1
|
Jiang H, Milanov M, Jüngert G, Angebauer L, Flender C, Smudde E, Gather F, Vogel T, Jessen HJ, Koch HG. Control of a chemical chaperone by a universally conserved ATPase. iScience 2024; 27:110215. [PMID: 38993675 PMCID: PMC11237923 DOI: 10.1016/j.isci.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The universally conserved YchF/Ola1 ATPases regulate stress response pathways in prokaryotes and eukaryotes. Deletion of YchF/Ola1 leads to increased resistance against environmental stressors, such as reactive oxygen species, while their upregulation is associated with tumorigenesis in humans. The current study shows that in E. coli, the absence of YchF stimulates the synthesis of the alternative sigma factor RpoS by a transcription-independent mechanism. Elevated levels of RpoS then enhance the transcription of major stress-responsive genes. In addition, the deletion of ychF increases the levels of polyphosphate kinase, which in turn boosts the production of the evolutionary conserved and ancient chemical chaperone polyphosphate. This potentially provides a unifying concept for the increased stress resistance in bacteria and eukaryotes upon YchF/Ola1 deletion. Intriguingly, the simultaneous deletion of ychF and the polyphosphate-degrading enzyme exopolyphosphatase causes synthetic lethality in E. coli, demonstrating that polyphosphate production needs to be fine-tuned to prevent toxicity.
Collapse
Affiliation(s)
- Hong Jiang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriela Jüngert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Clara Flender
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Eva Smudde
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Fabian Gather
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute for Organic Chemistry, Faculty of Chemistry and Pharmacy, University Freiburg 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Liu J, Huang J, Lu J, Ouyang R, Xu W, Zhang J, Chen-Xiao K, Wu C, Shang D, Go VLWB, Guo J, Xiao GG. Obg-like ATPase 1 exacerbated gemcitabine drug resistance of pancreatic cancer. iScience 2024; 27:110027. [PMID: 38883822 PMCID: PMC11177196 DOI: 10.1016/j.isci.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a poor prognosis due to inefficient diagnosis and tenacious drug resistance. Obg-like ATPase 1 (OLA1) is overexpressed in many malignant tumors. The molecular mechanism of OLA1 underlying gemcitabine (GEM)-induced drug resistance was investigated in this study. An enhanced expression of OLA1 was observed in a GEM acquired resistant pancreatic cancer cell lines and in patients with pancreatic cancer. Overexpressed OLA1 showed poor overall survival rates in patients with pancreatic cancer. Dysregulation of the OLA1 reduced expression of CD44+/CD133+, and improved the sensitivity of pancreatic cancer cells to GEM. OLA1 highly expression facilitated the formation of the OLA1/Sonic Hedgehog (SHH)/Hedgehog-interacting protein (HHIP) complex in nuclei, resulting in the inhibition of negative feedback of Hedgehog signaling induced by HHIP. This study suggests that OLA1 may be developed as an innovative drug target for an effective therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Institute of clinical medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Lu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wenchao Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kevin Chen-Xiao
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, San Francisco, CA, USA
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Vay Liang W Bill Go
- The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Dubey PK, Dubey S, Singh S, Bhat PD, Pogwizd S, Krishnamurthy P. Identification and development of Tetra-ARMS PCR-based screening test for a genetic variant of OLA1 (Tyr254Cys) in the human failing heart. PLoS One 2024; 19:e0293105. [PMID: 38889130 PMCID: PMC11185490 DOI: 10.1371/journal.pone.0293105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps to chromosome 2 (locus 2q31.1), near Titin (TTN), which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in failing human heart tissue (HF) compared to non-failing hearts (NF). Using the Sanger sequencing method, we characterized the human OLA1 gene and screened for mutations in the OLA1 gene in patients with failing and non-failing hearts. Among failing and non-failing heart patients, we found 15 different mutations in the OLA1 gene, including two transversions, one substitution, one deletion, and eleven transitions. All mutations were intronic except for a non-synonymous 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results demonstrate that this PCR test can effectively screen for OLA1 mutation-associated cardiomyopathy in human patients using easily accessible cells or tissues, such as blood cells. These findings have important implications for the diagnosis and treatment of cardiomyopathy.
Collapse
Affiliation(s)
- Praveen K. Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
4
|
Dubey PK, Singh S, Khalil H, Kommini GK, Bhat KM, Krishnamurthy P. Obg-like ATPase 1 Genetic Deletion Leads to Dilated Cardiomyopathy in Mice and Structural Changes in Drosophila Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596265. [PMID: 38854005 PMCID: PMC11160646 DOI: 10.1101/2024.05.28.596265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cardiomyopathy, disease of the heart muscle, is a significant contributor to heart failure. The pathogenesis of cardiomyopathy is multifactorial and involves genetic, environmental, and lifestyle factors. Identifying and characterizing novel genes that contribute to cardiac pathophysiology are crucial for understanding cardiomyopathy and effective therapies. In this study, we investigated the role of a novel gene, Obg-like ATPase 1 ( Ola1 ), in cardiac pathophysiology using a cardiac-specific knockout mouse model as well as a Drosophila model. Our previous work demonstrated that OLA1 modulates the hypertrophic response of cardiomyocytes through the GSK-beta/beta-catenin signaling pathway. Furthermore, recent studies have suggested that OLA1 plays a critical role in organismal growth and development. For example, Ola1 null mice exhibit increased heart size and growth retardation. It is not known, however, if loss of function for Ola1 leads to dilated cardiomyopathy. We generated cardiac-specific Ola1 knockout mice (OLA1-cKO) to evaluate the role of OLA1 in cardiac pathophysiology. We found that Ola1 -cKO in mice leads to dilated cardiomyopathy (DCM) and left ventricular (LV) dysfunction. These mice developed severe LV dilatation, thinning of the LV wall, reduced LV function, and, in some cases, ventricular wall rupture and death. In Drosophila, RNAi-mediated knock-down specifically in developing heart cells led to the change in the structure of pericardial cells from round to elongated, and abnormal heart function. This also caused significant growth reduction and pupal lethality. Thus, our findings suggest that OLA1 is critical for cardiac homeostasis and that its deficiency leads to dilated cardiomyopathy and dysfunction. Furthermore, our study highlights the potential of the Ola1 gene as a therapeutic target for dilated cardiomyopathy and heart failure.
Collapse
|
5
|
Yoshino Y, Ogoh H, Iichi Y, Sasaki T, Yoshida T, Ichimura S, Nakayama M, Xi W, Fujita H, Kikuchi M, Fang Z, Li X, Abe T, Futakuchi M, Nakamura Y, Watanabe T, Chiba N. Knockout of Brca1-interacting factor Ola1 in female mice induces tumors with estrogen suppressible centrosome amplification. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167138. [PMID: 38537683 DOI: 10.1016/j.bbadis.2024.167138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Obg-like ATPase 1 (OLA1) is a binding protein of Breast cancer gene 1 (BRCA1), germline pathogenic variants of which cause hereditary breast cancer. Cancer-associated variants of BRCA1 and OLA1 are deficient in the regulation of centrosome number. Although OLA1 might function as a tumor suppressor, the relevance of OLA1 deficiency to carcinogenesis is unclear. Here, we generated Ola1 knockout mice. Aged female Ola1+/- mice developed lymphoproliferative diseases, including malignant lymphoma. The lymphoma tissues had low expression of Ola1 and an increase in the number of cells with centrosome amplification. Interestingly, the proportion of cells with centrosome amplification in normal spleen from Ola1+/- mice was higher in male mice than in female mice. In human cells, estrogen stimulation attenuated centrosome amplification induced by OLA1 knockdown. Previous reports indicate that prominent centrosome amplification causes cell death but does not promote tumorigenesis. Thus, in the current study, the mild centrosome amplification observed under estrogen stimulation in Ola1+/- female mice is likely more tumorigenic than the prominent centrosome amplification observed in Ola1+/- male mice. Our findings provide a possible sex-dependent mechanism of the tumor suppressor function of OLA1.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Yudai Iichi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Sasaki
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Yoshida
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shiori Ichimura
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Molecular Immunology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Wu Xi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Megumi Kikuchi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Zhenzhou Fang
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
6
|
Zhang L, Li S, Xu X, Ma C, Zhang P, Ji W, Liu X. HIV-1 p17 matrix protein enhances type I interferon responses through the p17-OLA1-STING axis. J Cell Sci 2024; 137:jcs261500. [PMID: 38132845 DOI: 10.1242/jcs.261500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Stimulator of IFN genes (STING; also known as STING1) is an important adaptor protein for detecting cytosolic double-stranded DNA, which can come from HIV infection. Several HIV proteins, such as p6, Vpx and Vif, can influence STING-mediated innate immunity, but the function of p17 is still unknown. In this study, we find that HIV-1 p17, but not HIV-2 p17 or SIV p17, promotes STING signaling induced by cyclic GMP-AMP (cGAMP) treatment. Mechanistically, HIV-1 p17 binds to Obg-like ATPase 1 (OLA1) and inhibits the regulation of STING by OLA1. Here, OLA1 interacts with STING and inhibits the translocation and phosphorylation of STING upon cGAMP stimulation. Furthermore, compared with HIV-2 and SIV, the ATPase and GTPase activities of OLA1 are only promoted by HIV-1 p17. Our study shows that the p17 of HIV-1, but not HIV-2 or SIV, promotes STING-mediated innate immunity by interfering the interaction between OLA1 and STING, thus providing a new clue for specific immune activation of HIV-1.
Collapse
Affiliation(s)
- Lianfei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyu Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chengxin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Pan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wangsheng Ji
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Cyran AM, Kleinegger F, Nass N, Naumann M, Haybaeck J, Arens C. Inhibition of EIF2α Dephosphorylation Decreases Cell Viability and Synergizes with Standard-of-Care Chemotherapeutics in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:5350. [PMID: 38001610 PMCID: PMC10670742 DOI: 10.3390/cancers15225350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Drug resistance is a common cause of therapy failure in head and neck squamous cell carcinoma (HNSCC). One approach to tackling it is by targeting fundamental cellular processes, such as translation. The eukaryotic translation initiation factor 2α (EIF2α) is a key player in canonical translation initiation and integrates diverse stress signals; when phosphorylated, it curbs global protein synthesis. This study evaluates EIF2α expression and phosphorylation in HNSCC. A small-molecule inhibitor of EIF2α dephosphorylation, salubrinal, was tested in vitro, followed by viability assays, flow cytometry, and immunoblot analyses. Patient-derived 3D tumor spheres (PD3DS) were cultured with salubrinal and their viability assessed. Lastly, salubrinal was evaluated with standard-of-care chemotherapeutics. Our analysis of RNA and proteomics data shows elevated EIF2α expression in HNSCC. Immunohistochemical staining reveals increasing EIF2α abundance from premalignant lesions to invasive and metastatic carcinoma. In immunoblots from intraoperative samples, EIF2α expression and steady-state phosphorylation are higher in HNSCC than in neighboring normal tissue. Inhibition of EIF2α dephosphorylation decreases HNSCC cell viability and clonogenic survival and impairs the G1/S transition. Salubrinal also decreases the viability of PD3DS and acts synergistically with cisplatin, 5-fluorouracil, bleomycin, and proteasome inhibitors. Our results indicate that pharmacological inhibition of EIF2α dephosphorylation is a potential therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Anna M. Cyran
- Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Florian Kleinegger
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria (J.H.)
| | - Norbert Nass
- Institute of Pathology, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany;
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany;
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria (J.H.)
| | - Christoph Arens
- Department of Otorhinolaryngology, Head and Neck Surgery, Giessen and Marburg University Hospitals, Campus Giessen, 35392 Giessen, Germany;
| |
Collapse
|
8
|
Dubey PK, Dubey S, Singh S, Bhat PD, Pogwizd S, Krishnamurthy P. Identification and development of Tetra-ARMS PCR-based screening test for a genetic variant of OLA1 (Tyr254Cys) in the human failing heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23296746. [PMID: 37905026 PMCID: PMC10615000 DOI: 10.1101/2023.10.16.23296746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps on chromosome 2, at the locus 1q31, close to the Titin (TTN) gene, which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in human failing heart tissue (HF) as compared to in non-failing heart tissues (NF). Moreover, using the Sanger sequencing method, we characterized the human OLA1 gene and screened genetic mutations in patients with heart-failing and non-failing. Among failing and non-failing heart patients, we found a total of 15 mutations, including two transversions, one substitution, one indel, and eleven transition mutations in the OLA1 gene. All the mutations were intronic except for a non-synonymous mutation, 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen for the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results show that this test can be used as a genetic screening tool for human cardiomyopathy. These findings have important implications for the diagnosis and treatment of cardiomyopathy.
Collapse
Affiliation(s)
- Praveen K Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
9
|
Liu Y, Kong XX, He JJ, Xu YB, Zhang JK, Zou LY, Ding KF, Xu D. OLA1 promotes colorectal cancer tumorigenesis by activation of HIF1α/CA9 axis. BMC Cancer 2022; 22:424. [PMID: 35440019 PMCID: PMC9020043 DOI: 10.1186/s12885-022-09508-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/05/2022] [Indexed: 12/19/2022] Open
Abstract
Background Obg-like ATPase 1 (OLA1) is a highly conserved GTPase, which was over expressed in a variety of malignant tumors, but its role in colorectal cancer (CRC) was poorly studied. Patients and methods Three public CRC gene databases were applied for OLA1 mRNA expression detection. The clinical data of 111 CRC patients were retrospectively collected from the Second Affiliated Hospital of Zhejiang University (SAHZU) for OLA1 protein expression and Kaplan-Meier Survival analysis. OLA1 stably knocked out CRC cell lines were conducted by CRISPR-Cas9 for experiments in vitro and in vivo. Results OLA1 was highly expressed in 84% CRC compared to matched surrounding tissues. Patients with OLA1 high expression had a significantly lower 5-year survival rate (47%) than those with OLA1 low expression (75%). OLA1 high expression was an independent factor of poor prognosis in CRC patients. OLA1-KO CRC cell lines showed lower ability of growth and tumorigenesis in vitro and in vivo. By mRNA sequence analysis, we found 113 differential express genes in OLA1-KO cell lines, of which 63 were hypoxic related. HIF1α was a key molecule in hypoxic regulation. Further molecular mechanisms showed HIF1α /CA9 mRNA and/or protein levels were heavily downregulated in OLA1-KO cell lines, which could explain the impaired tumorigenesis. According to previous studies, HIF1α was a downstream gene of GSK3β, we verified GSK3β was over-activated in OLA1-KO cell lines. Conclusion OLA1 was a new gene that was associated with carcinogenesis and poor outcomes in CRC by activation of HIF1α/CA9 axis, which may be interpreted by GSK3β. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09508-1.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xiang-Xing Kong
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jin-Jie He
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yan-Bo Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jian-Kun Zhang
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Lu-Yang Zou
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Ke-Feng Ding
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China. .,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China.
| | - Dong Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China. .,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
10
|
Chen T, Yeh HW, Chen PP, Huang WT, Wu CY, Liao TC, Lin SL, Chen YY, Lin KT, Hsu STD, Cheng HC. BARD1 is an ATPase activating protein for OLA1. Biochim Biophys Acta Gen Subj 2022; 1866:130099. [DOI: 10.1016/j.bbagen.2022.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
|
11
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
12
|
Dong Y, Yin A, Xu C, Jiang H, Wang Q, Wu W, Guo S. OLA1 is a potential prognostic molecular biomarker for endometrial cancer and promotes tumor progression. Oncol Lett 2021; 22:576. [PMID: 34122627 PMCID: PMC8190771 DOI: 10.3892/ol.2021.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/21/2021] [Indexed: 11/05/2022] Open
Abstract
Obg-like ATPase 1 (OLA1) is upregulated in the tumor tissues in different types of cancer. However, the function of OLA1 and its molecular mechanisms in endometrial cancer (EC) remain unknown. The present study aimed to elucidate OLA1 expression level and its biological function in endometrial cancer. The differential expression of OLA1 between EC tissues and non-cancerous tissues was analyzed using The Cancer Genome Atlas database and clinical samples. The association between clinicopathological characteristics and OLA1 expression was analyzed using bioinformatics analysis. Cell proliferation, migration and invasion were analyzed by short interfering RNA-mediated knockdown experiments, Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine incorporation, wound healing, Transwell and Boyden assays. The potential signaling pathways associated with OLA1 in endometrial cancer were evaluated by Gene Set Enrichment Analysis. The expression levels of OLA1 in EC tissues were upregulated compared with that in non-cancerous tissues (P<0.001). Furthermore, patients with worse survival were found to have higher OLA1 expression, and increased OLA1 expression in endometrial cancer associated with clinical stage (P<0.01), histological type (P<0.01), histological grade (P<0.01), menstrual status (P<0.01), cancer status (P<0.05) and distant metastasis (P<0.05). In RL95-2 and HEC-1B cell lines, decreased levels of OLA1 inhibited proliferation, invasion and migration, and the TGF-β signaling pathway, ubiquitin-mediated proteolysis and Wnt signaling pathway may be involved in these mechanisms. The present study revealed that OLA1 could be a potential prognostic indicator and therapeutic target in endometrial cancer, and that the TGF-β signaling, Wnt signaling and ubiquitin-mediated proteolysis pathways may be regulated by OLA1.
Collapse
Affiliation(s)
- Yanqi Dong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Aiqi Yin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Caiqu Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Huiping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Qinghai Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Wenjuan Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Lu J, Jia J, Zhang J, Liu X. HIV p17 enhances T cell proliferation by suppressing autophagy through the p17-OLA1-GSK3β axis under nutrient starvation. J Med Virol 2021; 93:3607-3620. [PMID: 32790080 DOI: 10.1002/jmv.26423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/08/2020] [Indexed: 02/02/2023]
Abstract
Nutrient starvation is a common phenomenon that occurs during T cell activation. Upon pathogen infection, large amounts of immune cells migrate to infection sites, and antigen-specific T cells are activated; this is followed by rapid proliferation through clonal expansion. The dramatic expansion of cells will commonly lead to nutrient shortage. Cellular autophagy is often upregulated as a way to sustain the body's energy requirements. During infection, human immunodeficiency virus (HIV) co-opts a series of host cell metabolic pathways for replication. Several HIV proteins, such as Env, Nef, and Vpr, have already been reported as being involved in autophagy-related processes. In this report, we identified that the HIV p17 protein acts as a major factor in suppressing the autophagic process in T cells, especially under glucose starvation condition. HIV p17 interacts with Obg-like ATPase 1 (OLA1) and disrupts OLA1-glycogen synthase kinase-3 beta (GSK3β) complex, leading to GSK3β hyperactivation. Consequently, a prior proliferation of HIV-infected T cells under glucose starvation will occur. The inhibition of autophagy also aids HIV replication by antagonizing the antiviral effect of autophagy. Our study shows a new cellular pathway that HIV can hijack for viral spreading by a prior proliferation of HIV-loaded T cells and may provide new therapeutic targets for acquired immunodeficiency syndrome intervention.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiayuan Jia
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiahui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Landwehr V, Milanov M, Angebauer L, Hong J, Jüngert G, Hiersemenzel A, Siebler A, Schmit F, Öztürk Y, Dannenmaier S, Drepper F, Warscheid B, Koch HG. The Universally Conserved ATPase YchF Regulates Translation of Leaderless mRNA in Response to Stress Conditions. Front Mol Biosci 2021; 8:643696. [PMID: 34026826 PMCID: PMC8138138 DOI: 10.3389/fmolb.2021.643696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The universally conserved P-loop GTPases control diverse cellular processes, like signal transduction, ribosome assembly, cell motility, and intracellular transport and translation. YchF belongs to the Obg-family of P-loop GTPases and is one of the least characterized member of this family. It is unique because it preferentially hydrolyses ATP rather than GTP, but its physiological role is largely unknown. Studies in different organisms including humans suggest a possible role of YchF in regulating the cellular adaptation to stress conditions. In the current study, we explored the role of YchF in the model organism Escherichia coli. By western blot and promoter fusion experiments, we demonstrate that YchF levels decrease during stress conditions or when cells enter stationary phase. The decline in YchF levels trigger increased stress resistance and cells lacking YchF are resistant to multiple stress conditions, like oxidative stress, replication stress, or translational stress. By in vivo site directed cross-linking we demonstrate that YchF interacts with the translation initiation factor 3 (IF3) and with multiple ribosomal proteins at the surface of the small ribosomal subunit. The absence of YchF enhances the anti-association activity of IF3, stimulates the translation of leaderless mRNAs, and increases the resistance against the endoribonuclease MazF, which generates leaderless mRNAs during stress conditions. In summary, our data identify YchF as a stress-responsive regulator of leaderless mRNA translation.
Collapse
Affiliation(s)
- Victoria Landwehr
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Larissa Angebauer
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jiang Hong
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Gabriela Jüngert
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Anna Hiersemenzel
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ariane Siebler
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fränk Schmit
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Liu J, Yang Q, Xiao KC, Dobleman T, Hu S, Xiao GG. Obg-like ATPase 1 inhibited oral carcinoma cell metastasis through TGFβ/SMAD2 axis in vitro. BMC Mol Cell Biol 2020; 21:65. [PMID: 32928102 PMCID: PMC7489017 DOI: 10.1186/s12860-020-00311-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The human Obg-like ATPase 1 (OLA1) protein has been reported to play an important role in cancer cell proliferation. The molecular mechanism underlying OLA1 regulated oral metastasis is still unknown. We investigated in this study the regulatory role of OLA1 playing in oral squamous cell metastasis. RESULTS A series of in vitro assays were performed in the cells with RNAi-mediated knockdown or overexpression to expound the regulatory function of OLA1 in oral cancer. We found that the endogenous level of OLA1 in a highly metastatic oral squamous cell line was significantly lower than that in low metastatic oral cells as well as in normal oral cells. Escalated expression of OLA1 resulted in a reduced ability of metastasis in highly metastatic cells, and enhanced its sensitivity to the paclitaxel treatment. Further analysis of the EMT markers showed that Snail, Slug, N-cadherin were up-expressed significantly. Meanwhile, E-cadherin was significantly down-regulated in the oral cancer cells with OLA1-knocked down, suggesting that OLA1 inactivated EMT process. Furthermore, we found that OLA1 suppressed oral squamous cell metastasis by suppressing the activity of a TGFβ/SMAD2/EMT pathway. CONCLUSION Our data suggests that OLA1 may be developed as a potential target for the treatment of oral cancer metastasis.
Collapse
Affiliation(s)
- Jianzhou Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qing Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kevin Chen Xiao
- School of Dentistry, University of California Los Angeles, Los Angeles, 90095, USA
| | - Thomas Dobleman
- Functional Genomics and Proteomics Center, Creighton University Medical Center, Omaha, 68131, USA
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, 90095, USA
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Functional Genomics and Proteomics Center, Creighton University Medical Center, Omaha, 68131, USA.
| |
Collapse
|
16
|
Fan R, Gu Z, Guang X, Marín JC, Varas V, González BA, Wheeler JC, Hu Y, Li E, Sun X, Yang X, Zhang C, Gao W, He J, Munch K, Corbett-Detig R, Barbato M, Pan S, Zhan X, Bruford MW, Dong C. Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca. Genome Biol 2020; 21:159. [PMID: 32616020 PMCID: PMC7331169 DOI: 10.1186/s13059-020-02080-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/21/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. RESULTS Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. CONCLUSIONS The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.
Collapse
Affiliation(s)
- Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Zhongru Gu
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Juan Carlos Marín
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillán, Chile
| | - Valeria Varas
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias., Universidad Austral de Chile, Valdivia, Chile
| | - Benito A. González
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Jane C. Wheeler
- CONOPA-Instituto de Investigación y Desarrollo de Camélidos Sudamericanos, Pachacamac, Lima, Peru
| | - Yafei Hu
- BGI Genomics, BGI, Shenzhen, China
| | - Erli Li
- BGI Genomics, BGI, Shenzhen, China
| | | | | | | | - Wenjun Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Junping He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Russel Corbett-Detig
- Department of Biomolecular Engineering and Genomics Institute, UC Santa Cruz, Santa Cruz, CA USA
| | - Mario Barbato
- Department of Animal Science, Food and Technology – DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Shengkai Pan
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
| | - Xiangjiang Zhan
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Michael W. Bruford
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- School of Biosciences and Sustainable Places Institute, Cardiff University, Cardiff, Wales UK
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| |
Collapse
|
17
|
Liu J, Miao X, Xiao B, Huang J, Tao X, Zhang J, Zhao H, Pan Y, Wang H, Gao G, Xiao GG. Obg-Like ATPase 1 Enhances Chemoresistance of Breast Cancer via Activation of TGF-β/Smad Axis Cascades. Front Pharmacol 2020; 11:666. [PMID: 32528278 PMCID: PMC7266972 DOI: 10.3389/fphar.2020.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding the molecular mechanism of drug resistance helps to identify an effective target for breast cancer therapy. In this study we investigated the regulatory role of Obg-like ATPase 1 which is involved in multiple uses of drug resistance against breast cancer. Paclitaxel resistant cell line (MCF-7-PTR) was developed by a continuous increasing paclitaxel concentration. MTT assay was used to validate either acquired resistant or OLA1 modified cell lines. qRT-PCR, western blotting, apoptosis, and cell cycle assays were executed to evaluate gene and protein expression in cell lines. A series of in vitro assays was performed in the cells with RNAi-mediated knockdown to expound the regulatory function of OLA1 in breast cancer. We demonstrated that OLA1 was highly correlated with either acquired or intrinsic resistance of breast cancer. Further study showed that escalated expression of OLA1 promoted the EMT process in tumor cells through TGF-β/Smad signaling cascades, resulting in the enhanced expression of anti-apoptosis-related proteins (cleaved caspase3, Bax, Bcl-2) and the strengthening depolymerization of microtubules in tumor cells. Our findings revealed that OLA1 enhanced the anti-apoptotic ability and elucidated a regulatory role of OLA1 in promoting chemotherapy resistance of breast cancer. Chemo-sensitivity of the disease can be thus enhanced significantly by knocked down OLA1, which led to the inactivation of the TGF-β/Smad signaling cascades, polymerized microtubules, and promoted cell apoptosis. Our data suggest that OLA1 may be developed as a potential target to improve chemotherapy of patients with breast cancer.
Collapse
Affiliation(s)
- Jianzhou Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.,School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Miao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bowen Xiao
- Cardiothoracic Surgery, Changsha Central Hospital Affiliated to Nanhua University, Changsha, China
| | - Jing Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xufeng Tao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jiong Zhang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Hua Zhao
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hongwei Wang
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.,School of Bioengineering, Dalian University of Technology, Dalian, China.,Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States
| |
Collapse
|
18
|
Yamazaki H, Kasai S, Mimura J, Ye P, Inose-Maruyama A, Tanji K, Wakabayashi K, Mizuno S, Sugiyama F, Takahashi S, Sato T, Ozaki T, Cavener DR, Yamamoto M, Itoh K. Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice. PLoS Genet 2020; 16:e1008693. [PMID: 32324833 PMCID: PMC7179835 DOI: 10.1371/journal.pgen.1008693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
Amino acids exert many biological functions, serving as allosteric regulators and neurotransmitters, as constituents in proteins and as nutrients. GCN2-mediated phosphorylation of eukaryotic initiation factor 2 alpha (elF2α) restores homeostasis in response to amino acid starvation (AAS) through the inhibition of the general translation and upregulation of amino acid biosynthetic enzymes and transporters by activating the translation of Gcn4 and ATF4 in yeast and mammals, respectively. GCN1 is a GCN2-binding protein that possesses an RWD binding domain (RWDBD) in its C-terminus. In yeast, Gcn1 is essential for Gcn2 activation by AAS; however, the roles of GCN1 in mammals need to be established. Here, we revealed a novel role of GCN1 that does not depend on AAS by generating two Gcn1 mutant mouse lines: Gcn1-knockout mice (Gcn1 KO mice (Gcn1-/-)) and RWDBD-deleted mutant mice (Gcn1ΔRWDBD mice). Both mutant mice showed growth retardation, which was not observed in the Gcn2 KO mice, such that the Gcn1 KO mice died at the intermediate stage of embryonic development because of severe growth retardation, while the Gcn1ΔRWDBD embryos showed mild growth retardation and died soon after birth, most likely due to respiratory failure. Extension of pregnancy by 24 h through the administration of progesterone to the pregnant mothers rescued the expression of differentiation markers in the lungs and prevented lethality of the Gcn1ΔRWDBD pups, indicating that perinatal lethality of the Gcn1ΔRWDBD embryos was due to simple growth retardation. Similar to the yeast Gcn2/Gcn1 system, AAS- or UV irradiation-induced elF2α phosphorylation was diminished in the Gcn1ΔRWDBD mouse embryonic fibroblasts (MEFs), suggesting that GCN1 RWDBD is responsible for GCN2 activity. In addition, we found reduced cell proliferation and G2/M arrest accompanying a decrease in Cdk1 and Cyclin B1 in the Gcn1ΔRWDBD MEFs. Our results demonstrated, for the first time, that GCN1 is essential for both GCN2-dependent stress response and GCN2-independent cell cycle regulation. The stress response at the translational level is an energetically cost-saving mechanism because translation consumes a considerable amount of energy. Upon exposure to stresses such as that from amino acid starvation (AAS), the translational initiation factor eIF2α is phosphorylated, which represses general translation to save energy. At the same time, eIF2α phosphorylation increases the selective translation of cytoprotective proteins, such as ATF4, that transcriptionally activate the stress response, promoting cell survival. Among four eIF2α kinases, GCN2 responds to AAS and phosphorylates eIF2α. In yeast, Gcn1 is required for Gcn2 activation by AAS, but the roles of GCN1 in mammals remain to be established. Here, we show that GCN1 is involved in GCN2-mediated eIF2α phosphorylation after AAS and UV radiation by generating Gcn1 mutant mice. Interestingly, GCN1 not only regulates the eIF2α-mediated stress response but also the cell cycle and cell proliferation in a GCN2-independent manner. Taking these findings together, we propose that GCN1 integrates cellular information and coordinates the cellular stress response to enhance viability.
Collapse
Affiliation(s)
- Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan
| | - Peng Ye
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan
| | - Atsushi Inose-Maruyama
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Seiya Mizuno
- Transborder Medical Research Center and Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Transborder Medical Research Center and Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center and Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Tsubasa Sato
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan.,Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Japan
| | - Taku Ozaki
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Japan
| | - Douglas R Cavener
- Department of Biology, Center for Cellular Dynamics and the Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
19
|
Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam NL, Wang Z, Yu J, Huang B, Zhuang H, Zhou Z, Ma Z, Sun Z, He X, Zhou Q, Hou B, Wu L. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:3025-3041. [PMID: 32045367 PMCID: PMC7041778 DOI: 10.18632/aging.102797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/12/2020] [Indexed: 12/19/2022]
Abstract
Background: Obg-like ATPase 1 (OLA1) has been found to have a dual role in cancers. However, the relationship between OLA1 and hepatocellular carcinoma (HCC) remains unclear. Results: High expression of OLA1 in HCC was detected in public datasets and clinical samples, and correlated with poor prognosis. Downregulation of OLA1 significantly inhibited the proliferation, migration, invasion and tumorigenicity of HCC cells. Mechanistically, GSEA showed that OLA1 might promote tumor progression by regulating the cell cycle and apoptosis. In addition, OLA1 knockdown resulted in G0/G1 phase arrest and high levels of apoptosis. OLA1 could bind with P21 and upregulate CDK2 expression to promote HCC progression. Conclusions: Overall, these findings uncover a role for OLA1 in regulating the proliferation and apoptosis of HCC cells. Materials and methods: The Cancer Genome Atlas and Gene Expression Omnibus datasets were analyzed to identify gene expression. Immunohistochemistry staining, western blot and real-time polymerase chain reaction were performed to evaluate OLA1 expression in samples. Cell count Kit-8, wound-healing, transwell and flow cytometry assays were used to analyze HCC cell progression. Subcutaneous xenotransplantation models were used to investigate the role of OLA1 in vivo. Coimmunoprecipitation was used to analyze protein interactions.
Collapse
Affiliation(s)
- Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Nga Lei Tam
- The Fifth Affiliated Hospital of Sun Yat-Sen University, Division of Hepatobiliary Surgery, Zhuhai 519000, China
| | - Zekang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jia Yu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zhonghai Sun
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.,China Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
20
|
Xie D, Zhang J, Ding J, Yang J, Zhang Y. OLA1 is responsible for normal spindle assembly and SAC activation in mouse oocytes. PeerJ 2020; 8:e8180. [PMID: 31915569 PMCID: PMC6944127 DOI: 10.7717/peerj.8180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background OLA1 is a member of the GTPase protein family; unlike other members, it possess both GTPase and ATPase activities, and can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response, protein synthesis and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.
Collapse
Affiliation(s)
- Di Xie
- Reproductive Medical Center, Renmin Hospital of Wuhan University, WuHan, HuBei, China.,Reproductive Medical Center, Central Theater General Hospital of PLA, WuHan, HuBei, China
| | - Juan Zhang
- Reproductive Medical Center, Central Theater General Hospital of PLA, WuHan, HuBei, China
| | - JinLi Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, WuHan, HuBei, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, WuHan, HuBei, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, WuHan, HuBei, China
| |
Collapse
|
21
|
Hou S, Hao Q, Zhu Z, Xu D, Liu W, Lyu L, Li P. Unraveling proteome changes and potential regulatory proteins of bovine follicular Granulosa cells by mass spectrometry and multi-omics analysis. Proteome Sci 2019; 17:4. [PMID: 31673248 PMCID: PMC6815045 DOI: 10.1186/s12953-019-0152-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background In previous study, we performed next-gene sequencing to investigate the differentially expressed transcripts of bovine follicular granulosa cells (GCs) at dominant follicle (DF) and subordinate follicle (SF) stages during first follicular wave. Present study is designed to further identify the key regulatory proteins and signaling pathways associated with follicular development using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multi-omics data analysis approach. Methods DF and SF from three cattle were collected by daily ultrasonography. The GCs were isolated from each follicle, total proteins were digested by trypsin, and then proteomic analyzed via LC-MS/MS, respectively. Proteins identified were retrieved from Uniprot-COW fasta database, and differentially expressed proteins were used to functional enrichment and KEGG pathway analysis. Proteome data and transcriptome data obtained from previous studies were integrated. Results Total 3409 proteins were identified from 30,321 peptides (FDR ≤0.01) obtained from LC-MS/MS analysis and 259 of them were found to be differentially expressed at different stage of follicular development (fold Change > 2, P < 0.05). KEGG pathway analysis of proteome data revealed important signaling pathways associated with follicular development, multi-omics data analysis results showed 13 proteins were identified as being differentially expressed in DF versus SF. Conclusions This study represents the first investigation of transcriptome and proteome of bovine follicles and offers essential information for future investigation of DF and SF in cattle. It also will enrich the theory of animal follicular development. Electronic supplementary material The online version of this article (10.1186/s12953-019-0152-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuning Hou
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Qingling Hao
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Zhiwei Zhu
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Dongmei Xu
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wenzhong Liu
- 2College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Lihua Lyu
- 2College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Pengfei Li
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| |
Collapse
|
22
|
Schultz A, Olorundami OA, Teng RJ, Jarzembowski J, Shi ZZ, Kumar SN, Pritchard K, Konduri GG, Afolayan AJ. Decreased OLA1 (Obg-Like ATPase-1) Expression Drives Ubiquitin-Proteasome Pathways to Downregulate Mitochondrial SOD2 (Superoxide Dismutase) in Persistent Pulmonary Hypertension of the Newborn. Hypertension 2019; 74:957-966. [PMID: 31476900 DOI: 10.1161/hypertensionaha.119.13430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a failure of pulmonary vascular resistance to decline at birth rapidly. One principal mechanism implicated in PPHN development is mitochondrial oxidative stress. Expression and activity of mitochondrial SOD2 (superoxide dismutase) are decreased in PPHN; however, the mechanism remains unknown. Recently, OLA1 (Obg-like ATPase-1) was shown to act as a critical regulator of proteins controlling cell response to stress including Hsp70, an obligate chaperone for SOD2. Here, we investigated whether OLA1 is causally linked to PPHN. Compared with controls, SOD2 expression is reduced in distal-pulmonary arteries (PAs) from patients with PPHN and fetal-lamb models. Disruptions of the SOD2 gene reproduced PPHN phenotypes, manifested by elevated right ventricular systolic pressure, PA-endothelial cells apoptosis, and PA-smooth muscle cells proliferation. Analyses of SOD2 protein dynamics revealed higher ubiquitinated-SOD2 protein levels in PPHN-lambs, suggesting dysregulated protein ubiquitination. OLA1 controls multiple proteostatic mechanisms and is overexpressed in response to stress. We demonstrated that OLA1 acts as a molecular chaperone, and its activity is induced by stress. Strikingly, OLA1 expression is decreased in distal-PAs from PPHN-patients and fetal-lambs. OLA1 deficiency enhanced CHIP affinity for Hsp70-SOD2 complexes, facilitating SOD2 degradation. Consequently, mitochondrial H2O2 formation is impaired, leading to XIAP (X-linked inhibitor of apoptosis) overexpression that suppresses caspase activity in PA-smooth muscle cells, allowing them to survive and proliferate, contributing to PA remodeling. In-vivo, ola1-/- downregulated SOD2 expression, induced distal-PA remodeling, and right ventricular hypertrophy. We conclude that decreased OLA1 expression accounts for SOD2 downregulation and, therefore, a therapeutic target in PPHN treatments.
Collapse
Affiliation(s)
- Adam Schultz
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Olubunmi A Olorundami
- Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Ru-Jeng Teng
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Jason Jarzembowski
- Department of Pathology (J.J., S.N.K), Children Hospital of Wisconsin, Milwaukee
| | | | - Suresh N Kumar
- Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke.,Department of Pathology (J.J., S.N.K), Children Hospital of Wisconsin, Milwaukee
| | - Kirkwood Pritchard
- Department of Surgery, Division of Pediatric Surgery (K.P.), Medical College of Wisconsin, Milwaukee, WI
| | - Girija G Konduri
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| | - Adeleye J Afolayan
- From the Department of Pediatrics, Division of Neonatology, Cardiovascular Research Center, Children's Research Institute (A.S., R.-J.T., G.G.K., A.J.A.), Medical College of Wisconsin, Milwaukee, WI.,Department of Pediatrics (A.S., O.A.O., R.-J.T., S.N.K., G.G.K., A.J.A.), Children Hospital of Wisconsin, Milwauke
| |
Collapse
|
23
|
Jia K, Huang G, Wu W, Shrestha R, Wu B, Xiong Y, Li P. In vivo methylation of OLA1 revealed by activity-based target profiling of NTMT1. Chem Sci 2019; 10:8094-8099. [PMID: 31857877 PMCID: PMC6889141 DOI: 10.1039/c9sc02550b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
Target profiling of NTMT1 by Hey-SAM revealed that OLA1 undergoes N-terminal methylation catalyzed by NTMT1 in vivo.
N-Terminal methyltransferase 1 (NTMT1) catalyzes the N-terminal methylation of proteins with a specific N-terminal motif after methionine removal. Aberrant N-terminal methylation has been implicated in several cancers and developmental diseases. Together with motif sequence and signal peptide analyses, activity-based substrate profiling of NTMT1 utilizing (E)-hex-2-en-5-ynyl-S-adenosyl-l-methionine (Hey-SAM) revealed 72 potential targets, which include several previously confirmed ones and many unknowns. Target validation using normal and NTMT1 knock-out (KO) HEK293FT cells generated by CRISPR-Cas9 demonstrated that Obg-like ATPase 1 (OLA1), a protein involved in many critical cellular functions, is methylated in vivo by NTMT1. Additionally, Hey-SAM synthesis achieved ≥98% yield for SAH conversion.
Collapse
Affiliation(s)
- Kaimin Jia
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Gaochao Huang
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Wei Wu
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Ruben Shrestha
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Bingbing Wu
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Yulan Xiong
- Department of Anatomy and Physiology , Kansas State University , Manhattan , Kansas 66506 , USA
| | - Ping Li
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| |
Collapse
|
24
|
Narasimhan G, Henderson J, Luong HT, Rajasekaran NS, Qin G, Zhang J, Krishnamurthy P. OBG-like ATPase 1 inhibition attenuates angiotensin II-induced hypertrophic response in human ventricular myocytes via GSK-3beta/beta-catenin signalling. Clin Exp Pharmacol Physiol 2019; 46:743-751. [PMID: 31063653 DOI: 10.1111/1440-1681.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022]
Abstract
Obg-like ATPase 1 (OLA1) that possesses both GTP and ATP hydrolyzing activities has been shown to be involved in translational regulation of cancer cell growth and survival. Also, GSK3β signalling has been implicated in cardiac development and disease. However, the role of OLA1 in pathological cardiac hypertrophy is unknown. We sought to understand the mechanism by which OLA1 regulates GSK3β-β-Catenin signalling and its functional significance in angiotensin-II (ANG II)-induced cardiac hypertrophic response. OLA1 function and its endogenous interaction with GSK3β/β-catenin signalling in cultured human ventricular cardiomyocytes (AC16 cells) and mouse hearts (in vivo) was evaluated with/without ANG II-stimulated hypertrophic response. ANG II administration in mice increases myocardial OLA1 protein expression with a corresponding increase in GSK3β phosphorylation and decrease in β-Catenin phosphorylation. Cultured cardiomyocytes treated with ANG II show endogenous interaction between OLA1 and GSK3β, nuclear accumulation of β-Catenin and significant increase in cell size and expression of hypertrophic marker genes such as atrial natriuretic factor (ANF; NPPA) and β-myosin heavy chain (MYH7). Intriguingly, OLA1 inhibition attenuates the above hypertrophic response in cardiomyocytes. Taken together, our data suggest that OLA1 plays a detrimental role in hypertrophic response via GSK3β/β-catenin signalling. Translation strategies to target OLA1 might potentially limit the underlying molecular derangements leading to left ventricular dysfunction in patients with maladaptive cardiac hypertrophy.
Collapse
Affiliation(s)
- Gayathri Narasimhan
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hien T Luong
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Namakkal Soorapan Rajasekaran
- Division of Molecular & Cellular Pathology, Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gangjian Qin
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jianyi Zhang
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
25
|
Balasingam N, Brandon HE, Ross JA, Wieden HJ, Thakor N. Cellular roles of the human Obg-like ATPase 1 (hOLA1) and its YchF homologs. Biochem Cell Biol 2019; 98:1-11. [PMID: 30742486 DOI: 10.1139/bcb-2018-0353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
P-loop NTPases comprise one of the major superfamilies of nucleotide binding proteins, which mediate a variety of cellular processes, such as mRNA translation, signal transduction, cell motility, and growth regulation. In this review, we discuss the structure and function of two members of the ancient Obg-related family of P-loop GTPases: human Obg-like ATPase 1 (hOLA1), and its bacterial/plant homolog, YchF. After a brief discussion of nucleotide binding proteins in general and the classification of the Obg-related family in particular, we discuss the sequence and structural features of YchF and hOLA1. We then explore the various functional roles of hOLA1 in mammalian cells during stress response and cancer progression, and of YchF in bacterial cells. Finally, we directly compare and contrast the structure and function of hOLA1 with YchF before summarizing the future perspectives of hOLA1 research. This review is timely, given the variety of recent studies aimed at understanding the roles of hOLA1 and YchF in such critical processes as cellular-stress response, oncogenesis, and protein synthesis.
Collapse
Affiliation(s)
- Nirujah Balasingam
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Harland E Brandon
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Joseph A Ross
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Nehal Thakor
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
26
|
RACK1 regulates centriole duplication by controlling localization of BRCA1 to the centrosome in mammary tissue-derived cells. Oncogene 2019; 38:3077-3092. [PMID: 30617304 DOI: 10.1038/s41388-018-0647-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer gene 1 (BRCA1) is a tumor suppressor that is associated with hereditary breast and ovarian cancer. BRCA1 functions in DNA repair and centrosome regulation together with BRCA1-associated RING domain protein (BARD1), a heterodimer partner of BRCA1. Obg-like ATPase 1 (OLA1) was identified as a protein that interacts with BARD1. OLA1 regulates the centrosome by binding to and collaborating with BRCA1 and BARD1. We identified receptor for activated C kinase (RACK1) as a protein that interacts with OLA1. RACK1 directly bound to OLA1, the N-terminal region of BRCA1, and γ-tubulin, associated with BARD1, and localized the centrosomes throughout the cell cycle. Knockdown of RACK1 caused abnormal centrosomal localization of BRCA1 and abrogated centriole duplication. Overexpression of RACK1 increased the centrosomal localization of BRCA1 and caused centrosome amplification due to centriole overduplication. The number of centrioles in cells with two γ-tubulin spots was higher in cell lines derived from mammary tissue compared to those derived from other tissues. The effects of aberrant RACK1 expression level on centriole duplication were observed in cell lines derived from mammary tissue, but not in those derived from other tissues. Two BRCA1 variants, R133H and E143K, and a RACK1 variant, K280E, associated with cancer, which weakened the BRCA1-RACK1 interaction, interfered with the centrosomal localization of BRCA1 and reduced centrosome amplification induced by overexpression of RACK1. These results suggest that RACK1 regulates centriole duplication by controlling the centrosomal localization of BRCA1 in mammary tissue-derived cells and that this is dependent on the BRCA1-RACK1 interaction.
Collapse
|
27
|
Warrington NM, Shevroja E, Hemani G, Hysi PG, Jiang Y, Auton A, Boer CG, Mangino M, Wang CA, Kemp JP, McMahon G, Medina-Gomez C, Hickey M, Trajanoska K, Wolke D, Ikram MA, Montgomery GW, Felix JF, Wright MJ, Mackey DA, Jaddoe VW, Martin NG, Tung JY, Davey Smith G, Pennell CE, Spector TD, van Meurs J, Rivadeneira F, Medland SE, Evans DM. Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero. Hum Mol Genet 2018; 27:2025-2038. [PMID: 29659830 PMCID: PMC5961159 DOI: 10.1093/hmg/ddy121] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (β = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
| | - Enisa Shevroja
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | | | - Adam Auton
- 23andMe, Inc., Mountain View, CA 94061, USA
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Carol A Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - John P Kemp
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne and the Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Dieter Wolke
- Department of Psychology and Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | | | - Grant W Montgomery
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas G Martin
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Joyce van Meurs
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - David M Evans
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| |
Collapse
|
28
|
Warrington NM, Shevroja E, Hemani G, Hysi PG, Jiang Y, Auton A, Boer CG, Mangino M, Wang CA, Kemp JP, McMahon G, Medina-Gomez C, Hickey M, Trajanoska K, Wolke D, Ikram MA, Montgomery GW, Felix JF, Wright MJ, Mackey DA, Jaddoe VW, Martin NG, Tung JY, Davey Smith G, Pennell CE, Spector TD, van Meurs J, Rivadeneira F, Medland SE, Evans DM. Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero. Hum Mol Genet 2018; 27:2025-2038. [PMID: 29659830 PMCID: PMC5961159 DOI: 10.1093/hmg/ddy121 10.1093/hmg/ddy121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 10/22/2023] Open
Abstract
The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (β = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
| | - Enisa Shevroja
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | | | - Adam Auton
- 23andMe, Inc., Mountain View, CA 94061, USA
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Carol A Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - John P Kemp
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne and the Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Dieter Wolke
- Department of Psychology and Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | | | - Grant W Montgomery
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas G Martin
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Joyce van Meurs
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - David M Evans
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| |
Collapse
|
29
|
Yoshino Y, Qi H, Fujita H, Shirota M, Abe S, Komiyama Y, Shindo K, Nakayama M, Matsuzawa A, Kobayashi A, Ogoh H, Watanabe T, Ishioka C, Chiba N. BRCA1-Interacting Protein OLA1 Requires Interaction with BARD1 to Regulate Centrosome Number. Mol Cancer Res 2018; 16:1499-1511. [PMID: 29858377 DOI: 10.1158/1541-7786.mcr-18-0269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022]
Abstract
BRCA1 functions as a tumor suppressor in DNA repair and centrosome regulation. Previously, Obg-like ATPase 1 (OLA1) was shown to interact with BARD1, a heterodimer partner of BRCA1. OLA1 binds to BRCA1, BARD1, and γ-tubulin and functions in centrosome regulation. This study determined that overexpression of wild-type OLA1 (OLA1-WT) caused centrosome amplification due to centriole overduplication in mammary tissue-derived cells. Centrosome amplification induced by overexpression of the cancer-derived OLA1 mutant, which is deficient at regulating centrosome number, occurred in significantly fewer cells than in that induced by overexpression of OLA1-WT. Thus, it was hypothesized that overexpression of OLA1 with normal function efficiently induces centrosome amplification, but not that of OLA1 mutants, which are deficient at regulating centrosome number. We analyzed whether overexpression of OLA1 missense mutants of nine candidate phosphorylation residues, three residues modified with acetylation, and two ATP-binding residues caused centrosome amplification and identified five missense mutants that are deficient in the regulation of centrosome number. Three of them did not bind to BARD1. Two phosphomimetic mutations restored the binding to BARD1 and the efficient centrosome amplification by their overexpression. Knockdown and overexpression of BARD1 also caused centrosome amplification. BARD1 mutant reported in cancer failed to bind to OLA1 and rescue the BARD1 knockdown-induced centrosome amplification and reduced its centrosomal localization. Combined, these data reveal that the OLA1-BARD1 interaction is important for the regulation of centrosome number.Implications: Regulation of centrosome number by BRCA1/BARD1 together with OLA1 is important for the genome integrity to prevent tumor development. Mol Cancer Res; 16(10); 1499-511. ©2018 AACR.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shun Abe
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yuhei Komiyama
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kazuha Shindo
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Akihiro Kobayashi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
| |
Collapse
|