1
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Purohit G, Ghosh P, Khalimonchuk O. Mitochondrial metallopeptidase OMA1 in cancer. Adv Cancer Res 2024; 162:75-97. [PMID: 39069370 DOI: 10.1016/bs.acr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our understanding of the roles that mitochondria play in cellular physiology has evolved drastically-from a mere cellular energy supplier to a crucial regulator of metabolic and signaling processes, particularly in the context of development and progression of human diseases such as cancers. The present review examines the role of OMA1, a conserved, redox-sensitive metallopeptidase in cancer biology. OMA1's involvement in mitochondrial quality control, redox activity, and stress responses underscores its potential as a novel target in cancer diagnosis and treatment. However, our incomplete understanding of OMA1's regulation and structural detail presents ongoing challenges to target OMA1 for therapeutic purposes. Further exploration of OMA1 holds promise in uncovering novel insights into cancer mechanisms and therapeutic strategies. In this chapter, we briefly summarize our current knowledge about OMA1, its redox-regulation, and emerging role in certain cancers.
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Polash Ghosh
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States; Nebraska Redox Biology Center, Lincoln, NE, United States; Fred & Pamela Buffett Cancer Center, Omaha, NE, United States.
| |
Collapse
|
3
|
Miallot R, Millet V, Groult Y, Modelska A, Crescence L, Roulland S, Henri S, Malissen B, Brouilly N, Panicot-Dubois L, Vincentelli R, Sulzenbacher G, Finetti P, Dutour A, Blay JY, Bertucci F, Galland F, Naquet P. An OMA1 redox site controls mitochondrial homeostasis, sarcoma growth, and immunogenicity. Life Sci Alliance 2023; 6:e202201767. [PMID: 37024121 PMCID: PMC10078952 DOI: 10.26508/lsa.202201767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Aggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation. 3D modeling of OMA1 comforted the notion that cysteine 403 might participate in a similar sensor in mammalian cells. Using prime editing, we developed a mouse sarcoma cell line in which OMA1 cysteine 403 was mutated in alanine. Mutant cells showed impaired mitochondrial responses to stress including ATP production, reduced fission, resistance to apoptosis, and enhanced mitochondrial DNA release. This mutation prevented tumor development in immunocompetent, but not nude or cDC1 dendritic cell-deficient, mice. These cells prime CD8+ lymphocytes that accumulate in mutant tumors, whereas their depletion delays tumor control. Thus, OMA1 inactivation increased the development of anti-tumor immunity. Patients with complex genomic soft tissue sarcoma showed variations in the level of OMA1 and OPA1 transcripts. High expression of OPA1 in primary tumors was associated with shorter metastasis-free survival after surgery, and low expression of OPA1, with anti-tumor immune signatures. Targeting OMA1 activity may enhance sarcoma immunogenicity.
Collapse
Affiliation(s)
- Richard Miallot
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Virginie Millet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Yann Groult
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Angelika Modelska
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lydie Crescence
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Sandrine Roulland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sandrine Henri
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Malissen
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Renaud Vincentelli
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Gerlind Sulzenbacher
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Aurélie Dutour
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
| | - Jean-Yves Blay
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
- Department of Medicine, Centre Léon Bérard, UNICANCER & University Lyon I, Lyon, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Franck Galland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Naquet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
4
|
Khalimonchuk O, Becker DF. Molecular Determinants of Mitochondrial Shape and Function and Their Role in Glaucoma. Antioxid Redox Signal 2023; 38:896-919. [PMID: 36301938 PMCID: PMC10171965 DOI: 10.1089/ars.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/12/2023]
Abstract
Significance: Cells depend on well-functioning mitochondria for essential processes such as energy production, redox signaling, coordination of metabolic pathways, and cofactor biosynthesis. Mitochondrial dysfunction, metabolic decline, and protein stress have been implicated in the etiology of multiple late-onset diseases, including various ataxias, diabetes, sarcopenia, neuromuscular disorders, and neurodegenerative diseases such as parkinsonism, amyotrophic lateral sclerosis, and glaucoma. Recent Advances: New evidence supports that increased energy metabolism protects neuron function during aging. Key energy metabolic enzymes, however, are susceptible to oxidative damage making it imperative that the mitochondrial proteome is protected. More than 40 different enzymes have been identified as important factors for guarding mitochondrial health and maintaining a dynamic pool of mitochondria. Critical Issues: Understanding shared mechanisms of age-related disorders of neurodegenerative diseases such as glaucoma, Alzheimer's disease, and Parkinson's disease is important for developing new therapies. Functional mitochondrial shape and dynamics rely on complex interactions between mitochondrial proteases and membrane proteins. Identifying the sequence of molecular events that lead to mitochondrial dysfunction and metabolic stress is a major challenge. Future Directions: A critical need exists for new strategies that reduce mitochondrial protein stress and promote mitochondrial dynamics in age-related neurological disorders. Discovering how mitochondria-associated degradation is related to proteostatic mechanisms in mitochondrial compartments may reveal new opportunities for therapeutic interventions. Also, little is known about how protein and membrane contacts in the inner and outer mitochondrial membrane are regulated, even though they are pivotal for mitochondrial architecture. Future work will need to delineate the molecular details of these processes.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Fred & Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
5
|
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A. Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 2022; 13:3615. [PMID: 35750769 PMCID: PMC9232578 DOI: 10.1038/s41467-022-31413-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial cytochrome c oxidase (CcO) or respiratory chain complex IV is a heme aa3-copper oxygen reductase containing metal centers essential for holo-complex biogenesis and enzymatic function that are assembled by subunit-specific metallochaperones. The enzyme has two copper sites located in the catalytic core subunits. The COX1 subunit harbors the CuB site that tightly associates with heme a3 while the COX2 subunit contains the binuclear CuA site. Here, we report that in human cells the CcO copper chaperones form macromolecular assemblies and cooperate with several twin CX9C proteins to control heme a biosynthesis and coordinate copper transfer sequentially to the CuA and CuB sites. These data on CcO illustrate a mechanism that regulates the biogenesis of macromolecular enzymatic assemblies with several catalytic metal redox centers and prevents the accumulation of cytotoxic reactive assembly intermediates.
Collapse
Affiliation(s)
- Eva Nývltová
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA
| | - Jonathan V Dietz
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Javier Seravalli
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Wu Z, Zuo M, Zeng L, Cui K, Liu B, Yan C, Chen L, Dong J, Shangguan F, Hu W, He H, Lu B, Song Z. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep 2021; 22:e50827. [PMID: 33314701 PMCID: PMC7788456 DOI: 10.15252/embr.202050827] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Many cancer cells maintain enhanced aerobic glycolysis due to irreversible defective mitochondrial oxidative phosphorylation (OXPHOS). This phenomenon, known as the Warburg effect, is recently challenged because most cancer cells maintain OXPHOS. However, how cancer cells coordinate glycolysis and OXPHOS remains largely unknown. Here, we demonstrate that OMA1, a stress-activated mitochondrial protease, promotes colorectal cancer development by driving metabolic reprogramming. OMA1 knockout suppresses colorectal cancer development in AOM/DSS and xenograft mice models of colorectal cancer. OMA1-OPA1 axis is activated by hypoxia, increasing mitochondrial ROS to stabilize HIF-1α, thereby promoting glycolysis in colorectal cancer cells. On the other hand, under hypoxia, OMA1 depletion promotes accumulation of NDUFB5, NDUFB6, NDUFA4, and COX4L1, supporting that OMA1 suppresses OXPHOS in colorectal cancer. Therefore, our findings support a role for OMA1 in coordination of glycolysis and OXPHOS to promote colorectal cancer development and highlight OMA1 as a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhida Wu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Meiling Zuo
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Ling Zeng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Bing Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Chaojun Yan
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Li Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Jun Dong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Fugen Shangguan
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wanglai Hu
- School of Basic Medical ScienceAnhui Medical UniversityHefeiAnhuiChina
| | - He He
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Bin Lu
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyin Song
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| |
Collapse
|
7
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
8
|
Ahmed K, Carter DE, Lajoie P. Hyperactive
TORC
1 sensitizes yeast cells to endoplasmic reticulum stress by compromising cell wall integrity. FEBS Lett 2019; 593:1957-1973. [DOI: 10.1002/1873-3468.13463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Khadija Ahmed
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| | - David E. Carter
- Robarts Research Institute The University of Western Ontario London Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| |
Collapse
|
9
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
10
|
Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes. Sci Rep 2018; 8:16500. [PMID: 30405153 PMCID: PMC6220292 DOI: 10.1038/s41598-018-34908-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022] Open
Abstract
The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR.
Collapse
|
11
|
Standardization of G. mellonella Larvae to Provide Reliable and Reproducible Results in the Study of Fungal Pathogens. J Fungi (Basel) 2018; 4:jof4030108. [PMID: 30200639 PMCID: PMC6162639 DOI: 10.3390/jof4030108] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
In the past decade, Galleria mellonella (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens. The development of standardised protocols for carrying out our experimental work will allow high throughput screens to be developed, changing the way in which we evaluate panels of mutants and strains. It will also enable the in vivo screening of potential antimicrobials at an earlier stage in the research and development cycle.
Collapse
|
12
|
Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 2018; 14:e1007076. [PMID: 30059535 PMCID: PMC6085062 DOI: 10.1371/journal.ppat.1007076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress. Candida albicans is the species most often isolated from patients with invasive fungal disease, and is also a common colonizer of healthy people. It is well equipped to compete for nutrients with bacteria co-inhabiting human gastrointestinal mucous membranes, since it possesses multiple transporters to internalize important nutrients like sugars, nitrogen sources, and phosphate. During infection, the fungus needs to withstand human defense cells that attack it with noxious chemicals, among which reactive oxygen species (ROS) are critical. We found that a high-affinity phosphate transporter, Pho84, is required for C. albicans’ ability to successfully invade animal hosts and to eliminate ROS. Levels of a fungal enzyme that breaks down ROS, Sod3, were decreased in cells lacking Pho84. A connection between this phosphate transporter and the ROS-detoxifying enzyme was identified in the Target of Rapamycin (TOR) pathway, to which Pho84 is known to provide activating signals when phosphate is abundant. Small molecules that block Pho84 activity impair the ability of C. albicans to detoxify ROS. Since humans manage phosphate differently than fungi and have no Pho84 homolog, a drug that inhibits Pho84 could disable the defense of the fungus against the host.
Collapse
|
13
|
Sun Z, Brodsky JL. The degradation pathway of a model misfolded protein is determined by aggregation propensity. Mol Biol Cell 2018; 29:1422-1434. [PMID: 29688814 PMCID: PMC6014095 DOI: 10.1091/mbc.e18-02-0117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis in the secretory pathway is maintained by a hierarchy of quality control checkpoints, including endoplasmic reticulum–associated degradation (ERAD), which leads to the destruction of misfolded proteins in the ER, as well as post-ER proteolysis. Although most aberrant proteins are degraded by ERAD, some misfolded proteins escape the ER and are degraded instead by lysosomal/vacuolar proteases. To date, it remains unclear how misfolded membrane proteins are selected for these different fates. Here we designed a novel model substrate, SZ*, to investigate how substrate selection is mediated in yeast. We discovered that SZ* is degraded by both the proteasome and vacuolar proteases, the latter of which occurs after ER exit and requires the multivesicular body pathway. By interrogating how various conditions affect the fate of SZ*, we also discovered that heat-shock and substrate overexpression increase ERAD targeting. These conditions also increase substrate aggregation. We next found that aggregation of the membrane-free misfolded domain in SZ* is concentration dependent, and fusion of this misfolded domain to a post-ER quality control substrate instead targets the substrate for ERAD. Our data indicate that a misfolded membrane protein with a higher aggregation propensity is preferentially retained in the ER and targeted for ERAD.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
14
|
Xie JL, Bohovych I, Wong EOY, Lambert JP, Gingras AC, Khalimonchuk O, Cowen LE, Leach MD. Ydj1 governs fungal morphogenesis and stress response, and facilitates mitochondrial protein import via Mas1 and Mas2. MICROBIAL CELL 2017; 4:342-361. [PMID: 29082232 PMCID: PMC5657825 DOI: 10.15698/mic2017.10.594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondria underpin metabolism, bioenergetics, signalling, development and cell death in eukaryotes. Most of the ~1,000 yeast mitochondrial proteins are encoded in the nucleus and synthesised as precursors in the cytosol, with mitochondrial import facilitated by molecular chaperones. Here, we focus on the Hsp40 chaperone Ydj1 in the fungal pathogen Candida albicans, finding that it is localised to both the cytosol and outer mitochondrial membrane, and is required for cellular stress responses and for filamentation, a key virulence trait. Mapping the Ydj1 protein interaction network highlighted connections with co-chaperones and regulators of filamentation. Furthermore, the mitochondrial processing peptidases Mas1 and Mas2 were highly enriched for interaction with Ydj1. Additional analysis demonstrated that loss of MAS1, MAS2 or YDJ1 perturbs mitochondrial morphology and function. Deletion of YDJ1 impairs import of Su9, a protein that is cleaved to a mature form by Mas1 and Mas2. Thus, we highlight a novel role for Ydj1 in cellular morphogenesis, stress responses, and mitochondrial import in the fungal kingdom.
Collapse
Affiliation(s)
- Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Erin O Y Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.,Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.,Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Michelle D Leach
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
15
|
Migdal I, Skibior-Blaszczyk R, Heidorn-Czarna M, Kolodziejczak M, Garbiec A, Janska H. AtOMA1 Affects the OXPHOS System and Plant Growth in Contrast to Other Newly Identified ATP-Independent Proteases in Arabidopsis Mitochondria. FRONTIERS IN PLANT SCIENCE 2017; 8:1543. [PMID: 28936218 PMCID: PMC5594102 DOI: 10.3389/fpls.2017.01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/23/2017] [Indexed: 05/17/2023]
Abstract
Compared with yeast, our knowledge on members of the ATP-independent plant mitochondrial proteolytic machinery is rather poor. In the present study, using confocal microscopy and immunoblotting, we proved that homologs of yeast Oma1, Atp23, Imp1, Imp2, and Oct1 proteases are localized in Arabidopsis mitochondria. We characterized these components of the ATP-independent proteolytic system as well as the earlier identified protease, AtICP55, with an emphasis on their significance in plant growth and functionality in the OXPHOS system. A functional complementation assay demonstrated that out of all the analyzed proteases, only AtOMA1 and AtICP55 could substitute for a lack of their yeast counterparts. We did not observe any significant developmental or morphological changes in plants lacking the studied proteases, either under optimal growth conditions or after exposure to stress, with the only exception being retarded root growth in oma1-1, thus implying that the absence of a single mitochondrial ATP-independent protease is not critical for Arabidopsis growth and development. We did not find any evidence indicating a clear functional complementation of the missing protease by any other protease at the transcript or protein level. Studies on the impact of the analyzed proteases on mitochondrial bioenergetic function revealed that out of all the studied mutants, only oma1-1 showed differences in activities and amounts of OXPHOS proteins. Among all the OXPHOS disorders found in oma1-1, the complex V deficiency is distinctive because it is mainly associated with decreased catalytic activity and not correlated with complex abundance, which has been observed in the case of supercomplex I + III2 and complex I deficiencies. Altogether, our study indicates that despite the presence of highly conservative homologs, the mitochondrial ATP-independent proteolytic system is not functionally conserved in plants as compared with yeast. Our findings also highlight the importance of AtOMA1 in maintenance of proper function of the OXPHOS system as well as in growth and development of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Iwona Migdal
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Renata Skibior-Blaszczyk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Marta Kolodziejczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Arnold Garbiec
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
- *Correspondence: Hanna Janska,
| |
Collapse
|
16
|
Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol 2016; 4:109. [PMID: 27790613 PMCID: PMC5061732 DOI: 10.3389/fcell.2016.00109] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Normal cellular physiology is critically dependent on numerous mitochondrial activities including energy conversion, cofactor and precursor metabolite synthesis, and regulation of ion and redox homeostasis. Advances in mitochondrial research during the last two decades provide solid evidence that these organelles are deeply integrated with the rest of the cell and multiple mechanisms are in place to monitor and communicate functional states of mitochondria. In many cases, however, the exact molecular nature of various mitochondria-to-cell communication pathways is only beginning to emerge. Here, we review various signals emitted by distressed or dysfunctional mitochondria and the stress-responsive pathways activated in response to these signals in order to restore mitochondrial function and promote cellular survival.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
- Nebraska Redox Biology Center, University of Nebraska-LincolnLincoln, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|