has been shown to respond to numerous other stimuli to phosphorylate a wide range of downstream targets and elicit distinct cellular responses across cell and tissue types. Here we present a comprehensive review of TAK1 signaling and provide important therapeutic perspectives related to its function in different cancers.
Collapse
|
11
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
12
|
Ryu HG, Kim S, Lee S, Lee E, Kim HJ, Kim DY, Kim KT. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem 2019; 149:413-426. [PMID: 30488434 DOI: 10.1111/jnc.14638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Misfolded proteins with abnormal polyglutamine (polyQ) expansion cause neurodegenerative disorders, including Huntington's disease. Recently, it was found that polyQ aggregates accumulate as a result of vaccinia-related kinase 2 (VRK2)-mediated degradation of TCP-1 ring complex (TRiC)/chaperonin-containing TCP-1 (CCT), which has an essential role in the prevention of polyQ protein aggregation and cytotoxicity. The levels of VRK2 are known to be much higher in actively proliferating cells but are maintained at a low level in the brain via an unknown mechanism. Here, we found that basal levels of neuronal cell-specific VRK2 mRNA are maintained by post-transcriptional, rather than transcriptional, regulation. Moreover, heterogeneous nuclear ribonucleoprotein Q (HNRNP Q) specifically binds to the 3'untranslated region of VRK2 mRNA in neuronal cells to reduce the mRNA stability. As a result, we found a dramatic decrease in CCT4 protein levels in response to a reduction in HNRNP Q levels, which was followed by an increase in polyQ aggregation in human neuroblastoma cells and mouse cortical neurons. Taken together, these results provide new insights into how neuronal HNRNP Q decreases VRK2 mRNA stability and contributes to the prevention of Huntington's disease, while also identifying new prognostic markers of HD.
Collapse
Affiliation(s)
- Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eunju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Advanced Bio Convergence Center, Pohang Technopark, Pohang, Korea
| | - Hyo-Jin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,SL BIGEN, Seongnam, Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
13
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
14
|
Couñago RM, Allerston CK, Savitsky P, Azevedo H, Godoi PH, Wells CI, Mascarello A, de Souza Gama FH, Massirer KB, Zuercher WJ, Guimarães CRW, Gileadi O. Structural characterization of human Vaccinia-Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations. Sci Rep 2017; 7:7501. [PMID: 28790404 PMCID: PMC5548783 DOI: 10.1038/s41598-017-07755-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/29/2017] [Indexed: 11/12/2022] Open
Abstract
The human genome encodes two active Vaccinia-related protein kinases (VRK), VRK1 and VRK2. These proteins have been implicated in a number of cellular processes and linked to a variety of tumors. However, understanding the cellular role of VRKs and establishing their potential use as targets for therapeutic intervention has been limited by the lack of tool compounds that can specifically modulate the activity of these kinases in cells. Here we identified BI-D1870, a dihydropteridine inhibitor of RSK kinases, as a promising starting point for the development of chemical probes targeting the active VRKs. We solved co-crystal structures of both VRK1 and VRK2 bound to BI-D1870 and of VRK1 bound to two broad-spectrum inhibitors. These structures revealed that both VRKs can adopt a P-loop folded conformation, which is stabilized by different mechanisms on each protein. Based on these structures, we suggest modifications to the dihydropteridine scaffold that can be explored to produce potent and specific inhibitors towards VRK1 and VRK2.
Collapse
Affiliation(s)
- Rafael M Couñago
- Structural Genomics Consortium, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil. .,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Charles K Allerston
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Paulo H Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Katlin B Massirer
- Structural Genomics Consortium, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil.,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Opher Gileadi
- Structural Genomics Consortium, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil.,Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
15
|
Deletion of the Vaccinia Virus B1 Kinase Reveals Essential Functions of This Enzyme Complemented Partly by the Homologous Cellular Kinase VRK2. J Virol 2017; 91:JVI.00635-17. [PMID: 28515294 DOI: 10.1128/jvi.00635-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
The vaccinia virus B1 kinase is highly conserved among poxviruses and is essential for the viral life cycle. B1 exhibits a remarkable degree of similarity to vaccinia virus-related kinases (VRKs), a family of cellular kinases, suggesting that the viral enzyme has evolved to mimic VRK activity. Indeed, B1 and VRKs have been demonstrated to target a shared substrate, the DNA binding protein BAF, elucidating a signaling pathway important for both mitosis and the antiviral response. In this study, we further characterize the role of B1 during vaccinia infection to gain novel insights into its regulation and integration with cellular signaling pathways. We begin by describing the construction and characterization of the first B1 deletion virus (vvΔB1) produced using a complementing cell line expressing the viral kinase. Examination of vvΔB1 revealed that B1 is critical for the production of infectious virions in various cell types and is sufficient for BAF phosphorylation. Interestingly, the severity of the defect in DNA replication following the loss of B1 varied between cell types, leading us to posit that cellular VRKs partly complement for the absence of B1 in some cell lines. Using cell lines devoid of either VRK1 or VRK2, we tested this hypothesis and discovered that VRK2 expression facilitates DNA replication and allows later stages of the viral life cycle to proceed in the absence of B1. Finally, we present evidence that the impact of VRK2 on vaccinia virus is largely independent of BAF phosphorylation. These data support a model in which B1 and VRK2 share additional substrates important for the replication of cytoplasmic poxviruses.IMPORTANCE Viral mimicry of cellular signaling modulators provides clear evidence that the pathogen targets an important host pathway during infection. Poxviruses employ numerous viral homologs of cellular proteins, the study of which have yielded insights into signaling pathways used by both virus and cells alike. The vaccinia virus B1 protein is a homolog of cellular vaccinia virus-related kinases (VRKs) and is needed for viral DNA replication and likely other stages of the viral life cycle. However, much remains to be learned about how B1 and VRKs overlap functionally. This study utilizes new tools, including a B1 deletion virus and VRK knockout cells, to further characterize the functional links between the viral and cellular enzymes. As a result, we have discovered that B1 and VRK2 target a common set of substrates vital to productive infection of this large cytoplasmic DNA virus.
Collapse
|
16
|
Birendra Kc, May DG, Benson BV, Kim DI, Shivega WG, Ali MH, Faustino RS, Campos AR, Roux KJ. VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol Biol Cell 2017. [PMID: 28637768 PMCID: PMC5555652 DOI: 10.1091/mbc.e17-03-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By the use of comparative BioID of nuclear envelope (NE) proteins lamin A and Sun2, as well as a minimal inner nuclear membrane targeting motif, VRK2 is identified as a novel constituent of the NE. A-type lamins retain the transmembrane kinase VRK2 at the NE, where it phosphorylates and regulates the nuclear mobility of BAF. The nuclear envelope (NE) is critical for numerous fundamental cellular functions, and mutations in several NE constituents can lead to a heterogeneous spectrum of diseases. We used proximity biotinylation to uncover new constituents of the inner nuclear membrane (INM) by comparative BioID analysis of lamin A, Sun2 and a minimal INM-targeting motif. These studies identify vaccinia-related kinase-2 (VRK2) as a candidate constituent of the INM. The transmembrane VRK2A isoform is retained at the NE by association with A-type lamins. Furthermore, VRK2A physically interacts with A-type, but not B-type, lamins. Finally, we show that VRK2 phosphorylates barrier to autointegration factor (BAF), a small and highly dynamic chromatin-binding protein, which has roles including NE reassembly, cell cycle, and chromatin organization in cells, and subtly alters its nuclear mobility. Together these findings support the value of using BioID to identify unrecognized constituents of distinct subcellular compartments refractory to biochemical isolation and reveal VRK2A as a transmembrane kinase in the NE that regulates BAF.
Collapse
Affiliation(s)
- Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Danielle G May
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Benjamin V Benson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Winnie G Shivega
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Manaal H Ali
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Randolph S Faustino
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| | - Alexandre R Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
17
|
Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Post-Translational Modifications of the TAK1-TAB Complex. Int J Mol Sci 2017; 18:ijms18010205. [PMID: 28106845 PMCID: PMC5297835 DOI: 10.3390/ijms18010205] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family that is activated by growth factors and cytokines such as TGF-β, IL-1β, and TNF-α, and mediates a wide range of biological processes through activation of the nuclear factor-κB (NF-κB) and the mitogen-activated protein (MAP) kinase signaling pathways. It is well established that activation status of TAK1 is tightly regulated by forming a complex with its binding partners, TAK1-binding proteins (TAB1, TAB2, and TAB3). Interestingly, recent evidence indicates the importance of post-translational modifications (PTMs) of TAK1 and TABs in the regulation of TAK1 activation. To date, a number of PTMs of TAK1 and TABs have been revealed, and these PTMs appear to fine-tune and coordinate TAK1 activities depending on the cellular context. This review therefore focuses on recent advances in the understanding of the PTMs of the TAK1-TAB complex.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Miki Takahashi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Tohru Morishita
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
18
|
Chang H, Zhang C, Xiao X, Pu X, Liu Z, Wu L, Li M. Further evidence of VRK2 rs2312147 associated with schizophrenia. World J Biol Psychiatry 2016; 17:457-66. [PMID: 27382989 DOI: 10.1080/15622975.2016.1200746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Previous genome-wide association studies (GWAS) have reported that rs2312147 near the VRK2 gene was significantly associated with schizophrenia in populations of European descent, but negative results have also been observed. METHODS To perform a systematic meta-analysis, we collected statistical data of rs2312147 from both GWAS and individual replication samples in European and Asian populations, which finally included up to 30,867 schizophrenia patients and 59,863 healthy controls. RESULTS The VRK2 rs2312147 was genome-wide significantly associated with schizophrenia in combined populations (P = 1.31 × 10(-15), odds ratio, OR = 1.10) as well as in Europeans only (P = 2.35 × 10(-12), OR =1.09). In Asian samples, the SNP did not reach genome-wide level of statistical significance (P = 1.23 × 10 (-) (5), OR =1.19), which is likely due to the limited power of small sample size in this population (2,974 cases and 4,786 controls). However, the effect size of rs2312147 did not alter significantly between populations, and is also in agreement with the observed effect sizes of other genetic risk loci in large scale studies. CONCLUSIONS Our data provides further evidence for the genetic contributions of VRK2 rs2312147 to schizophrenia susceptibility especially in Europeans, while further replication analyses in Asian populations are still needed, and future studies, e.g., the underlying molecular mechanisms of genetic risk, are necessary.
Collapse
Affiliation(s)
- Hong Chang
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Chen Zhang
- b Division of Mood Disorders , Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiao Xiao
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Xingfu Pu
- c The Second People's Hospital of Yuxi City , Yuxi , Yunnan , China
| | - Zichao Liu
- d Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Department of Biological Science and Technology , Kunming University , Kunming , Yunnan , China
| | - Lichuan Wu
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Ming Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| |
Collapse
|
19
|
Del Puerto-Nevado L, Marin-Arango JP, Fernandez-Aceñero MJ, Arroyo-Manzano D, Martinez-Useros J, Borrero-Palacios A, Rodriguez-Remirez M, Cebrian A, Gomez Del Pulgar T, Cruz-Ramos M, Carames C, Lopez-Botet B, Garcia-Foncillas J. Predictive value of vrk 1 and 2 for rectal adenocarcinoma response to neoadjuvant chemoradiation therapy: a retrospective observational cohort study. BMC Cancer 2016; 16:519. [PMID: 27456229 PMCID: PMC4960836 DOI: 10.1186/s12885-016-2574-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
Abstract
Background Neoadjuvant chemoradiotherapy (NACRT) followed by surgical resection is the standard therapy for locally advanced rectal cancer. However, tumor response following NACRT varies, ranging from pathologic complete response to disease progression. We evaluated the kinases VRK1 and VRK2, which are known to play multiple roles in cellular proliferation, cell cycle regulation, and carcinogenesis, and as such are potential predictors of tumor response and may aid in identifying patients who could benefit from NACRT. Methods Sixty-seven pretreatment biopsies were examined for VRK1 and VRK2 expression using tissue microarrays. VRK1 and VRK2 Histoscores were combined by linear addition, resulting in a new variable designated as “composite score”, and the statistical significance of this variable was assessed by univariate and multivariate logistic regression. The Hosmer-Lemeshow goodness-of-fit test and area under the ROC curve (AUC) analysis were carried out to evaluate calibration and discrimination, respectively. A nomogram was also developed. Results Univariate logistic regression showed that tumor size as well as composite score were statistically significant. Both variables remained significant in the multivariate analysis, obtaining an OR for tumor size of 0.65 (95 % CI, 0.45–0.94; p = 0.021) and composite score of 1.24 (95 % CI, 1.07–1.48; p = 0.005). Hosmer-Lemeshow test showed an adequate model calibration (p = 0.630) and good discrimination was also achieved, AUC 0.79 (95 % CI, 0.68–0.90). Conclusions This study provides novel data on the role of VRK1 and VRK2 in predicting tumor response to NACRT, and we propose a model with high predictive ability which could have a substantial impact on clinical management of locally advanced rectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2574-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Juan Pablo Marin-Arango
- Radiotherapy Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avda Reyes Catolicos, 2, Madrid, 28040, Spain
| | - Maria Jesus Fernandez-Aceñero
- Pathology Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, Madrid, 28040, Spain.,Present address at University Hospital Clinico San Carlos, Profesor Martin Lagos, S/N, Madrid, 28040, Spain
| | - David Arroyo-Manzano
- Clinical Biostatistics Unit, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Viejo km. 9,100, 28034 Madrid, Spain and CIBER of Epidemiology and Public Health (CIBERESP), C/Melchor Fernández Almagro, 3-5, Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Aurea Borrero-Palacios
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Maria Rodriguez-Remirez
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Arancha Cebrian
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Teresa Gomez Del Pulgar
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Marlid Cruz-Ramos
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Cristina Carames
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain
| | - Begoña Lopez-Botet
- Radiotherapy Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avda Reyes Catolicos, 2, Madrid, 28040, Spain
| | - Jesús Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", Avenida Reyes Catolicos, 2, 28040, Madrid, Spain.
| |
Collapse
|
20
|
Oncogenic Sox2 regulates and cooperates with VRK1 in cell cycle progression and differentiation. Sci Rep 2016; 6:28532. [PMID: 27334688 PMCID: PMC4917848 DOI: 10.1038/srep28532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Sox2 is a pluripotency transcription factor that as an oncogene can also regulate cell proliferation. Therefore, genes implicated in several different aspects of cell proliferation, such as the VRK1 chromatin-kinase, are candidates to be targets of Sox2. Sox 2 and VRK1 colocalize in nuclei of proliferating cells forming a stable complex. Sox2 knockdown abrogates VRK1 gene expression. Depletion of either Sox2 or VRK1 caused a reduction of cell proliferation. Sox2 up-regulates VRK1 expression and both proteins cooperate in the activation of CCND1. The accumulation of VRK1 protein downregulates SOX2 expression and both proteins are lost in terminally differentiated cells. Induction of neural differentiation with retinoic acid resulted in downregulation of Sox2 and VRK1 that inversely correlated with the expression of differentiation markers such as N-cadherin, Pax6, mH2A1.2 and mH2A2. Differentiation-associated macro histones mH2A1.2and mH2A2 inhibit CCND1 and VRK1 expression and also block the activation of the VRK1 promoter by Sox2. VRK1 is a downstream target of Sox2 and both form an autoregulatory loop in epithelial cell differentiation.
Collapse
|
21
|
Ge ZR, Xu MC, Huang YU, Zhang CJ, Lin JE, Ruan CW. Cardioprotective effect of notoginsenoside R1 in a rabbit lung remote ischemic postconditioning model via activation of the TGF-β1/TAK1 signaling pathway. Exp Ther Med 2016; 11:2341-2348. [PMID: 27284318 DOI: 10.3892/etm.2016.3222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/11/2016] [Indexed: 12/29/2022] Open
Abstract
Pharmacological postconditioning using cardioprotective agents is able to reduce myocardial infarct size. Notoginsenoside R1 (NG-R1), a phytoestrogen isolated from Panax notoginseng saponins (PNS), is considered to have anti-oxidative and anti-apoptotic properties. However, its cardioprotective properties and underlying mechanisms remain largely unknown. The aim of the present study was to determine the cardioprotective and anti-apoptotic effects of NG-R1 in an ischemia-reperfusion (IR)-induced myocardial injury rabbit model. A total of 45 Japanese big-ear rabbits were equally randomized to three groups: Control group, remote ischemic postconditioning (RIP) group and NG-R1 intervention group. At the endpoint of the experiment, the animals were sacrificed to remove myocardial tissues for the detection of transforming growth factor (TGF)-β1-TGF-β activated kinase 1 (TAK1) pathway-related proteins by immunohistochemistry and western blot analysis, the activities of caspase-3, -8 and -9 in myocardial cells by fluorometric assay, and the apoptosis of myocardial cells by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling. Right and left lung tissues were stained with hematoxylin and eosin (H&E) to observe the severity of injury. NG-R1 treatment reduced the activity of superoxide dismutase, increased the content of malondialdehyde, reduced the activities of caspase-3, -8 and -9, and inhibited the apoptosis of myocardial cells in rabbits undergoing RIP. In addition, the expression of TGF-β1-TAK1 signaling pathway-related proteins was downregulated following NG-R1 intervention. H&E staining of bilateral lung tissues showed that cell morphology was generally intact without significant alveolar congestion, and there was no significant difference among the three groups. These results indicate that NG-R1 protects the heart against IR injury, possibly by inhibiting the activation of the TGF-β1-TAK1 signaling pathway and attenuating apoptotic stress in the myocardium.
Collapse
Affiliation(s)
- Zhi-Ru Ge
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Mao-Chun Xu
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Y U Huang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chen-Jun Zhang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - J E Lin
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chang-Wu Ruan
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
22
|
Hsiang CY, Lin LJ, Kao ST, Lo HY, Chou ST, Ho TY. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:768-777. [PMID: 26141764 DOI: 10.1016/j.phymed.2015.05.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. PURPOSE The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. METHODS HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. RESULTS Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. CONCLUSION Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities.
Collapse
Affiliation(s)
- Chien-Yun Hsiang
- Department of Microbiology, China Medical University, Taichung 40402, Taiwan
| | - Li-Jen Lin
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shun-Ting Chou
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
23
|
Vaccinia-Related Kinase 2 Controls the Stability of the Eukaryotic Chaperonin TRiC/CCT by Inhibiting the Deubiquitinating Enzyme USP25. Mol Cell Biol 2015; 35:1754-62. [PMID: 25755282 DOI: 10.1128/mcb.01325-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
Molecular chaperones monitor the proper folding of misfolded proteins and function as the first line of defense against mutant protein aggregation in neurodegenerative diseases. The eukaryotic chaperonin TRiC is a potent suppressor of mutant protein aggregation and toxicity in early stages of disease progression. Elucidation of TRiC functional regulation will enable us to better understand the pathological mechanisms of neurodegeneration. We have previously shown that vaccinia-related kinase 2 (VRK2) downregulates TRiC protein levels through the ubiquitin-proteasome system by recruiting the E3 ligase COP1. However, although VRK2 activity was necessary in TRiC downregulation, the phosphorylated substrate was not determined. Here, we report that USP25 is a novel TRiC interacting protein that is also phosphorylated by VRK2. USP25 catalyzed deubiquitination of the TRiC protein and stabilized the chaperonin, thereby reducing accumulation of misfolded polyglutamine protein aggregates. Notably, USP25 deubiquitinating activity was suppressed when VRK2 phosphorylated the Thr(680), Thr(727), and Ser(745) residues. Impaired USP25 deubiquitinating activity after VRK2-mediated phosphorylation may be a critical pathway in TRiC protein destabilization.
Collapse
|
24
|
Salzano M, Vázquez-Cedeira M, Sanz-García M, Valbuena A, Blanco S, Fernández IF, Lazo PA. Vaccinia-related kinase 1 (VRK1) confers resistance to DNA-damaging agents in human breast cancer by affecting DNA damage response. Oncotarget 2015; 5:1770-8. [PMID: 24731990 PMCID: PMC4039124 DOI: 10.18632/oncotarget.1678] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) belongs to a group of sixteen kinases associated to a poorer prognosis in human breast carcinomas, particularly in estrogen receptor positive cases based on gene expression arrays. In this work we have studied the potential molecular mechanism by which the VRK1 protein can contribute to a poorer prognosis in this disease. For this aim it was first analyzed by immunohistochemistry the VRK1 protein level in normal breast and in one hundred and thirty six cases of human breast cancer. The effect of VRK1 to protect against DNA damage was determined by studying the effect of its knockdown on the formation of DNA repair foci assembled on 53BP1 in response to treatment with ionizing radiation or doxorubicin in two breast cancer cell lines. VRK1 protein was detected in normal breast and in breast carcinomas at high levels in ER and PR positive tumors. VRK1 protein level was significantly lower in ERBB2 positive cases. Next, to identify a mechanism that can link VRK1 to poorer prognosis, VRK1 was knocked-down in two breast cancer cell lines that were treated with ionizing radiation or doxorubicin, both inducing DNA damage. Loss of VRK1 resulted in reduced formation of DNA-damage repair foci complexes assembled on the 53BP1 scaffold protein, and this effect was independent of damaging agent or cell type. This observation is consistent with detection of high VRK1 protein levels in ER and PR positive breast cancers. We conclude that VRK1 can contribute to make these tumors more resistant to DNA damage-based therapies, such as ionizing radiation or doxorubicin, which is consistent with its association to a poor prognosis in ER positive breast cancer. VRK1 is potential target kinase for development of new specific inhibitors which can facilitate sensitization to other treatments in combination therapies; or alternatively be used as a new cancer drugs.
Collapse
Affiliation(s)
- Marcella Salzano
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Li K, Yang B, Zhao C. Transforming growth factor-β-activated kinase 1 enhances H2O2-induced apoptosis independently of reactive oxygen species in cardiomyocytes. J Cardiovasc Med (Hagerstown) 2015; 15:565-71. [PMID: 23751595 DOI: 10.2459/jcm.0b013e32836138f1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Heat shock protein 70 (HSP70) protects against cardiac diseases such as ischemia/reperfusion injury and myocardial infarction. However, the underlying mechanisms have not yet been fully characterized. METHODS In this study, we investigated the effects of reactive oxygen species (ROS) and transforming growth factor-β-activated kinase 1 (TAK1) on HSP70-regulated cardiomyocyte protection. Cultured cardiomyocytes of neonatal rats were transfected with HSP70, TAK1 or both of them before exposure to H2O2, and the ROS generation, p38 mitogen-activated protein kinase (p38) activity and apoptosis were examined. RESULTS H2O2 significantly enhanced intracellular ROS generation and apoptosis as expected, and all these cellular events were greatly abolished by overexpression of HSP70. However, H2O2-induced increments in p38 phosphorylation and cardiac cell apoptosis were largely enhanced by TAK1 overexpression, whereas the similar transfection did not affect the ROS generation in the cardiomyocytes. Moreover, inhibition of H2O2-increased ROS generation, p38 phosphorylation, and cardiomyocytes apoptosis by overexpression of HSP70 tended to disappear when the cells were cotransfected with TAK1. CONCLUSION Our data suggest that HSP70 protects cardiomyocytes from apoptosis under oxidative stress through downregulation of intracellular ROS generation and inhibition of p38 phosphorylation. Although TAK1 itself has no effect on intracellular ROS accumulation, it may affect the inhibitory effects of HSP70 on ROS generation, p38 activity and cardiomyocyte injury.
Collapse
Affiliation(s)
- Kaiwei Li
- aDepartment of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China bHuangshi Central Hospital, Huangshi, 435000, HuBei, China
| | | | | |
Collapse
|
26
|
Sohn H, Kim B, Kim KH, Kim MK, Choi TK, Lee SH. Effects of VRK2 (rs2312147) on white matter connectivity in patients with schizophrenia. PLoS One 2014; 9:e103519. [PMID: 25079070 PMCID: PMC4117506 DOI: 10.1371/journal.pone.0103519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/02/2014] [Indexed: 12/04/2022] Open
Abstract
Recent genome-wide association studies of schizophrenia reported a novel risk variant, rs2312147 at vaccinia-related kinase 2 gene (VRK2), in multiple Asian and European samples. However, its effect on the brain structure in schizophrenia is little known. We analyzed the brain structure of 36 schizophrenia patients and 18 healthy subjects with regard to rs2312147 genotype groups. Brain magnetic resonance scans for gray matter (GM) and white matter (WM) analysis, and genotype analysis for VRK2 rs2312147, were conducted. The Positive and Negative Syndrome Scale and the Digit Symbol Test were assessed for schizophrenia patients. There was no significant difference in either GM volume or WM connectivity with regard to rs2312147 genotype in healthy subjects. In contrast, we found significant differences in the WM connectivity between rs2312147 CC and CT/TT genotype groups of schizophrenia patients. The related brain areas included the splenium of corpus callosum, the left occipital lobe WM, the internal capsule (left anterior limb and right retrolenticular part), the bilateral temporal lobe WM, the left fornix/stria terminalis, the left cingulate gyrus WM, and the left parietal lobe WM. Voxelwise correlation analysis revealed that the Digit Symbol Test scores (age corrected) correlated with the fractional anisotropy in WM tracts that previously showed significant group differences between the CT/TT and CC genotypes in the rs2312147 CT/TT genotype group, while no significant correlation was found in the CC genotype group. Our data may provide evidence for the effect of VRK2 on WM connectivity in patients with schizophrenia.
Collapse
Affiliation(s)
- Hoyoung Sohn
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Keun Hyang Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Min-Kyoung Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Tai Kiu Choi
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
27
|
Mills RD, Mulhern TD, Liu F, Culvenor JG, Cheng HC. Prediction of the Repeat Domain Structures and Impact of Parkinsonism-Associated Variations on Structure and Function of all Functional Domains of Leucine-Rich Repeat Kinase 2 (LRRK2). Hum Mutat 2014; 35:395-412. [DOI: 10.1002/humu.22515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Ryan D. Mills
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Terrence D. Mulhern
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Fei Liu
- Department of Chemistry & Biomolecular Sciences; Macquarie University; NSW Australia
| | - Janetta G. Culvenor
- Department of Pathology; University of Melbourne; Parkville Victoria Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
28
|
Vaccinia-related kinase 2 mediates accumulation of polyglutamine aggregates via negative regulation of the chaperonin TRiC. Mol Cell Biol 2013; 34:643-52. [PMID: 24298020 DOI: 10.1128/mcb.00756-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington's disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington's disease.
Collapse
|
29
|
Kerner B, Rao AR, Christensen B, Dandekar S, Yourshaw M, Nelson SF. Rare Genomic Variants Link Bipolar Disorder with Anxiety Disorders to CREB-Regulated Intracellular Signaling Pathways. Front Psychiatry 2013; 4:154. [PMID: 24348429 PMCID: PMC3842585 DOI: 10.3389/fpsyt.2013.00154] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/09/2013] [Indexed: 11/28/2022] Open
Abstract
Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood-stabilizing drugs, such as tricyclic antidepressants, lithium, and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.
Collapse
Affiliation(s)
- Berit Kerner
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Aliz R. Rao
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Sugandha Dandekar
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Yourshaw
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Stanley F. Nelson
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
30
|
Rodríguez-Hernández I, Vázquez-Cedeira M, Santos-Briz A, García JL, Fernández IF, Gómez-Moreta JA, Martin-Vallejo J, González-Sarmiento R, Lazo PA. VRK2 identifies a subgroup of primary high-grade astrocytomas with a better prognosis. BMC Clin Pathol 2013; 13:23. [PMID: 24079673 PMCID: PMC3849739 DOI: 10.1186/1472-6890-13-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/27/2013] [Indexed: 11/22/2022] Open
Abstract
Background Malignant astrocytomas are the most common primary brain tumors and one of the most lethal among human cancers despite optimal treatment. Therefore, the characterization of molecular alterations underlying the aggressive behavior of these tumors and the identification of new markers are thus an important step towards a better patient stratification and management. Methods and results VRK1 and VRK2 (Vaccinia-related kinase-1, -2) expression, as well as proliferation markers, were determined in a tissue microarray containing 105 primary astrocytoma biopsies. Kaplan Meier and Cox models were used to find clinical and/or molecular parameters related to overall survival. The effects of VRK protein levels on proliferation were determined in astrocytoma cell lines. High levels of both protein kinases, VRK1 or VRK2, correlated with proliferation markers, p63 or ki67. There was no correlation with p53, reflecting the disruption of the VRK-p53-DRAM autoregulatory loop as a consequence of p53 mutations. High VRK2 protein levels identified a subgroup of astrocytomas that had a significant improvement in survival. The potential effect of VRK2 was studied by analyzing the growth characteristics of astrocytoma cell lines with different EGFR/VRK2 protein ratios. Conclusion High levels of VRK2 resulted in a lower growth rate suggesting these cells are more indolent. In high-grade astrocytomas, VRK2 expression constitutes a good prognostic marker for patient survival.
Collapse
Affiliation(s)
- Irene Rodríguez-Hernández
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Marta Vázquez-Cedeira
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Angel Santos-Briz
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Juan L García
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Isabel F Fernández
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Juan A Gómez-Moreta
- Departamento de Neurocirugía, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Rogelio González-Sarmiento
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain.,Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
31
|
Molecular genetic analysis of VRK1 in mammary epithelial cells: depletion slows proliferation in vitro and tumor growth and metastasis in vivo. Oncogenesis 2013; 2:e48. [PMID: 23732708 PMCID: PMC3740298 DOI: 10.1038/oncsis.2013.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The vaccinia-related kinases (VRKs) comprise a branch of the casein kinase family. VRK1, a ser/thr kinase with a nuclear localization, is the most well-studied paralog and has been described as a proproliferative protein. In lower eukaryotes, a loss of VRK1 activity is associated with severe mitotic and meiotic defects. Mice that are hypomorphic for VRK1 expression are infertile, and depletion of VRK1 in tissue culture cells can impair cell proliferation and alter several signaling pathways. VRK1 has been implicated as part of a ‘gene-expression signature' whose overexpression correlates with poor clinical outcome in breast cancer patients. We present here our investigation of the role of VRK1 in the growth of normal (MCF10) and malignant (MDA-MB-231) human mammary epithelial cells, and demonstrate that shRNA-mediated depletion of VRK1 slows their proliferation significantly. Conversely, stable overexpression of a FLAG-tagged VRK1 transgene imparts a survival advantage to highly malignant MDA-MB-231 cells under conditions of nutrient and growth factor deprivation. Moreover, in a murine orthotopic xenograft model of breast cancer, we demonstrate that tumors depleted of VRK1 show a 50% reduction in size from 4–13 weeks postengraftment. The incidence and burden of distal metastases in the lungs and brain was also significantly reduced in mice engrafted with VRK1-depleted cells. These studies demonstrate that VRK1 depletion or overexpression has an impact on the proliferation and survival of cell lines derived from normal or malignant mammary tissue, and moreover show that depletion of VRK1 in MDA-MB-231 cells reduces their oncogenic and metastatic properties in vivo.
Collapse
|
32
|
Bozdag S, Li A, Riddick G, Kotliarov Y, Baysan M, Iwamoto FM, Cam MC, Kotliarova S, Fine HA. Age-specific signatures of glioblastoma at the genomic, genetic, and epigenetic levels. PLoS One 2013; 8:e62982. [PMID: 23658659 PMCID: PMC3639162 DOI: 10.1371/journal.pone.0062982] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 04/01/2013] [Indexed: 11/18/2022] Open
Abstract
Age is a powerful predictor of survival in glioblastoma multiforme (GBM) yet the biological basis for the difference in clinical outcome is mostly unknown. Discovering genes and pathways that would explain age-specific survival difference could generate opportunities for novel therapeutics for GBM. Here we have integrated gene expression, exon expression, microRNA expression, copy number alteration, SNP, whole exome sequence, and DNA methylation data sets of a cohort of GBM patients in The Cancer Genome Atlas (TCGA) project to discover age-specific signatures at the transcriptional, genetic, and epigenetic levels and validated our findings on the REMBRANDT data set. We found major age-specific signatures at all levels including age-specific hypermethylation in polycomb group protein target genes and the upregulation of angiogenesis-related genes in older GBMs. These age-specific differences in GBM, which are independent of molecular subtypes, may in part explain the preferential effects of anti-angiogenic agents in older GBM and pave the way to a better understanding of the unique biology and clinical behavior of older versus younger GBMs.
Collapse
Affiliation(s)
- Serdar Bozdag
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barcia-Sanjurjo I, Vázquez-Cedeira M, Barcia R, Lazo PA. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J Biol Inorg Chem 2013; 18:473-82. [DOI: 10.1007/s00775-013-0992-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
|
34
|
Abstract
VRK2 is a novel Ser-Thr kinase whose VRK2A isoform is located in the endoplasmic reticulum and mitochondrial membranes. We have studied the potential role that VRK2A has in the regulation of mitochondrial-mediated apoptosis. VRK2A can regulate the intrinsic apoptotic pathway in two different ways. The VRK2A protein directly interacts with Bcl-xL, but not with Bcl-2, Bax, Bad, PUMA or Binp-3L. VRK2A does not compete with Bax for interaction with Bcl-xL, and these proteins can form a complex that reduces apoptosis. Thus, high VRK2 levels confer protection against apoptosis. In addition, VRK2 knockdown results in an increased expression of BAX gene expression that is mediated by its proximal promoter, thus VRK2A behaves as a negative regulator of BAX. Low levels of VRK2A causes an increase in mitochondrial Bax protein level, leading to an increase in the release of cytochrome C and caspase activation, detected by PARP processing. VRK2A loss results in an increase in cell death that can be detected by an increase in annexinV+ cells. Low levels of VRK2A increase cell sensitivity to induction of apoptosis by chemotherapeutic drugs like camptothecin or doxorubicin. We conclude that VRK2A protein is a novel modulator of apoptosis.
Collapse
|
35
|
Chen Z, Shen X, Shen F, Zhong W, Wu H, Liu S, Lai J. TAK1 activates AMPK-dependent cell death pathway in hydrogen peroxide-treated cardiomyocytes, inhibited by heat shock protein-70. Mol Cell Biochem 2013; 377:35-44. [PMID: 23378049 DOI: 10.1007/s11010-013-1568-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 12/25/2022]
Abstract
The aim of this current study is to investigate the potential role of AMP-activated protein kinase (AMPK) in hydrogen peroxide (H2O2)-induced cardiomyocyte death, and focused on the signaling mechanisms of AMPK activation by H2O2. We observed a significant AMPK activation in H2O2-treated cardiomyocytes (both primary cells and H9c2 line). Inhibition of AMPK by its inhibitor or RNAi-reduced H2O2-induced cardiomyocyte death. We here proposed that transforming growth factor-β-activating kinase 1 (TAK1) might be the upstream kinase for AMPK activation by H2O2. H2O2-induced TAK1 activation, which recruited and activated AMPK. TAK1 inhibitor significantly suppressed H2O2-induced AMPK activation and following cardiomyocyte death, while over-expression of TAK1-facilitated AMPK activation and aggregated cardiomyocyte death. Importantly, heat shock protein-70 (HSP-70)-reduced H2O2-induced reactive oxygen species (ROS) accumulation, the TAK1/AMPK activation and cardiomyocyte death. In conclusion, we here suggest that TAK1 activates AMPK-dependent cell death pathway in H2O2-treated cardiomyocytes, and HSP-70 inhibits the signaling pathway by reducing ROS content.
Collapse
Affiliation(s)
- Zhiyu Chen
- Division of Anesthesia and Critical Care Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Fernández IF, Pérez-Rivas LG, Blanco S, Castillo-Dominguez AA, Lozano J, Lazo PA. VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell Mol Life Sci 2012; 69:3881-93. [PMID: 22752157 PMCID: PMC11114894 DOI: 10.1007/s00018-012-1056-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/16/2012] [Accepted: 06/11/2012] [Indexed: 12/30/2022]
Abstract
The spatial and temporal regulation of intracellular signaling is determined by the spatial and temporal organization of complexes assembled on scaffold proteins, which can be modulated by their interactions with additional proteins as well as subcellular localization. The scaffold KSR1 protein interacts with MAPK forming a complex that conveys a differential signaling in response to growth factors. The aim of this work is to determine the unknown mechanism by which VRK2A downregulates MAPK signaling. We have characterized the multiprotein complex formed by KSR1 and the Ser-Thr kinase VRK2A. VRK2A is a protein bound to the endoplasmic reticulum (ER) and retains a fraction of KSR1 complexes on the surface of this organelle. Both proteins, VRK2A and KSR1, directly interact by their respective C-terminal regions. In addition, MEK1 is also incorporated in the basal complex. MEK1 independently interacts with the CA5 region of KSR1 and with the N-terminus of VRK2A. Thus, VRK2A can form a high molecular size (600-1,000 kDa) stable complex with both MEK1 and KSR1. Knockdown of VRK2A resulted in disassembly of these high molecular size complexes. Overexpression of VRK2A increased the amount of KSR1 in the particulate fraction and prevented the incorporation of ERK1/2 into the complex after stimulation with EGF. Neither VRK2A nor KSR1 interact with the VHR, MKP1, MKP2, or MKP3 phosphatases. The KSR1 complex assembled and retained by VRK2A in the ER can have a modulatory effect on the signal mediated by MAPK, thus locally affecting the magnitude of its responses, and can explain differential responses depending on cell type.
Collapse
Affiliation(s)
- Isabel F. Fernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Luis G. Pérez-Rivas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Laboratorio de Oncología Molecular, Fundación IMABIS, Hospital Clínico Universitario Virgen de la Victoria, Malaga, Spain
| | - Sandra Blanco
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Adrián A. Castillo-Dominguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Laboratorio de Oncología Molecular, Fundación IMABIS, Hospital Clínico Universitario Virgen de la Victoria, Malaga, Spain
| | - José Lozano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Laboratorio de Oncología Molecular, Fundación IMABIS, Hospital Clínico Universitario Virgen de la Victoria, Malaga, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
37
|
Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem 2012; 287:42739-50. [PMID: 23105117 DOI: 10.1074/jbc.m112.404285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human VRK2 (vaccinia-related kinase 2), a kinase that emerged late in evolution, affects different signaling pathways, and some carcinomas express high levels of VRK2. Invasion by cancer cells has been associated with NFAT1 (nuclear factor of activated T cells) activation and expression of the COX-2 (cyclooxygenase 2) gene. We hypothesized that VRK proteins might play a regulatory role in NFAT1 activation in tumor cells. We demonstrate that VRK2 directly interacts and phosphorylates NFAT1 in Ser-32 within its N-terminal transactivation domain. VRK2 increases NFAT1-dependent transcription by phosphorylation, and this effect is only detected following cell phorbol 12-myristate 13-acetate and ionomycin stimulation and calcineurin activation. This NFAT1 hyperactivation by VRK2 increases COX-2 gene expression through the proximal NFAT1 binding site in the COX-2 gene promoter. Furthermore, VRK2A down-regulation by RNA interference reduces COX-2 expression at transcriptional and protein levels. Therefore, VRK2 down-regulation reduces cell invasion by tumor cells, such as MDA-MB-231 and MDA-MB-435, upon stimulation with phorbol 12-myristate 13-acetate plus ionomycin. These findings identify the first reported target and function of human VRK2 as an active kinase playing a role in regulation of cancer cell invasion through the NFAT pathway and COX-2 expression.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | |
Collapse
|
38
|
Ridder DA, Schwaninger M. TAK1 inhibition for treatment of cerebral ischemia. Exp Neurol 2012; 239:68-72. [PMID: 23022457 DOI: 10.1016/j.expneurol.2012.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022]
Abstract
TGFβ-activated kinase 1 (TAK1), a MAP3 kinase, is involved in at least five signaling cascades that modulate ischemic brain damage. Inhibition of TAK1 may therefore be an efficient way to interfere with multiple mechanisms in ischemic stroke. Indeed, a recent publication in Experimental Neurology confirmed that TAK1 inhibition by 5Z-7-oxozeaenol is neuroprotective. The beneficial effect of 5Z-7-oxozeaenol was associated with a reduced activation of Jun kinase that leads to inflammation and apoptosis. Recently, other TAK1 inhibitors were developed suggesting that TAK1 may prove as an efficient therapeutic target for neurodegenerative diseases if safety issues are not limiting.
Collapse
Affiliation(s)
- Dirk A Ridder
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | | |
Collapse
|
39
|
Dai L, Aye Thu C, Liu XY, Xi J, Cheung PCF. TAK1, more than just innate immunity. IUBMB Life 2012; 64:825-34. [DOI: 10.1002/iub.1078] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/13/2012] [Indexed: 12/11/2022]
|
40
|
Morales-Alamo D, Ponce-González JG, Guadalupe-Grau A, Rodríguez-García L, Santana A, Cusso MR, Guerrero M, Guerra B, Dorado C, Calbet JAL. Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKα phosphorylation, in response to sprint exercise in severe acute hypoxia in humans. J Appl Physiol (1985) 2012; 113:917-28. [PMID: 22858621 DOI: 10.1152/japplphysiol.00415.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a major mediator of the exercise response and a molecular target to improve insulin sensitivity. To determine if the anaerobic component of the exercise response, which is exaggerated when sprint is performed in severe acute hypoxia, influences sprint exercise-elicited Thr(172)-AMPKα phosphorylation, 10 volunteers performed a single 30-s sprint (Wingate test) in normoxia and in severe acute hypoxia (inspired Po(2): 75 mmHg). Vastus lateralis muscle biopsies were obtained before and immediately after 30 and 120 min postsprint. Mean power output and O(2) consumption were 6% and 37%, respectively, lower in hypoxia than in normoxia. O(2) deficit and muscle lactate accumulation were greater in hypoxia than in normoxia. Carbonylated skeletal muscle and plasma proteins were increased after the sprint in hypoxia. Thr(172)-AMPKα phosphorylation was increased by 3.1-fold 30 min after the sprint in normoxia. This effect was prevented by hypoxia. The NAD(+)-to-NADH.H(+) ratio was reduced (by 24-fold) after the sprints, with a greater reduction in hypoxia than in normoxia (P < 0.05), concomitant with 53% lower sirtuin 1 (SIRT1) protein levels after the sprint in hypoxia (P < 0.05). This could have led to lower liver kinase B1 (LKB1) activation by SIRT1 and, hence, blunted Thr(172)-AMPKα phosphorylation. Ser(485)-AMPKα(1)/Ser(491)-AMPKα(2) phosphorylation, a known negative regulating mechanism of Thr(172)-AMPKα phosphorylation, was increased by 60% immediately after the sprint in hypoxia, coincident with increased Thr(308)-Akt phosphorylation. Collectively, our results indicate that the signaling response to sprint exercise in human skeletal muscle is altered in severe acute hypoxia, which abrogated Thr(172)-AMPKα phosphorylation, likely due to lower LKB1 activation by SIRT1.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria (Campus Universitario de Tafira Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pera T, Atmaj C, van der Vegt M, Halayko AJ, Zaagsma J, Meurs H. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and IL-8 release by human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2012; 303:L272-8. [PMID: 22523282 DOI: 10.1152/ajplung.00291.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease, characterized by a progressive decline in lung function. Airway smooth muscle (ASM) mass may be increased in COPD, contributing to airflow limitation and proinflammatory cytokine production. Cigarette smoke (CS), the major risk factor of COPD, causes ASM cell proliferation, as well as interleukin-8 (IL-8)-induced neutrophilia. In various cell types, transforming growth factor-β-activated kinase 1 (TAK1) plays a crucial role in MAP kinase and NF-κB activation, as well as IL-8 release induced by IL-1β, TNF-α, and lipopolysaccharide. The role of TAK1 in CS-induced IL-8 release is not known. The aim of this study was to investigate the role of TAK1 in CS-induced NF-κB and MAP kinase signaling and IL-8 release by human ASM cells. Stimulation of these cells with CS extract (CSE) increased IL-8 release and ERK-1/2 phosphorylation, as well as Iκ-Bα degradation and p65 NF-κB subunit phosphorylation. CSE-induced ERK-1/2 phosphorylation and Iκ-Bα degradation were both inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). Similarly, expression of dominant-negative TAK1 inhibited CSE-induced ERK-1/2 phosphorylation. In addition, inhibitors of TAK1 and the NF-κB (SC-514; 50 μM) and ERK-1/2 (U-0126; 3 μM) signaling inhibited the CSE-induced IL-8 release by ASM cells. These data indicate that TAK1 plays a major role in CSE-induced ERK-1/2 and NF-κB signaling and in IL-8 release by human ASM cells. Furthermore, they identify TAK1 as a novel target for the inhibition of CS-induced inflammatory responses involved in the development and progression of COPD.
Collapse
Affiliation(s)
- Tonio Pera
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Nasim MT, Ogo T, Chowdhury HM, Zhao L, Chen CN, Rhodes C, Trembath RC. BMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFβ-TAK1-MAPK pathways in PAH. Hum Mol Genet 2012; 21:2548-58. [PMID: 22388934 DOI: 10.1093/hmg/dds073] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiovascular disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary arterial smooth muscle cells (PASMCs). Heterozygous mutations in the type II receptor for bone morphogenetic protein (BMPR2) underlie the majority of the inherited and familial forms of PAH. The transforming growth factor β (TGFβ) pathway is activated in both human and experimental models of PAH. However, how these factors exert pro-proliferative and anti-apoptotic responses in PAH remains unclear. Using mouse primary PASMCs derived from knock-in mice, we demonstrated that BMPR-II dysfunction promotes the activation of small mothers against decapentaplegia-independent mitogen-activated protein kinase (MAPK) pathways via TGFβ-associated kinase 1 (TAK1), resulting in a pro-proliferative and anti-apoptotic response. Inhibition of the TAK1-MAPK axis rescues abnormal proliferation and apoptosis in these cells. In both hypoxia and monocrotaline-induced PAH rat models, which display reduced levels of bmpr2 transcripts, this study further indicates that the TGFβ-MAPK axis is activated in lungs following elevation of both expression and phosphorylation of the TAK1 protein. In ex vivo cell-based assays, TAK1 inhibits BMP-responsive reporter activity and interacts with BMPR-II receptor. In the presence of pathogenic BMPR2 mutations observed in PAH patients, this interaction is greatly reduced. Taken together, these data suggest dysfunctional BMPR-II responsiveness intensifies TGFβ-TAK1-MAPK signalling and thus alters the ratio of apoptosis to proliferation. This axis may be a potential therapeutic target in PAH.
Collapse
Affiliation(s)
- Md Talat Nasim
- Department of Medical and Molecular Genetics, King’s College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sanz-García M, Vázquez-Cedeira M, Kellerman E, Renbaum P, Levy-Lahad E, Lazo PA. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics 2011; 75:548-60. [PMID: 21920476 DOI: 10.1016/j.jprot.2011.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation by kinases plays a central role in the regulation and coordination of multiple biological processes. In general, knowledge on kinase specificity is restricted to substrates identified in the context of specific cellular responses, but kinases are likely to have multiple additional substrates and be integrated in signaling networks that might be spatially and temporally different, and in which protein complexes and subcellular localization can play an important role. In this report the substrate specificity of atypical human vaccinia-related kinases (VRK1 and VRK2) using a human peptide-array containing 1080 sequences phosphorylated in known signaling pathways has been studied. The two kinases identify a subset of potential peptide targets, all of them result in a consensus sequence composed of at least four basic residues in peptide targets. Linear peptide arrays are therefore a useful approach in the characterization of kinases and substrate identification, which can contribute to delineate the signaling network in which VRK proteins participate. One of these target proteins is coilin; a basic protein located in nuclear Cajal bodies. Coilin is phosphorylated in Ser184 by both VRK1 and VRK2. Coilin colocalizes and interacts with VRK1 in Cajal bodies, but not with the mutant VRK1 (R358X). VRK1 (R358X) is less active than VRK1. Altered regulation of coilin might be implicated in several neurological diseases such as ataxias and spinal muscular atrophies.
Collapse
Affiliation(s)
- Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas(CSIC)-Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Vázquez-Cedeira M, Barcia-Sanjurjo I, Sanz-García M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One 2011; 6:e23235. [PMID: 21829721 PMCID: PMC3150407 DOI: 10.1371/journal.pone.0023235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 01/13/2023] Open
Abstract
Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31–8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31–8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Iria Barcia-Sanjurjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
45
|
VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol 2010; 30:4687-97. [PMID: 20679487 DOI: 10.1128/mcb.01581-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epidermal growth factor (EGF)-ErbB-mitogen-activated protein kinase (MAPK) transcription signaling pathway is altered in many types of carcinomas, and this pathway can be regulated by new protein-protein interactions. Vaccinia-related kinase (VRK) proteins are Ser-Thr kinases that regulate several signal transduction pathways. In this work, we study the effect of VRK2 on MAPK signaling using breast cancer as a model. High levels of VRK2 inhibit EGF and ErbB2 activation of transcription by the serum response element (SRE). This effect is also detected in response to H-Ras(G12V) or B-Raf(V600E) oncogenes and is accompanied by a reduction in phosphorylated extracellular signal-regulated kinase (ERK) levels, p90RSK levels, and SRE-dependent transcription. Furthermore, VRK2 knockdown has the opposite effect, increasing the transcriptional response to stimulation with EGF and leading to increased levels of ERK phosphorylation. The molecular mechanism lies between MAPK/ERK kinase (MEK) and ERK, since MEK remains phosphorylated while ERK phosphorylation is blocked by VRK2A. This inhibition of the ERK signaling pathway is a consequence of a direct protein-protein interaction between VRK2A, MEK, and kinase suppressor of Ras 1 (KSR1). Identification of new correlations in human cancer can lead to a better understanding of the biology of individual tumors. ErbB2 and VRK2 protein levels were inversely correlated in 136 cases of human breast carcinoma. In ErbB2(+) tumors, there is a significant reduction in the VRK2 level, suggesting a role for VRK2A in ErbB2-MAPK signaling. Thus, VRK2 downregulation in carcinomas permits signal transmission through the MEK-ERK pathway without affecting AKT signaling, causing a signal imbalance among pathways that contributes to the phenotype of breast cancer.
Collapse
|
46
|
Kim MY, Ann EJ, Mo JS, Dajas-Bailador F, Seo MS, Hong JA, Jung J, Choi YH, Yoon JH, Kim SM, Choi EJ, Hoe HS, Whitmarsh AJ, Park HS. JIP1 binding to RBP-Jk mediates cross-talk between the Notch1 and JIP1-JNK signaling pathway. Cell Death Differ 2010; 17:1728-38. [PMID: 20508646 DOI: 10.1038/cdd.2010.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Notch1 signaling has a critical function in maintaining a balance among cell proliferation, differentiation, and apoptosis. Our earlier work showed that the Notch1 intracellular domain interferes with the scaffolding function of c-Jun N-terminal kinase (JNK)-interacting protein-1 (JIP1), yet the effect of JIP1 for Notch1-recombining binding protein suppressor of hairless (RBP-Jk) signaling remains unknown. Here, we show that JIP1 suppresses Notch1 activity. JIP1 was found to physically associate with either intracellular domain of Notch1 or RBP-Jk and interfere with the interaction between them. Furthermore, we ascertained that JIP1 caused the cytoplasmic retention of RBP-Jk through an interaction between the C-terminal region of JIP1 including Src homology 3 domain and the proline-rich domain of RBP-Jk. We also found that RBP-Jk inhibits JIP1-mediated activation of the JNK1 signaling cascade and cell death. Our results suggest that direct protein-protein interactions coordinate cross-talk between the Notch1-RBP-Jk and JIP1-JNK pathways.
Collapse
Affiliation(s)
- M-Y Kim
- Hormone Research Center, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cui Y, Piao CS, Ha KC, Kim DS, Lee GH, Kim HK, Chae SW, Lee YC, Park SJ, Yoo WH, Kim HR, Chae HJ. Measuring adriamycin-induced cardiac hemodynamic dysfunction with a proteomics approach. Immunopharmacol Immunotoxicol 2010; 32:376-86. [DOI: 10.3109/08923970903440168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Chen RQ, Yang QK, Chen YL, Oliveira VA, Dalton WS, Fearns C, Lee JD. Kinome siRNA screen identifies SMG-1 as a negative regulator of hypoxia-inducible factor-1alpha in hypoxia. J Biol Chem 2009; 284:16752-16758. [PMID: 19406746 PMCID: PMC2719310 DOI: 10.1074/jbc.m109.014316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays a central role in tumor progression by regulating genes involved in proliferation, glycolysis, angiogenesis, and metastasis. To improve our understanding of HIF-1 regulation by kinome, we screened a kinase-specific small interference RNA library using a hypoxia-response element (HRE) luciferase reporter assay under hypoxic conditions. This screen determined that depletion of cellular SMG-1 kinase most significantly modified cellular HIF-1 activity in hypoxia. SMG-1 is the newest and least studied member of the phosphoinositide 3-kinase-related kinase family, which consists of ATM, ATR, DNA-PKcs, mTOR, and SMG-1. We individually depleted members of the phosphoinositide 3-kinase-related kinase family, and only SMG-1 deficiency significantly augmented HIF-1 activity in hypoxia. We subsequently discovered that SMG-1 kinase activity was activated by hypoxia, and depletion of SMG-1 up-regulated MAPK activity under low oxygen. Suppressing cellular MAPK by silencing ERK1/2 or by treatment with U0126, a MAPK inhibitor, partially blocked the escalation of HIF-1 activity resulting from SMG-1 deficiency in hypoxic cells. Increased expression of SMG-1 but not kinase-dead SMG-1 effectively inhibited the activity of HIF-1alpha. In addition, cellular SMG-1 deficiency increased secretion of the HIF-1alpha-regulated angiogenic factor, vascular epidermal growth factor, and survival factor, carbonic anhydrase IX (CA9), as well as promoted the hypoxic cell motility. Taken together, we discovered that SMG-1 negatively regulated HIF-1alpha activity in hypoxia, in part through blocking MAPK activation.
Collapse
Affiliation(s)
- Run-Qiang Chen
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037
| | - Qing-Kai Yang
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037
| | - Yan-Ling Chen
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037
| | - Vasco A Oliveira
- Chemistry, The Scripps Research Institute, La Jolla, California 92037
| | - William S Dalton
- Chemistry, The Scripps Research Institute, La Jolla, California 92037
| | - Colleen Fearns
- Department of Experimental Therapeutics and Interdisciplinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, Florida 33612
| | - Jiing-Dwan Lee
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037.
| |
Collapse
|
49
|
Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 2009; 17:128-38. [PMID: 19141289 PMCID: PMC2639636 DOI: 10.1016/j.str.2008.10.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 01/19/2023]
Abstract
About 10% of all protein kinases are predicted to be enzymatically inactive pseudokinases, but the structural details of kinase inactivation have remained unclear. We present the first structure of a pseudokinase, VRK3, and that of its closest active relative, VRK2. Profound changes to the active site region underlie the loss of catalytic activity, and VRK3 cannot bind ATP because of residue substitutions in the binding pocket. However, VRK3 still shares striking structural similarity with VRK2, and appears to be locked in a pseudoactive conformation. VRK3 also conserves residue interactions that are surprising in the absence of enzymatic function; these appear to play important architectural roles required for the residual functions of VRK3. Remarkably, VRK3 has an "inverted" pattern of sequence conservation: although the active site is poorly conserved, portions of the molecular surface show very high conservation, suggesting that they form key interactions that explain the evolutionary retention of VRK3.
Collapse
Affiliation(s)
- Eric D Scheeff
- Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
50
|
Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S, Yokota J, Gonzalez-Neira A, Benitez J, Clevers HC, Cigudosa JC, Lazo PA, Sanchez-Cespedes M. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet 2009; 18:1343-52. [PMID: 19153074 DOI: 10.1093/hmg/ddp034] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The search for oncogenes is becoming increasingly important in cancer genetics because they are suitable targets for therapeutic intervention. To identify novel oncogenes, activated by gene amplification, we analyzed cDNA microarrays by high-resolution comparative genome hybridization and compared DNA copy number and mRNA expression levels in lung cancer cell lines. We identified several amplicons (5p13, 6p22-21, 11q13, 17q21 and 19q13) that had a concomitant increase in gene expression. These regions were also found to be amplified in lung primary tumours. We mapped the boundaries and measured expression levels of genes within the chromosome 6p amplicon. The Sry-HMG box gene SOX4 (sex-determining region Y box 4), which encodes a transcription factor involved in embryonic cell differentiation, was overexpressed by a factor of 10 in cells with amplification relative to normal cells. SOX4 expression was also stronger in a fraction of lung primary tumours and lung cancer cell lines and was associated with the presence of gene amplification. We also found variants of SOX4 in lung primary tumours and cancer cell lines, including a somatic mutation that introduced a premature stop codon (S395X) at the serine-rich C-terminal domain. Although none of the variants increased the transactivation ability of SOX4, overexpression of the wildtype and of the non-truncated variants in NIH3T3 cells significantly increased the transforming ability of the weakly oncogenic RHOA-Q63L. In conclusion, our results show that, in lung cancer, SOX4 is overexpressed due to gene amplification and provide evidence of oncogenic properties of SOX4.
Collapse
Affiliation(s)
- Pedro P Medina
- Lung Cancer Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|