1
|
Ilchuk LA, Kochegarova KK, Baikova IP, Safonova PD, Bruter AV, Kubekina MV, Okulova YD, Minkovskaya TE, Kuznetsova NA, Dolmatova DM, Ryabinina AY, Mozhaev AA, Belousov VV, Ershov BP, Timashev PS, Filatov MA, Silaeva YY. Mutations in Filamin C Associated with Both Alleles Do Not Affect the Functioning of Mice Cardiac Muscles. Int J Mol Sci 2025; 26:1409. [PMID: 40003875 PMCID: PMC11855563 DOI: 10.3390/ijms26041409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Filamin C (FLNC) is a structural protein of muscle fibers. Mutations in the FLNC gene are known to cause myopathies and cardiomyopathies in humans. Here we report the generation by a CRISPR/Cas9 editing system injected into zygote pronuclei of two mouse strains carrying filamin C mutations-one of them (AGA) has a deletion of three nucleotides at position c.7418_7420, causing E>>D substitution and N deletion at positions 2472 and 2473, respectively. The other strain carries a deletion of GA nucleotides at position c.7419_7420, leading to a frameshift and a premature stop codon. Homozygous animals (FlncAGA/AGA and FlncGA/GA) were embryonically lethal. We determined that FlncGA/GA embryos died prior to the E12.5 stage and illustrated delayed development after the E9.5 stage. We performed histological analysis of heart tissue and skeletal muscles of heterozygous strains carrying mutations in different combinations (FlncGA/wt, FlncAGA/wt, and FlncGA/AGA). By performing physiological tests (grip strength and endurance tests), we have shown that heterozygous animals of both strains (FlncGA/wt, FlncAGA/wt) are functionally indistinguishable from wild-type animals. Interestingly, compound heterozygous mice (FlncGA/AGA) are viable, develop normally, reach puberty and it was verified by ECG and Eco-CG that their cardiac muscle is functionally normal. Intriguingly, FlncGA/AGA mice demonstrated better results in the grip strength physiological test in comparison to WT animals. We also propose a structural model that explains the complementary interaction of two mutant variants of filamin C.
Collapse
Affiliation(s)
- Leonid A. Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Ksenia K. Kochegarova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Iuliia P. Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Polina D. Safonova
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V. Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yulia D. Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana E. Minkovskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Nadezhda A. Kuznetsova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Daria M. Dolmatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Anna Yu. Ryabinina
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
| | - Andrey A. Mozhaev
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Vsevolod V. Belousov
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maxim A. Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Yulia Yu. Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
2
|
Holtzhausen C, Heil L, Klingel K, Fox H, Gummert J, Gärtner A, Schmidt A, Krüger M, Kirfel G, van der Ven PFM, Milting H, Clemen CS, Schröder R, Fürst DO, Tiesmeier J. Sudden cardiac death, arrhythmogenic cardiomyopathy and intercalated disc pathology due to reduced filamin C protein levels: a matter of life and death. Hum Mol Genet 2025:ddaf014. [PMID: 39895064 DOI: 10.1093/hmg/ddaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Mutations in the human FLNC gene encoding filamin C (FLNc) cause a broad spectrum of sporadic and familial cardiomyopathies and myopathies. We report on the genetic, clinical, morphological and biochemical findings in a German family harboring an FLNC variant that leads to severe cardiac disease comprising sudden cardiac death and arrhythmogenic cardiomyopathy. Genetic analysis identified a novel heterozygous FLNC variant in exon 16 (NM_001458.4:c.2495_2498delAGTA, het; p.K832TfsX45) in i) the index patient suffering from dilated cardiomyopathy necessitating heart transplantation, ii) a son, who died from sudden cardiac death, iii) a second son, who survived an episode of sudden cardiac arrest and iv) a third son affected by isolated skeletal muscle myopathy. FLNc protein levels were markedly reduced in cardiac tissue obtained from the index patient, implying that the p.K832TfsX45 FLNc variant most probably caused nonsense-mediated decay of the corresponding mRNA. Morphological analysis of the diseased cardiac tissue revealed extensive fibrotic remodeling, and marked degenerative changes of the contractile apparatus of cardiomyocytes and severe structural alterations of intercalated discs. Connexin-43 signal intensity at intercalated discs was diminished and FLNc labelling of myofibrils was attenuated or even absent. Proteome analyses demonstrated complex alterations of extracellular matrix and intercalated disc proteins. Our findings demonstrate that this novel, truncating FLNC mutation likely leads to haploinsufficiency, thereby causing a deleterious sequence of degenerative changes of cardiac tissue with extensive fibrotic remodeling and intercalated disc pathology as the structural basis for FLNC-related cardiomyopathy with life-threatening cardiac arrhythmias.
Collapse
Affiliation(s)
- Christian Holtzhausen
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Lorena Heil
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Henrik Fox
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Andreas Schmidt
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Marcus Krüger
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jens Tiesmeier
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MLK-Hospital, Voedestr. 79, Luebbecke, Campus OWL, Ruhr-University Bochum, 32312 Lübbecke, Germany
| |
Collapse
|
3
|
Mulder T, Johnson J, González-Morales N. The filamins of Drosophila. Genome 2025; 68:1-11. [PMID: 39869855 DOI: 10.1139/gen-2024-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton. Filamins are required across various cells and tissues. In Drosophila early and recent studies have provided many details about filamin functions. This review centers on the two Drosophila filamins encoded by the cheerio and jitterbu g genes. We examine the structural and evolutionary aspects of filamin genes in flies, contrasting them with those of other model organisms. Then, we synthesize phenotypic data across diverse cell types. Additionally, we outline the genetic tools available for both genes. We also propose to divide filamins into typical and atypical based on the number of actin-binding domains and their relationship with other filamins.
Collapse
Affiliation(s)
- Tiara Mulder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Johnson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
4
|
Dong J, Zhang W, Chen Q, Zha L. Identification of a Missense Mutation in the FLNC Gene from a Chinese Family with Restrictive Cardiomyopathy. J Multidiscip Healthc 2024; 17:5363-5373. [PMID: 39582878 PMCID: PMC11585995 DOI: 10.2147/jmdh.s494831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Objective Restrictive cardiomyopathy (RCM) is a heterogenous cardiomyopathy with various causes, and genetic variants take an important part of the pathogenesis. Whole-exome sequencing (WES) is effective to discover genes that cause genetic diseases. By using WES, we attempted to identify the genetic cause of an RCM family and clarify the clinical diagnosis of the patient and then provide a personalized treatment plan. Materials and Methods Blood samples were obtained from the proband and his healthy parents. WES and Sanger sequencing were performed to identify the possible pathogenic gene. Co-segregation analysis was conducted for candidate variants, and the allele frequency was checked in databases including Ensembl, Exome Aggregation Consortium (ExAC) and Human Gene Mutation Database (HGMD). Furthermore, the potential effect of variant was predicted using various-free software such as SIFT, Polyphen-2 and Mutation Taster and the conservation was tested using multiple sequence alignments by ClustalX. Results The proband was a 20 years old boy with severe heart failure symptoms including dyspnea, massive ascites, edema of both lower limbs and chest congestion. Echocardiography showed significant biatrial enlargement, normal left ventricular wall thickness and preserved systolic function of both ventricles. A missense mutation in FLNC (c.6451G>A, p.G2151S), encoded filamin-C was detected in proband by WES and Sanger sequencing, while it was not be found in his parents, we supposed that the FLNC mutation (c.6451G>A, p.G2151S) may be a de-novo mutation. Through multiple functional predictions, we found that it is a deleterious mutation and the mutation in filamin-C could alter its structure and normal function, contributing to RCM. Conclusion Here, an FLNC missense mutation (c.6451G>A, p.G2151S) known to be pathogenic in hypertrophic cardiomyopathy, was found to be associated with RCM, indicating the genetic overlap among cardiomyopathies. This study provides insights into Phenotype-Genotype Correlations of RCM in patients with FLNC mutations.
Collapse
Affiliation(s)
- Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wenjuan Zhang
- Department of Geriatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Pediatric Cardiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People’s Republic of China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
5
|
Moriggi M, Ruggiero L, Torretta E, Zoppi D, Arosio B, Ferri E, Castegna A, Fiorillo C, Gelfi C, Capitanio D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants (Basel) 2024; 13:1406. [PMID: 39594549 PMCID: PMC11591206 DOI: 10.3390/antiox13111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Dario Zoppi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy;
| | - Evelyn Ferri
- IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Environment, University of Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy;
| | - Chiara Fiorillo
- Child Neuropsychiatric Unit, IRCCS Istituto Giannina Gaslini, DINOGMI-University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| |
Collapse
|
6
|
Kokot T, Zimmermann JP, Schwäble AN, Reimann L, Herr AL, Höfflin N, Köhn M, Warscheid B. Protein phosphatase-1 regulates the binding of filamin C to FILIP1 in cultured skeletal muscle cells under mechanical stress. Sci Rep 2024; 14:27348. [PMID: 39521905 PMCID: PMC11550807 DOI: 10.1038/s41598-024-78953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The actin-binding protein filamin c (FLNc) is a key mediator in the response of skeletal muscle cells to mechanical stress. In addition to its function as a structural scaffold, FLNc acts as a signaling adaptor which is phosphorylated at S2234 in its mechanosensitive domain 20 (d20) through AKT. Here, we discovered a strong dephosphorylation of FLNc-pS2234 in cultured skeletal myotubes under acute mechanical stress, despite high AKT activity. We found that all three protein phosphatase 1 (PP1) isoforms are part of the FLNc d18-21 interactome. Enzymatic assays demonstrate that PP1 efficiently dephosphorylates FLNc-pS2234 and in vitro and in cells upon PP1 activation using specific modulators. FLNc-pS2234 dephosphorylation promotes the interaction with FILIP1, a mediator for filamin degradation. Altogether, we present a model in which dephosphorylation of FLNc d20 by the dominant action of PP1c prevails over AKT activity to promote the binding of the filamin degradation-inducing factor FILIP1 during acute mechanical stress.
Collapse
Affiliation(s)
- Thomas Kokot
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Anja N Schwäble
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Lena Reimann
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Anna L Herr
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Sartorius CellGenix GmbH, Freiburg, Germany
| | - Nico Höfflin
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany.
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Klimenko ES, Sukhareva KS, Vlasova Y, Smolina NA, Fomicheva Y, Knyazeva A, Muravyev AS, Sorokina MY, Gavrilova LS, Boldyreva LV, Medvedeva SS, Sejersen T, Kostareva AA. Flnc expression impacts mitochondrial function, autophagy, and calcium handling in C2C12 cells. Exp Cell Res 2024; 442:114174. [PMID: 39089502 DOI: 10.1016/j.yexcr.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Affiliation(s)
- E S Klimenko
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K S Sukhareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuA Vlasova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - N A Smolina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuV Fomicheva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A Knyazeva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A S Muravyev
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - M Yu Sorokina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L S Gavrilova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L V Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S S Medvedeva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - A A Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
8
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
9
|
Risato G, Brañas Casas R, Cason M, Bueno Marinas M, Pinci S, De Gaspari M, Visentin S, Rizzo S, Thiene G, Basso C, Pilichou K, Tiso N, Celeghin R. In Vivo Approaches to Understand Arrhythmogenic Cardiomyopathy: Perspectives on Animal Models. Cells 2024; 13:1264. [PMID: 39120296 PMCID: PMC11311808 DOI: 10.3390/cells13151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
- Department of Biology, University of Padua, I-35131 Padua, Italy;
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | | | - Marco Cason
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Maria Bueno Marinas
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Serena Pinci
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Monica De Gaspari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Natascia Tiso
- Department of Biology, University of Padua, I-35131 Padua, Italy;
| | - Rudy Celeghin
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| |
Collapse
|
10
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
11
|
Ohiri JC, Dellefave‐Castillo L, Tomar G, Wilsbacher L, Choudhury L, Barefield DY, Fullenkamp D, Gacita AM, Monroe TO, Pesce L, Blancard M, Vaught L, George AL, Demonbreun AR, Puckelwartz MJ, McNally EM. Reduction of Filamin C Results in Altered Proteostasis, Cardiomyopathy, and Arrhythmias. J Am Heart Assoc 2024; 13:e030467. [PMID: 38761081 PMCID: PMC11179814 DOI: 10.1161/jaha.123.030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.
Collapse
Affiliation(s)
- Joyce C. Ohiri
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | | | - Garima Tomar
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lisa Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lubna Choudhury
- Bluhm Cardiovascular InstituteNorthwestern MedicineChicagoILUSA
| | - David Y. Barefield
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Cell and Molecular PhysiologyLoyola University Stritch School of MedicineMaywoodILUSA
| | - Dominic Fullenkamp
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Anthony M. Gacita
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Tanner O. Monroe
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lorenzo Pesce
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Malorie Blancard
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lauren Vaught
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| |
Collapse
|
12
|
Gao S, He L, Lam CK, Taylor MRG, Mestroni L, Lombardi R, Chen SN. Filamin C Deficiency Impairs Sarcomere Stability and Activates Focal Adhesion Kinase through PDGFRA Signaling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells 2024; 13:278. [PMID: 38334670 PMCID: PMC10854597 DOI: 10.3390/cells13030278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.
Collapse
Affiliation(s)
- Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Lingaonan He
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, NE 19716, USA;
| | - Matthew R. G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
- Department of Advanced Biomedical Sciences, “Federico II” University of Naples, 80138 Naples, Italy
| | - Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| |
Collapse
|
13
|
Huang W, Zhang S, Lin J, Ding Y, Jiang N, Zhang J, Zhao H, Chen F. Rare loss-of-function variants in FLNB cause non-syndromic orofacial clefts. J Genet Genomics 2024; 51:222-229. [PMID: 37003352 DOI: 10.1016/j.jgg.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb-/- embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Department of Orthodontics, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Shiying Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Nan Jiang
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Feng Chen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100101, China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
14
|
Di Donato M, Moretti A, Sorrentino C, Toro G, Gentile G, Iolascon G, Castoria G, Migliaccio A. Filamin A cooperates with the androgen receptor in preventing skeletal muscle senescence. Cell Death Discov 2023; 9:437. [PMID: 38040692 PMCID: PMC10692324 DOI: 10.1038/s41420-023-01737-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Aging induces a slow and progressive decrease in muscle mass and function, causing sarcopenia. Androgens control muscle trophism and exert important anabolic functions through the binding to the androgen receptor. Therefore, analysis of the androgen receptor-mediated actions in skeletal muscle might provide new hints for a better understanding of sarcopenia pathogenesis. In this study, we report that expression of the androgen receptor in skeletal muscle biopsies from 20 subjects is higher in young, as compared with old subjects. Co-immunoprecipitation experiments reveal that the androgen receptor is complexed with filamin A mainly in young, that in old subjects. Therefore, we have in depth analyzed the role of such complex using C2C12 myoblasts that express a significant amount of the androgen receptor. In these cells, hormone stimulation rapidly triggers the assembly of the androgen receptor/filamin A complex. Such complex prevents the senescence induced by oxidative stress in C2C12 cells, as disruption of the androgen receptor/filamin A complex by Rh-2025u stapled peptide re-establishes the senescent phenotype in C2C12 cells. Simultaneously, androgen stimulation of C2C12 cells rapidly triggers the activation of various signaling effectors, including Rac1, focal adhesion kinase, and mitogen-activated kinases. Androgen receptor blockade by bicalutamide or perturbation of androgen receptor/filamin A complex by Rh-2025u stapled peptide both reverse the hormone activation of signaling effectors. These findings further reinforce the role of the androgen receptor and its extranuclear partners in the rapid hormone signaling that controls the functions of C2C12 cells. Further investigations are needed to promote clinical interventions that might ameliorate muscle cell function as well the clinical outcome of age-related frailty.
Collapse
Affiliation(s)
- Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Antimo Moretti
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Carmela Sorrentino
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giuseppe Toro
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Giulia Gentile
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giovanni Iolascon
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy.
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| |
Collapse
|
15
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
16
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
17
|
Schnabel F, Schuler E, Al-Maawali A, Chaurasia A, Syrbe S, Al-Kindi A, Bhavani GS, Shukla A, Altmüller J, Nürnberg P, Banka S, Girisha KM, Li Y, Wollnik B, Yigit G. Homozygous loss-of-function variants in FILIP1 cause autosomal recessive arthrogryposis multiplex congenita with microcephaly. Hum Genet 2023; 142:543-552. [PMID: 36943452 PMCID: PMC10060356 DOI: 10.1007/s00439-023-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/21/2023] [Indexed: 03/23/2023]
Abstract
Arthrogryposis multiplex congenita forms a broad group of clinically and etiologically heterogeneous disorders characterized by congenital joint contractures that involve at least two different parts of the body. Neurological and muscular disorders are commonly underlying arthrogryposis. Here, we report five affected individuals from three independent families sharing an overlapping phenotype with congenital contractures affecting shoulder, elbow, hand, hip, knee and foot as well as scoliosis, reduced palmar and plantar skin folds, microcephaly and facial dysmorphism. Using exome sequencing, we identified homozygous truncating variants in FILIP1 in all patients. FILIP1 is a regulator of filamin homeostasis required for the initiation of cortical cell migration in the developing neocortex and essential for the differentiation process of cross-striated muscle cells during myogenesis. In summary, our data indicate that bi-allelic truncating variants in FILIP1 are causative of a novel autosomal recessive disorder and expand the spectrum of genetic factors causative of arthrogryposis multiplex congenita.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103, Leipzig, Germany
| | - Elisabeth Schuler
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ankur Chaurasia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Adila Al-Kindi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines To Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Wang BZ, Nash TR, Zhang X, Rao J, Abriola L, Kim Y, Zakharov S, Kim M, Luo LJ, Morsink M, Liu B, Lock RI, Fleischer S, Tamargo MA, Bohnen M, Welch CL, Chung WK, Marx SO, Surovtseva YV, Vunjak-Novakovic G, Fine BM. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep Med 2023; 4:100976. [PMID: 36921598 PMCID: PMC10040415 DOI: 10.1016/j.xcrm.2023.100976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.
Collapse
Affiliation(s)
- Bryan Z Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jenny Rao
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sergey Zakharov
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori J Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bohao Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Michael Bohnen
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Steven O Marx
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Barry M Fine
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
19
|
Aoussim A, Légaré C, Roussel MP, Madore AM, Morissette MC, Laprise C, Duchesne E. Towards the Identification of Biomarkers for Muscle Function Improvement in Myotonic Dystrophy Type 1. J Neuromuscul Dis 2023; 10:1041-1053. [PMID: 37694373 PMCID: PMC10657677 DOI: 10.3233/jnd-221645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. In DM1 patients, skeletal muscle is severely impaired, even atrophied and patients experience a progressive decrease in maximum strength. Strength training for these individuals can improve their muscle function and mass, however, the biological processes involved in these improvements remain unknown. OBJECTIVE This exploratory study aims at identifying the proteomic biomarkers and variables associated with the muscle proteome changes induced by training in DM1 individuals. METHODS An ion library was developed from liquid chromatography-tandem mass spectrometry proteomic analyses of Vastus Lateralis muscle biopsies collected in 11 individuals with DM1 pre-and post-training. RESULTS The proteomic analysis showed that the levels of 44 proteins were significantly modulated. A literature review (PubMed, UniProt, PANTHER, REACTOME) classified these proteins into biological sub-classes linked to training-induced response, including immunity, energy metabolism, apoptosis, insulin signaling, myogenesis and muscle contraction. Linear models identified key variables explaining the proteome modulation, including atrophy and hypertrophy factors. Finally, six proteins of interest involved in myogenesis, muscle contraction and insulin signaling were identified: calpain-3 (CAN3; Muscle development, positive regulation of satellite cell activation), 14-3-3 protein epsilon (1433E; Insulin/Insulin-like growth factor, PI3K/Akt signaling), myosin-binding protein H (MYBPH; Regulation of striated muscle contraction), four and a half LIM domains protein 3 (FHL3; Muscle organ development), filamin-C (FLNC; Muscle fiber development) and Cysteine and glycine-rich protein 3 (CSRP3). CONCLUSION These findings may lead to the identification for DM1 individuals of novel muscle biomarkers for clinical improvement induced by rehabilitation, which could eventually be used in combination with a targeted pharmaceutical approach to improving muscle function, but further studies are needed to confirm those results.
Collapse
Affiliation(s)
- Amira Aoussim
- Département des sciences de la santé, Université du Québec à Chicoutimi, Québec, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
| | - Cécilia Légaré
- Département des sciences de la santé, Université du Québec à Chicoutimi, Québec, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, USA
| | - Marie-Pier Roussel
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Québec, Canada
| | - Anne-Marie Madore
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Québec, Canada
| | - Mathieu C. Morissette
- Department of Medicine, Université Laval, Québec, Canada
- Quebec Heart and Lung Institute – Université Laval, Québec, Canada
| | - Catherine Laprise
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Québec, Canada
| | - Elise Duchesne
- Département des sciences de la santé, Université du Québec à Chicoutimi, Québec, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
| |
Collapse
|
20
|
Wu T, Xu Y, Zhang L, Liang Z, Zhou X, Evans SM, Chen J. Filamin C is Essential for mammalian myocardial integrity. PLoS Genet 2023; 19:e1010630. [PMID: 36706168 PMCID: PMC9907827 DOI: 10.1371/journal.pgen.1010630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
FLNC, encoding filamin C, is one of the most mutated genes in dilated and hypertrophic cardiomyopathy. However, the precise role of filamin C in mammalian heart remains unclear. In this study, we demonstrated Flnc global (FlncgKO) and cardiomyocyte-specific knockout (FlnccKO) mice died in utero from severely ruptured ventricular myocardium, indicating filamin C is required to maintain the structural integrity of myocardium in the mammalian heart. Contrary to the common belief that filamin C acts as an integrin inactivator, we observed attenuated activation of β1 integrin specifically in the myocardium of FlncgKO mice. Although deleting β1 integrin from cardiomyocytes did not recapitulate the heart rupture phenotype in Flnc knockout mice, deleting both β1 integrin and filamin C from cardiomyocytes resulted in much more severe heart ruptures than deleting filamin C alone. Our results demonstrated that filamin C works in concert with β1 integrin to maintain the structural integrity of myocardium during mammalian heart development.
Collapse
Affiliation(s)
- Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yujun Xu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lunfeng Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Xiaohai Zhou
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
21
|
Tian J, Wang Z, Li X, Li X, Kong Z, Zhang S, Li Y, Lu Z. Comparative iTRAQ-based quantitative proteomic analysis of spotted seal ( Phoca largha) pups inhabiting different environments. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2099467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| | - Xiang Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Xin Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Zhongren Kong
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| | - Shengjiu Zhang
- Dalian Sun Asia Tourism Holding Co., Ltd., Dalian, People’s Republic of China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| |
Collapse
|
22
|
Padhan SK, Bag J, Panda M, Biswal BK, Sahoo H, Mishra M, Sahu SN. Synthesis of First Coumarin Fluorescent Dye for Actin Visualization. Bioconjug Chem 2022; 33:2113-2120. [PMID: 36264777 DOI: 10.1021/acs.bioconjchem.2c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective fluorescence imaging of actin protein hugely depends on the fluorescently labeled actin-binding domain (ABD). Thus, it is always a challenging task to image the actin protein (in vivo or in vitro) directly with an ABD-free system. To overcome the limitations of actin imaging without an ABD, we have designed a facile and cost-effective red fluorescent coumarin dye 7-hydroxy-4-methyl-8-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-ylimino)methyl-2H-chromen-2-one (CTC) for actin binding. The selective binding of the dye was investigated using the gut and eye of the model organism Drosophila melanogaster and C2C12 and SCC-9 cell lines. Our result suggests two major advantages of CTC over the dyes presently used for imaging actin proteins. First, the dye can bind to actin efficiently without any secondary intermediate. Second, it is much more stable at room temperature and exhibits excellent photostability. To the best of our knowledge, this is the first fluorescent dye that can bind to the actin protein without employing any secondary intermediate/actin-binding domain. These findings could pave the way for many biologists and physicists to successfully employ the CTC dye for imaging and tracking actin proteins by fluorescence microscopy in various in vivo and in vitro systems.
Collapse
Affiliation(s)
- Subrata Kumar Padhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Sambalpur 768019, Odisha, India
| | - Janmejaya Bag
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Munmun Panda
- Cancer Drug Resistance Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Satya Narayan Sahu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Sambalpur 768019, Odisha, India
| |
Collapse
|
23
|
Dong M, Liu J, Liu C, Wang H, Sun W, Liu B. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480. [PMID: 36191879 DOI: 10.1016/j.phrs.2022.106480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.
Collapse
Affiliation(s)
- Mengying Dong
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Jiangen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People's Hospital, 33 Wenyi Road, ShenYang, China, 110016
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| |
Collapse
|
24
|
Koehler S, Huber TB, Denholm B. A protective role for <i>Drosophila</i> Filamin in nephrocytes via Yorkie mediated hypertrophy. Life Sci Alliance 2022; 5:e202101281. [PMID: 35922155 PMCID: PMC9351128 DOI: 10.26508/lsa.202101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Podocytes are specialized epithelial cells of the kidney glomerulus and are an essential part of the filtration barrier. Because of their position, they are exposed to constant biomechanical forces such as shear stress and hydrostatic pressure. These forces increase during disease, resulting in podocyte injury. It is likely podocytes have adaptative responses to help buffer against deleterious mechanical force and thus reduce injury. However, these responses remain largely unknown. Here, using the <i>Drosophila</i> model, we show the mechanosensor Cheerio (dFilamin) provides a key protective role in nephrocytes. We found expression of an activated mechanosensitive variant of Cheerio rescued filtration function and induced compensatory and hypertrophic growth in nephrocytes depleted of the nephrocyte diaphragm proteins Sns or Duf. Delineating the protective pathway downstream of Cheerio we found repression of the Hippo pathway induces nephrocyte hypertrophy, whereas Hippo activation reversed the Cheerio-mediated hypertrophy. Furthermore, we find Yorkie was activated upon expression of active Cheerio. Taken together, our data suggest that Cheerio acts via the Hippo pathway to induce hypertrophic growth, as a protective response in abnormal nephrocytes.
Collapse
Affiliation(s)
- Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
26
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
27
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
28
|
Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol 2022; 19:151-167. [PMID: 34526680 DOI: 10.1038/s41569-021-00608-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 01/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) was traditionally described as an autosomal dominant Mendelian disease but is now increasingly recognized as having a complex genetic aetiology. Although eight core genes encoding sarcomeric proteins account for >90% of the pathogenic variants in patients with HCM, variants in several additional genes (ACTN2, ALPK3, CSRP3, FHOD3, FLNC, JPH2, KLHL24, PLN and TRIM63), encoding non-sarcomeric proteins with diverse functions, have been shown to be disease-causing in a small number of patients. Genome-wide association studies (GWAS) have identified numerous loci in cardiomyopathy case-control studies and biobank investigations of left ventricular functional traits. Genes associated with Mendelian cardiomyopathy are enriched in the putative causal gene lists at these loci. Intriguingly, many loci are associated with both HCM and dilated cardiomyopathy but with opposite directions of effect on left ventricular traits, highlighting a genetic basis underlying the contrasting pathophysiological effects observed in each condition. This overlap extends to rare Mendelian variants with distinct variant classes in several genes associated with HCM and dilated cardiomyopathy. In this Review, we appraise the complex contribution of the non-sarcomeric, HCM-associated genes to cardiomyopathies across a range of variant classes (from common non-coding variants of individually low effect size to complete gene knockouts), which provides insights into the genetic basis of cardiomyopathies, causal genes at GWAS loci and the application of clinical genetic testing.
Collapse
|
29
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
30
|
Chen Q, Zhang W, Cai J, Ni Y, Xiao L, Zhang J. Transcriptome analysis in comparing carcass and meat quality traits of Jiaxing Black Pig and Duroc × Duroc × Berkshire × Jiaxing Black Pig crosses. Gene 2022; 808:145978. [PMID: 34592352 DOI: 10.1016/j.gene.2021.145978] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
This study compares two typical strains: Chinese local excellent meat quality of Jiaxing Black (JXB) Pig and quadratic crossbred pig strain Duroc × Duroc × Berkshire × Jiaxing Black (DDBJ). It was found that between the two pig strains, carcass traits and meat quality traits differed significantly. This is exemplified by the leanness and dressing out percent of DDBJ that were significantly higher than JXB pigs of the same age (P < 0.05) and the better growth rate of DDBJ pigs as to JXB pigs was shown by quantifying muscle proliferation and differentiation of longissimus dorsi muscle employing Hematoxylin and Eosin staining of longissimus dorsi muscle. Nutrients such as inosinic acid, intramuscular fat, and free amino acids in the longissimus dorsi muscle were significantly higher in JXB pigs than DDBJ pigs (p < 0.0001); saturated fatty acids were higher in JXB than in DDBJ pigs (p = 0.0097); essential amino acids and fresh taste amino acids (serine, glutamic acid, proline, glycine, alanine) of JXB pigs was higher than that of DDBJ pigs (p < 0.0001) and amino acids in longissimus dorsi muscle of JXB pigs surpasses the amino acid concentration of DDBJ pigs (p < 0.0001), thus showing the superiority of JXB in terms of meat quality. However, the content of polyunsaturated fatty acids, which is responsible for poor meat quality, was significantly higher in the longissimus dorsi muscle of DDBJ pig than JXB pigs (p < 0.0001); RNA-seq analysis of 5 biological replicates from two of the strains was performed. The screening of 164 up-regulated genes and 183 down-regulated genes found in longissimus dorsi muscle of DDBJ was done and the results identified differentially expressed genes related to muscle development, adipogenesis, amino acid metabolism, fatty acid metabolism and inosine synthesis. In conclusion, the study identified functional genes, elucidated the mechanisms associated with carcass quality traits, meat quality traits and other related traits, and provided means of genetic enhancement to improve meat quality traits and carcass traits in Chinese commercial pigs.
Collapse
Affiliation(s)
- Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Zhang
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Ni
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lixia Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Powers JD, Kirkland NJ, Liu C, Razu SS, Fang X, Engler AJ, Chen J, McCulloch AD. Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:871. [PMID: 35055055 PMCID: PMC8779483 DOI: 10.3390/ijms23020871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.
Collapse
Affiliation(s)
- Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Natalie J. Kirkland
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Swithin S. Razu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Liu J, Zhou J, Zhao S, Xu X, Li CJ, Li L, Shen T, Hunt PW, Zhang R. Differential responses of abomasal transcriptome to Haemonchus contortus infection between Haemonchus-selected and Trichostrongylus-selected merino sheep. Parasitol Int 2022; 87:102539. [PMID: 35007764 DOI: 10.1016/j.parint.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Haemonchus contortus is the most prevalent and pathogenic gastrointestinal nematode infecting sheep and goats. The two CSIRO sheep resource flocks, the Haemonchus-selected flock (HSF) and Trichostrongylus-selected flock (TSF) were developed for research on host resistance or susceptibility to gastrointestinal nematode infection. A recent study focused on the gene expression differences between resistant and susceptible sheep within each flock, with lymphatic and gastrointestinal tissues. To identify features in the host transcriptome and understand the molecular differences underlying host resistance to H. contortus between flocks with different selective breeding and genetic backgrounds, we compared the abomasal transcriptomic responses of the resistant or susceptible animals between HSF and TSF flocks. A total of 11 and 903 differentially expressed genes were identified in the innate infection treatment in HSF and TSF flocks between resistant and susceptible sheep respectively, while 52 and 485 genes were identified to be differentially expressed in the acquired infection treatment, respectively. Among them, 294 genes had significantly different gene expression levels between HSF and TSF flock animals within the susceptible sheep by both the innate and acquired infections. Moreover, similar expression patterns of the 294 genes were observed, with 273 genes more highly expressed in HSF and 21 more highly expressed in the TSF within the abomasal transcriptome of the susceptible animals. Gene ontology enrichment of the differentially expressed genes identified in this study predicted the likely differing function between the two flock's susceptible lines in response to H. contortus infection. Nineteen pathways were significantly enriched in both the innate and adaptive immune responses in susceptible animals, which indicated that these pathways likely contribute to the host resistance development to H. contortus infection in susceptible sheep. Biological networks built for the set of genes differentially abundant in susceptible animals identified hub genes of PRKG1, PRKACB, PRKACA, and ITGB1 for the innate immune response, and CALM2, MYL1, COL1A1, ITGB1 and ITGB3 for the adaptive immune response, respectively. Our results offered a quantitative snapshot of host transcriptomic changes induced by H. contortus infection between flocks with different selective breeding and genetic backgrounds and provided novel insights into molecular mechanisms of host resistance.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jiachang Zhou
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Si Zhao
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China; International Medical School, Hebei Foreign Studies University, Shijiazhuang, Hebei 050096, China
| | - Xiangdong Xu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
| | - Li Li
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Tingbo Shen
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Peter W Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia.
| | - Runfeng Zhang
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China.
| |
Collapse
|
33
|
A CRISPR/Cas9 strategy for the generation of a FLNC knockout hESC line (WAe009-A-70) to model dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Stem Cell Res 2021; 56:102562. [PMID: 34634758 DOI: 10.1016/j.scr.2021.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022] Open
Abstract
The FLNC gene encodes the sarcomeric protein filamin C which plays a central role in cardiomyocytes. Truncating FLNC mutations (stop or frameshift etc.) also cause dilated cardiomyopathy (DCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC). To further understand the exact role of FLNC in DCM, we have generated a human FLNC knockout cell line from the original embryonic stem cell line H9 by CRISPR/Cas9 gene editing technology in this study. The establishment cell line WAe009-A-70 have a compound heterozygous 4 bp deletion/13 bp deletion in the exon 1 of FLNC which resulted in a frameshift in the translation of FLNC. No filamin C protein was detected in cardiomyocytes differentiated from this cell line. Moreover, WAe009-A-70 also expressed pluripotency markers, maintained the ability to differentiate into the three germ layers in vitro and had a normal karyotype.
Collapse
|
34
|
Agarwal R, Paulo JA, Toepfer CN, Ewoldt JK, Sundaram S, Chopra A, Zhang Q, Gorham J, DePalma SR, Chen CS, Gygi SP, Seidman CE, Seidman JG. Filamin C Cardiomyopathy Variants Cause Protein and Lysosome Accumulation. Circ Res 2021; 129:751-766. [PMID: 34405687 PMCID: PMC9053646 DOI: 10.1161/circresaha.120.317076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Radhika Agarwal
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Radcliffe Department of Medicine, University of Oxford, OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
| | - Subramanian Sundaram
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Abstract
Cardiomyopathy affects approximately 1 in 500 adults and is the leading cause of death. Familial cases are common, and mutations in many genes are involved in cardiomyopathy, especially those in genes encoding cytoskeletal, sarcomere, and nuclear envelope proteins. Filamin C is an actin-binding protein encoded by filamin C (FLNC) gene and participates in sarcomere stability maintenance. FLNC was first demonstrated to be a causal gene of myofibrillar myopathy; recently, it has been found that FLNC mutation plays a critical role in the pathogenesis of cardiomyopathy. In this review, we summarized the physiological roles of filamin C in cardiomyocytes and the genetic evidence for links between FLNC mutations and cardiomyopathies. Truncated FLNC is enriched in dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Non-truncated FLNC is enriched in hypertrophic cardiomyopathy and restrictive cardiomyopathy. Two major pathomechanisms in FLNC-related cardiomyopathy have been described: protein aggregation resulting from non-truncating mutations and haploinsufficiency triggered by filamin C truncation. Therefore, it is important to understand the cellular biology and molecular regulation of FLNC to design new therapies to treat patients with FLNC-related cardiomyopathy.
Collapse
|
36
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
37
|
Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy. J Clin Med 2021; 10:jcm10040577. [PMID: 33557094 PMCID: PMC7913873 DOI: 10.3390/jcm10040577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
Over the past decades, there has been tremendous progress in understanding genetic alterations that can result in different phenotypes of human cardiomyopathies. More than a thousand mutations in various genes have been identified, indicating that distinct genetic alterations, or combinations of genetic alterations, can cause either hypertrophic (HCM), dilated (DCM), restrictive (RCM), or arrhythmogenic cardiomyopathies (ARVC). Translation of these results from “bench to bedside” can potentially group affected patients according to their molecular etiology and identify subclinical individuals at high risk for developing cardiomyopathy or patients with overt phenotypes at high risk for cardiac deterioration or sudden cardiac death. These advances provide not only mechanistic insights into the earliest manifestations of cardiomyopathy, but such efforts also hold the promise that mutation-specific pathophysiology might result in novel “personalized” therapeutic possibilities. Recently, the FLNC gene encoding the sarcomeric protein filamin C has gained special interest since FLNC mutations were found in several distinct and possibly overlapping cardiomyopathy phenotypes. Specifically, mutations in FLNC were initially only linked to myofibrillar myopathy (MFM), but are now increasingly found in various forms of human cardiomyopathy. FLNC thereby represents another example for the complex genetic and phenotypic continuum of these diseases.
Collapse
|
38
|
Park S, Park JH, Kang UB, Choi SK, Elfadl A, Ullah HMA, Chung MJ, Son JY, Yun HH, Park JM, Yim JH, Jung SJ, Kim SH, Choi YC, Kim DS, Shin JH, Park JS, Hur K, Lee SH, Lee EJ, Hwang D, Jeong KS. Nogo-A regulates myogenesis via interacting with Filamin-C. Cell Death Discov 2021; 7:1. [PMID: 33414425 PMCID: PMC7791112 DOI: 10.1038/s41420-020-00384-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Among the three isoforms encoded by Rtn4, Nogo-A has been intensely investigated as a central nervous system inhibitor. Although Nogo-A expression is increased in muscles of patients with amyotrophic lateral sclerosis, its role in muscle homeostasis and regeneration is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in various muscle-related pathological conditions. Nogo−/− mice displayed dystrophic muscle structure, dysregulated muscle regeneration following injury, and altered gene expression involving lipid storage and muscle cell differentiation. We hypothesized that increased Nogo-A levels might regulate muscle regeneration. Differentiating myoblasts exhibited Nogo-A upregulation and silencing Nogo-A abrogated myoblast differentiation. Nogo-A interacted with filamin-C, suggesting a role for Nogo-A in cytoskeletal arrangement during myogenesis. In conclusion, Nogo-A maintains muscle homeostasis and integrity, and pathologically altered Nogo-A expression mediates muscle regeneration, suggesting Nogo-A as a novel target for the treatment of myopathies in clinical settings.
Collapse
Affiliation(s)
- SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Un-Beom Kang
- R&D Division, BERTIS, Inc., Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.,Core Protein Resources Center, DGIST, Daegu, 42988, Republic of Korea
| | - Ahmed Elfadl
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyun Ho Yun
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Min Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Hyuk Yim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Jun Jung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Hyup Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06058, Republic of Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
39
|
Lamsoul I, Dupré L, Lutz PG. Molecular Tuning of Filamin A Activities in the Context of Adhesion and Migration. Front Cell Dev Biol 2020; 8:591323. [PMID: 33330471 PMCID: PMC7714767 DOI: 10.3389/fcell.2020.591323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The dynamic organization of actin cytoskeleton meshworks relies on multiple actin-binding proteins endowed with distinct actin-remodeling activities. Filamin A is a large multi-domain scaffolding protein that cross-links actin filaments with orthogonal orientation in response to various stimuli. As such it plays key roles in the modulation of cell shape, cell motility, and differentiation throughout development and adult life. The essentiality and complexity of Filamin A is highlighted by mutations that lead to a variety of severe human disorders affecting multiple organs. One of the most conserved activity of Filamin A is to bridge the actin cytoskeleton to integrins, thereby maintaining the later in an inactive state. We here review the numerous mechanisms cells have developed to adjust Filamin A content and activity and focus on the function of Filamin A as a gatekeeper to integrin activation and associated adhesion and motility.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Loïc Dupré
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Pierre G Lutz
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
40
|
Zhang X, Sun W, He L, Wang L, Qiu K, Yin J. Global DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs. Stem Cell Res Ther 2020; 11:536. [PMID: 33308295 PMCID: PMC7731745 DOI: 10.1186/s13287-020-02053-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Skeletal muscle is a complex and heterogeneous tissue accounting for approximately 40% of body weight. Excessive ectopic lipid accumulation in the muscle fascicle would undermine the integrity of skeletal muscle in humans but endow muscle with marbling-related characteristics in farm animals. Therefore, the balance of myogenesis and adipogenesis is of great significance for skeletal muscle homeostasis. Significant DNA methylation occurs during myogenesis and adipogenesis; however, DNA methylation pattern of myogenic and adipogenic precursors derived from skeletal muscle remains unknown yet. Methods In this study, reduced representation bisulfite sequencing was performed to analyze genome-wide DNA methylation of adipogenic and myogenic precursors derived from the skeletal muscle of neonatal pigs. Integrated analysis of DNA methylation and transcription profiles was further conducted. Based on the results of pathway enrichment analysis, myogenic precursors were transfected with CACNA2D2-overexpression plasmids to explore the function of CACNA2D2 in myogenic differentiation. Results As a result, 11,361 differentially methylated regions mainly located in intergenic region and introns were identified. Furthermore, 153 genes with different DNA methylation and gene expression level between adipogenic and myogenic precursors were characterized. Subsequently, pathway enrichment analysis revealed that DNA methylation programing was involved in the regulation of adipogenic and myogenic differentiation potential through mediating the crosstalk among pathways including focal adhesion, regulation of actin cytoskeleton, MAPK signaling pathway, and calcium signaling pathway. In particular, we characterized a new role of CACNA2D2 in inhibiting myogenic differentiation by suppressing JNK/MAPK signaling pathway. Conclusions This study depicted a comprehensive landmark of DNA methylome of skeletal muscle-derived myogenic and adipogenic precursors, highlighted the critical role of CACNA2D2 in regulating myogenic differentiation, and illustrated the possible regulatory ways of DNA methylation on cell fate commitment and skeletal muscle homeostasis. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02053-3.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
41
|
Knyazeva A, Khudiakov A, Vaz R, Muravyev A, Sukhareva K, Sejersen T, Kostareva A. FLNC Expression Level Influences the Activity of TEAD-YAP/TAZ Signaling. Genes (Basel) 2020; 11:genes11111343. [PMID: 33202721 PMCID: PMC7696573 DOI: 10.3390/genes11111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Filamin C (FLNC), being one of the major actin-binding proteins, is involved in the maintenance of key muscle cell functions. Inherited skeletal muscle and cardiac disorders linked to genetic variants in FLNC have attracted attention because of their high clinical importance and possibility of genotype-phenotype correlations. To further expand on the role of FLNC in muscle cells, we focused on detailed alterations of muscle cell properties developed after the loss of FLNC. Using the CRISPR/Cas9 method we generated a C2C12 murine myoblast cell line with stably suppressed Flnc expression. FLNC-deficient myoblasts have a significantly higher proliferation rate combined with an impaired cell migration capacity. The suppression of Flnc expression leads to inability to complete myogenic differentiation, diminished expression of Myh1 and Myh4, alteration of transcriptional dynamics of myogenic factors, such as Mymk and Myog, and deregulation of Hippo signaling pathway. Specifically, we identified elevated basal levels of Hippo activity in myoblasts with loss of FLNC, and ineffective reduction of Hippo signaling activity during myogenic differentiation. The latter was restored by Flnc overexpression. In summary, we confirmed the role of FLNC in muscle cell proliferation, migration and differentiation, and demonstrated for the first time the direct link between Flnc expression and activity of TEAD-YAP\TAZ signaling. These findings support a role of FLNC in regulation of essential muscle processes relying on mechanical as well as signaling mechanisms.
Collapse
Affiliation(s)
- Anastasia Knyazeva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Correspondence:
| | - Aleksandr Khudiakov
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden;
| | - Aleksey Muravyev
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
| | - Ksenia Sukhareva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Graduate School of Life and Health Science, University of Verona, 10 37134 Verona, Italy
| | - Thomas Sejersen
- Department of Women’s and Children’s Health, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Department of Women’s and Children’s Health, Karolinska Institute, 171 77 Stockholm, Sweden;
| |
Collapse
|
42
|
Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, Unger A, Kirfel G, van der Ven PFM, Marcus K, Linke WA, Clemen CS, Schröder R, Fürst DO. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun 2020; 8:154. [PMID: 32887649 PMCID: PMC7650280 DOI: 10.1186/s40478-020-01001-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
Filamin C (FLNc) is mainly expressed in striated muscle cells where it localizes to Z-discs, myotendinous junctions and intercalated discs. Recent studies have revealed numerous mutations in the FLNC gene causing familial and sporadic myopathies and cardiomyopathies with marked clinical variability. The most frequent myopathic mutation, p.W2710X, which is associated with myofibrillar myopathy, deletes the carboxy-terminal 16 amino acids from FLNc and abolishes the dimerization property of Ig-like domain 24. We previously characterized "knock-in" mice heterozygous for this mutation (p.W2711X), and have now investigated homozygous mice using protein and mRNA expression analyses, mass spectrometry, and extensive immunolocalization and ultrastructural studies. Although the latter mice display a relatively mild myopathy under normal conditions, our analyses identified major mechanisms causing the pathophysiology of this disease: in comparison to wildtype animals (i) the expression level of FLNc protein is drastically reduced; (ii) mutant FLNc is relocalized from Z-discs to particularly mechanically strained parts of muscle cells, i.e. myotendinous junctions and myofibrillar lesions; (iii) the number of lesions is greatly increased and these lesions lack Bcl2-associated athanogene 3 (BAG3) protein; (iv) the expression of heat shock protein beta-7 (HSPB7) is almost completely abolished. These findings indicate grave disturbances of BAG3-dependent and -independent autophagy pathways that are required for efficient lesion repair. In addition, our studies reveal general mechanisms of lesion formation and demonstrate that defective FLNc dimerization via its carboxy-terminal domain does not disturb assembly and basic function of myofibrils. An alternative, more amino-terminally located dimerization site might compensate for that loss. Since filamins function as stress sensors, our data further substantiate that FLNc is important for mechanosensing in the context of Z-disc stabilization and maintenance.
Collapse
|
43
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
44
|
Reimann L, Schwäble AN, Fricke AL, Mühlhäuser WWD, Leber Y, Lohanadan K, Puchinger MG, Schäuble S, Faessler E, Wiese H, Reichenbach C, Knapp B, Peikert CD, Drepper F, Hahn U, Kreutz C, van der Ven PFM, Radziwill G, Djinović-Carugo K, Fürst DO, Warscheid B. Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C. Commun Biol 2020; 3:253. [PMID: 32444788 PMCID: PMC7244511 DOI: 10.1038/s42003-020-0982-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells.
Collapse
Affiliation(s)
- Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Anja N Schwäble
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Anna L Fricke
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Yvonne Leber
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030, Vienna, Austria
| | - Sascha Schäuble
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Erik Faessler
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Heike Wiese
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology and Toxicology, University of Ulm, 89081, Ulm, Germany
| | - Christa Reichenbach
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Bettina Knapp
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christian D Peikert
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Bioinformatics Research & Development, BioNTech SE, 55131, Mainz, Germany
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Udo Hahn
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Gerald Radziwill
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030, Vienna, Austria
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
45
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
46
|
Reduction in Filamin C transcript is associated with arrhythmogenic cardiomyopathy in Ashkenazi Jews. Int J Cardiol 2020; 317:133-138. [PMID: 32532510 DOI: 10.1016/j.ijcard.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/07/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Filamin C is a cytoskeletal protein expressed in cardiac cells. Nonsense variations in the filamin C gene (FLNC) were associated with dilated and arrhythmogenic cardiomyopathies. METHODS AND RESULTS We identified an intronic variation in FLNC gene (c.3791-1G > C) in three unrelated Ashkenazi Jewish families with variable expression of arrhythmia and cardiomyopathy. cDNA was prepared from a mutation carrier's cultured skin fibroblasts. Quantitative PCR demonstrated a reduction in total FLNC transcript, and no other FLNC splice variants were found. Single-nucleotide polymorphism (SNP) analysis revealed heterozygous variations in the genomic DNA that were not expressed in the messenger RNA. Immunohistochemical analysis of cardiac sections detected a normal distribution of filamin C protein in the heart ventricles. CONCLUSION The transcript that included the FLNC variant was degraded. Haploinsufficiency in filamin C underlies arrhythmogenic cardiomyopathy with variable symptoms.
Collapse
|
47
|
Verdonschot JAJ, Vanhoutte EK, Claes GRF, Helderman-van den Enden ATJM, Hoeijmakers JGJ, Hellebrekers DMEI, de Haan A, Christiaans I, Lekanne Deprez RH, Boen HM, van Craenenbroeck EM, Loeys BL, Hoedemaekers YM, Marcelis C, Kempers M, Brusse E, van Waning JI, Baas AF, Dooijes D, Asselbergs FW, Barge-Schaapveld DQCM, Koopman P, van den Wijngaard A, Heymans SRB, Krapels IPC, Brunner HG. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 2020; 41:1091-1111. [PMID: 32112656 PMCID: PMC7318287 DOI: 10.1002/humu.24004] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high‐throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC‐associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Amber de Haan
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hanne M Boen
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | - Bart L Loeys
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Yvonne M Hoedemaekers
- Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marlies Kempers
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Esther Brusse
- Department of Neurology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Jaap I van Waning
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,The Netherlands Heart Institute, Utrecht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Genetics and Cell Biology, GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
48
|
Zhou Y, Chen Z, Zhang L, Zhu M, Tan C, Zhou X, Evans SM, Fang X, Feng W, Chen J. Loss of Filamin C Is Catastrophic for Heart Function. Circulation 2020; 141:869-871. [PMID: 32150467 PMCID: PMC7583669 DOI: 10.1161/circulationaha.119.044061] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yangzhao Zhou
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze’e Chen
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
| | - Lunfeng Zhang
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
| | - Mason Zhu
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
| | - Changming Tan
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sylvia M Evans
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Xi Fang
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
| | - Wei Feng
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
| | - Ju Chen
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
49
|
Roldan-Sevilla Á, Salguero-Bodes R, Valverde-Gómez M, Delgado J, Arribas-Ynsaurriaga F, Palomino-Doza J. Response by Roldan-Sevilla to Letter Regarding Article, "Missense Mutations in the FLNC Gene Causing Familial Restrictive Cardiomyopathy". CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002622. [PMID: 31306058 DOI: 10.1161/circgen.119.002622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Álvaro Roldan-Sevilla
- Cardiology department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12 (Á.R.-S., R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.)
| | - Rafael Salguero-Bodes
- Cardiology department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12 (Á.R.-S., R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV (R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Universidad Complutense de Madrid, Spain (R.S.-B., M.V.-G., J.D., F.A.-Y.)
| | - María Valverde-Gómez
- Cardiology department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12 (Á.R.-S., R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV (R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Universidad Complutense de Madrid, Spain (R.S.-B., M.V.-G., J.D., F.A.-Y.)
| | - Juan Delgado
- Cardiology department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12 (Á.R.-S., R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV (R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Universidad Complutense de Madrid, Spain (R.S.-B., M.V.-G., J.D., F.A.-Y.)
| | - Fernando Arribas-Ynsaurriaga
- Cardiology department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12 (Á.R.-S., R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV (R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Universidad Complutense de Madrid, Spain (R.S.-B., M.V.-G., J.D., F.A.-Y.)
| | - Julián Palomino-Doza
- Cardiology department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12 (Á.R.-S., R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.).,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, CIBERCV (R.S.-B., M.V.-G., J.D., F.A.-Y., J.P.-D.)
| |
Collapse
|
50
|
Blondelle J, Tallapaka K, Seto JT, Ghassemian M, Clark M, Laitila JM, Bournazos A, Singer JD, Lange S. Cullin-3 dependent deregulation of ACTN1 represents a new pathogenic mechanism in nemaline myopathy. JCI Insight 2019; 5:125665. [PMID: 30990797 PMCID: PMC6542616 DOI: 10.1172/jci.insight.125665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Nemaline myopathy is a congenital neuromuscular disorder characterized by muscle weakness, fiber atrophy and presence of nemaline bodies within myofibers. However, the understanding of underlying pathomechanisms is lacking. Recently, mutations in KBTBD13, KLHL40 and KLHL41, three substrate adaptors for the E3-ubiquitin ligase Cullin-3, have been associated with early-onset nemaline myopathies. We hypothesized that deregulation of Cullin-3 and its muscle protein substrates may be responsible for the disease development. Using Cullin-3 knockout mice, we identified accumulation of non-muscle alpha-Actinins (ACTN1 and ACTN4) in muscles of these mice, which we also observed in KBTBD13 patients. Our data reveal that proper regulation of Cullin-3 activity and ACTN1 levels is essential for normal muscle and neuromuscular junction development. While ACTN1 is naturally downregulated during myogenesis, its overexpression in C2C12 myoblasts triggered defects in fusion, myogenesis and acetylcholine receptor clustering; features that we characterized in Cullin-3 deficient mice. Taken together, our data highlight the importance for Cullin-3 mediated degradation of ACTN1 for muscle development, and indicate a new pathomechanism for the etiology of myopathies seen in Cullin-3 knockout mice and nemaline myopathy patients.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
| | - Kavya Tallapaka
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
| | - Jane T. Seto
- Neuromuscular Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry. UCSD, La Jolla, California, USA
| | - Madison Clark
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
| | - Jenni M. Laitila
- Folkhälsan Research Center and Medicum, University of Helsinki, Helsinki, Finland
| | - Adam Bournazos
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UCSD, La Jolla, California, USA
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|