1
|
Wang Y, Ma C, Yang X, Gao J, Sun Z. ZNF217: An Oncogenic Transcription Factor and Potential Therapeutic Target for Multiple Human Cancers. Cancer Manag Res 2024; 16:49-62. [PMID: 38259608 PMCID: PMC10802126 DOI: 10.2147/cmar.s431135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Zinc finger protein 217 (ZNF217) is one of the well-researched members of the Krüppel-like factor transcription factor family. ZNF217 possesses a characteristic structure of zinc finger motifs and plays a crucial role in regulating the biological activities of cells. Recent findings have revealed that ZNF217 is strongly associated with multiple aspects of cancer progression, impacting patient prognosis. Notably, ZNF217 is subject to regulation by non-coding RNAs, suggesting the potential for targeted manipulation of such RNAs as a robust therapeutic avenue for managing cancer in the future. The main purpose of this article is to provide a detailed examination of the role of ZNF217 in human malignant tumors and the regulation of its expression, and to offer new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Yepeng Wang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xuekun Yang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Jun Gao
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Zhigang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
2
|
Sharma T, Zhang Y, Zigrossi A, Cravatt BF, Kastrati I. Dimethyl fumarate inhibits ZNF217 and can be beneficial in a subset of estrogen receptor positive breast cancers. Breast Cancer Res Treat 2023; 201:561-570. [PMID: 37477798 DOI: 10.1007/s10549-023-07037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE The oncogenic factor ZNF217 promotes aggressive estrogen receptor (ER)+breast cancer disease suggesting that its inhibition may be useful in the clinic. Unfortunately, no direct pharmacological inhibitor is available. Dimethyl fumarate (DMF) exhibits anti-breast cancer activities, in vitro and in pre-clinical in vivo models. Its therapeutic benefits stem from covalent modification of cellular thiols such as protein cysteines, but the full profile of molecular targets mediating its anti-breast cancer effects remains to be determined. METHODS ER+breast cancer cells were treated with DMF followed by cysteine-directed proteomics. Cells with modulated ZNF217 levels were used to probe the efficacy of DMF. RESULTS Covalent modification of ZNF217 by DMF identified by proteomics was confirmed by using a DMF-chemical probe. Inhibition of ZNF217's transcriptional activity by DMF was evident on reported ZNF217-target genes. ZNF217 as an oncogene has been shown to enhance stem-like properties, survival, proliferation, and invasion. Consistent with ZNF217 inhibition, DMF was more effective at blocking these ZNF217-driven phenotypes in cells with elevated ZNF217 expression. Furthermore, partial knockdown of ZNF217 led to a reduction in DMF's efficacy. DMF's in vivo activity was evaluated in a xenograft model of MCF-7 HER2 cells that have elevated expression of ZNF217 and DMF treatment resulted in significant inhibition of tumor growth. CONCLUSION These data indicate that DMF's anti-breast cancer activities in the ER+HER2+models, at least in part, are due to inhibition of ZNF217. DMF is identified as a new covalent inhibitor of ZNF217.
Collapse
Affiliation(s)
- Tanu Sharma
- The Department of Cancer Biology, Loyola University Chicago, 2160 S 1St Avenue, Maywood, IL, 60153, USA
| | - Yuanjin Zhang
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alexandra Zigrossi
- The Department of Cancer Biology, Loyola University Chicago, 2160 S 1St Avenue, Maywood, IL, 60153, USA
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Irida Kastrati
- The Department of Cancer Biology, Loyola University Chicago, 2160 S 1St Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
3
|
The Intricate Interplay between the ZNF217 Oncogene and Epigenetic Processes Shapes Tumor Progression. Cancers (Basel) 2022; 14:cancers14246043. [PMID: 36551531 PMCID: PMC9776013 DOI: 10.3390/cancers14246043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor ZNF217 orchestrates several molecular signaling networks to reprogram integrated circuits governing hallmark capabilities within cancer cells. High levels of ZNF217 expression provide advantages to a specific subset of cancer cells to reprogram tumor progression, drug resistance and cancer cell plasticity. ZNF217 expression level, thus, provides a powerful biomarker of poor prognosis and a predictive biomarker for anticancer therapies. Cancer epigenetic mechanisms are well known to support the acquisition of hallmark characteristics during oncogenesis. However, the complex interactions between ZNF217 and epigenetic processes have been poorly appreciated. Deregulated DNA methylation status at ZNF217 locus or an intricate cross-talk between ZNF217 and noncoding RNA networks could explain aberrant ZNF217 expression levels in a cancer cell context. On the other hand, the ZNF217 protein controls gene expression signatures and molecular signaling for tumor progression by tuning DNA methylation status at key promoters by interfering with noncoding RNAs or by refining the epitranscriptome. Altogether, this review focuses on the recent advances in the understanding of ZNF217 collaboration with epigenetics processes to orchestrate oncogenesis. We also discuss the exciting burgeoning translational medicine and candidate therapeutic strategies emerging from those recent findings connecting ZNF217 to epigenetic deregulation in cancer.
Collapse
|
4
|
He K, Zhang S, Pang J, Yin JC, Mu D, Wang J, Ge H, Ma J, Yang Z, Zheng X, Dong L, Zhang J, Chang P, Li L, Tang S, Bao H, Wu X, Wang X, Shao Y, Yu J, Yuan S. Genomic Profiling Reveals Novel Predictive Biomarkers for Chemo-Radiotherapy Efficacy and Thoracic Toxicity in Non-Small-Cell Lung Cancer. Front Oncol 2022; 12:928605. [PMID: 35912186 PMCID: PMC9329611 DOI: 10.3389/fonc.2022.928605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Chemo-radiotherapy (CRT) remains the main treatment modality for non-small-cell lung cancer (NSCLC). However, its clinical efficacy is largely limited by individual variations in radio-sensitivity and radiotherapy-associated toxicity. There is an urgent need to identify genetic determinants that can explain patients’ likelihood to develop recurrence and radiotherapy-associated toxicity following CRT. In this study, we performed comprehensive genomic profiling, using a 474-cancer- and radiotherapy-related gene panel, on pretreatment biopsy samples from patients with unresectable stage III NSCLCs who underwent definitive CRT. Patients’ baseline clinical characteristics and genomic features, including tumor genetic, genomic and molecular pathway alterations, as well as single nucleotide polymorphisms (SNPs), were correlated with progression-free survival (PFS), overall survival (OS), and radiotherapy-associated pneumonitis and/or esophagitis development after CRT. A total of 122 patients were enrolled between 2014 and 2019, with 84 (69%) squamous cell carcinomas and 38 (31%) adenocarcinomas. Genetic analysis confirmed the association between the KEAP1-NRF2 pathway gene alterations and unfavorable survival outcome, and revealed alterations in FGFR family genes, MET, PTEN, and NOTCH2 as potential novel and independent risk factors of poor post-CRT survival. Combined analysis of such alterations led to improved stratification of the risk populations. In addition, patients with EGFR activating mutations or any oncogenic driver mutations exhibited improved OS. On the other hand, we also identified genetic markers in relation to radiotherapy-associated thoracic toxicity. SNPs in the DNA repair-associated XRCC5 (rs3835) and XRCC1 (rs25487) were associated with an increased risk of high-grade esophagitis and pneumonitis respectively. MTHFR (rs1801133) and NQO1 (rs1800566) were additional risk alleles related to higher susceptibility to pneumonitis and esophagitis overall. Moreover, through their roles in genome integrity and replicative fidelity, somatic alterations in ZNF217 and POLD1 might also serve as risk predictors of high-grade pneumonitis and esophagitis. Taken together, leveraging targeted next-generating sequencing, we identified a set of novel clinically applicable biomarkers that might enable prediction of survival outcomes and risk of radiotherapy-associated thoracic toxicities. Our findings highlight the value of pre-treatment genetic testing to better inform CRT outcomes and clinical actions in stage III unresectable NSCLCs.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shaotong Zhang
- Department of Ultrasound, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jiani C. Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Ma
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital, Jinan, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Jilin, China
| | - Junli Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Pengyu Chang
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Jilin, China
| | - Li Li
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Tang
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiaonan Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu, ; Yang Shao,
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu, ; Yang Shao,
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu, ; Yang Shao,
| |
Collapse
|
5
|
Li Y, Wu H, Wang Q, Xu S. ZNF217: the cerberus who fails to guard the gateway to lethal malignancy. Am J Cancer Res 2021; 11:3378-3405. [PMID: 34354851 PMCID: PMC8332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regulation, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance and patients' poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. Moreover, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| |
Collapse
|
6
|
Human Papillomavirus 16 E5 Inhibits Interferon Signaling and Supports Episomal Viral Maintenance. J Virol 2020; 94:JVI.01582-19. [PMID: 31666385 DOI: 10.1128/jvi.01582-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Human papillomaviruses (HPVs) infect keratinocytes of stratified epithelia. Long-term persistence of infection is a critical risk factor for the development of HPV-induced malignancies. Through the actions of its oncogenes, HPV evades host immune responses to facilitate its productive life cycle. In this work, we discovered a previously unknown function of the HPV16 E5 oncoprotein in the suppression of interferon (IFN) responses. This suppression is focused on keratinocyte-specific IFN-κ and is mediated through E5-induced changes in growth factor signaling pathways, as identified through phosphoproteomics analysis. The loss of E5 in keratinocytes maintaining the complete HPV16 genome results in the derepression of IFNK transcription and subsequent JAK/STAT-dependent upregulation of several IFN-stimulated genes (ISGs) at both the mRNA and protein levels. We also established a link between the loss of E5 and the subsequent loss of genome maintenance and stability, resulting in increased genome integration.IMPORTANCE Persistent human papillomavirus infections can cause a variety of significant cancers. The ability of HPV to persist depends on evasion of the host immune system. In this study, we show that the HPV16 E5 protein can suppress an important aspect of the host immune response. In addition, we find that the E5 protein is important for helping the virus avoid integration into the host genome, which is a frequent step along the pathway to cancer development.
Collapse
|
7
|
Ramírez-Ramírez R, Gutiérrez-Angulo M, Peregrina-Sandoval J, Moreno-Ortiz JM, Franco-Topete RA, Cerda-Camacho FDJ, Ayala-Madrigal MDLL. Somatic deletion of KDM1A/LSD1 gene is associated to advanced colorectal cancer stages. J Clin Pathol 2019; 73:107-111. [PMID: 31471467 PMCID: PMC7027028 DOI: 10.1136/jclinpath-2019-206128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Aims KDM1A/LSD1 and ZNF217 are involved in a protein complex that participates in transcriptional regulation. ZNF217 has been analysed in numerous cancers and its amplification has been associated with advanced stages of disease; however, a similar role for KDM1A/LSD1 has not been uncovered. In this study, we estimated the number of KDM1A/LSD1 and ZNF217 gene copies in tissue samples from patients diagnosed with colorectal cancer (CRC), as well as its association with clinicopathological features in patients with CRC. Methods Paraffin-embedded tumour samples from 50 patients with CRC with a histopathological diagnosis of CRC were included. The number of copies of KDM1A/LSD1 and ZNF217 genes was determined by fluorescence in situ hybridisation (FISH). We also analysed the association between copy numbers of selected genes and clinicopathological data based on multivariate analysis. Results Deletion of the KDM1A/LSD1 gene occurred in 19 samples (38%), whereas ZNF217 gene amplification was identified in 11 samples (22%). We found a significant association between lymph node metastasis or advanced tumour stage and KDM1A/LSD1 gene deletion (p value=0.0003 and p value=0.011, respectively). Conclusions KDM1A/LSD1 gene deletion could be considered a novel prognostic biomarker of late-stage CRC.
Collapse
Affiliation(s)
- Ruth Ramírez-Ramírez
- Laboratorio de Inmunología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | - Melva Gutiérrez-Angulo
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, México.,Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México.,Laboratorio de Patología Clínica, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, México
| | - José Miguel Moreno-Ortiz
- Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México.,Instituto de Genética Humana "Dr. Enrique Corona Rivera", Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Ramon Antonio Franco-Topete
- Servicio de Anatomía Patológica, Hospital Civil de Guadalajara "Dr. Juan I Menchaca", Guadalajara, México.,Departamento de Microbiología y Patología, Universidad de Guadalajara, Guadalajara, México
| | | | - Maria de la Luz Ayala-Madrigal
- Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México .,Instituto de Genética Humana "Dr. Enrique Corona Rivera", Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
8
|
Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Adv Cancer Res 2019; 141:175-212. [PMID: 30691683 DOI: 10.1016/bs.acr.2018.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical studies have revealed that breast cancers contain regions of intratumoral hypoxia (reduced oxygen availability), which activates hypoxia-inducible factors (HIFs). The relationship between intratumoral hypoxia, distant metastasis and cancer mortality has been well established. A major mechanism by which intratumoral hypoxia contributes to disease progression is through induction of the breast cancer stem cell (BCSC) phenotype. BCSCs are a small subpopulation of cells with the capability for self-renewal. BCSCs have been implicated in resistance to chemotherapy, disease recurrence, and metastasis. In this review, we will discuss our current understanding of the molecular mechanisms underlying HIF-dependent induction of the BCSC phenotype in response to hypoxia or chemotherapy.
Collapse
|
9
|
LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A 2018; 115:E4179-E4188. [PMID: 29581250 DOI: 10.1073/pnas.1719168115] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Medical castration that interferes with androgen receptor (AR) function is the principal treatment for advanced prostate cancer. However, clinical progression is universal, and tumors with AR-independent resistance mechanisms appear to be increasing in frequency. Consequently, there is an urgent need to develop new treatments targeting molecular pathways enriched in lethal prostate cancer. Lysine-specific demethylase 1 (LSD1) is a histone demethylase and an important regulator of gene expression. Here, we show that LSD1 promotes the survival of prostate cancer cells, including those that are castration-resistant, independently of its demethylase function and of the AR. Importantly, this effect is explained in part by activation of a lethal prostate cancer gene network in collaboration with LSD1's binding protein, ZNF217. Finally, that a small-molecule LSD1 inhibitor-SP-2509-blocks important demethylase-independent functions and suppresses castration-resistant prostate cancer cell viability demonstrates the potential of LSD1 inhibition in this disease.
Collapse
|
10
|
Jiang X, Zhang C, Qi S, Guo S, Chen Y, Du E, Zhang H, Wang X, Liu R, Qiao B, Yang K, Zhang Z, Xu Y. Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress. Oncotarget 2018; 7:84893-84906. [PMID: 27768596 PMCID: PMC5356707 DOI: 10.18632/oncotarget.12753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023] Open
Abstract
Although we and other studies indicated ZNF217 expression was increased in prostate cancer (PCa), the factors mediating its misregulated expression and their oncogenic activity remain largely unexplored. Recent evidence demonstrated that ferroportin (FPN) reduction lead to decreased iron export and increased intercellular iron that consequently aggravates the oncogenic effects of iron. In the present study, ZNF217 was identified as a transcriptional repressor that inhibits FPN expression. Increased of ZNF217 expression led to decreased FPN concentration, coupled with resultant intracellular iron retention, increased iron-related cellular activities and enhanced tumor cell growth. In contrast, decreased of ZNF217 expression restrained tumor cell growth by promoting FPN-driven iron egress. Mechanistic investigation manifested that ZNF217 facilitated the H3K27me3 levels of FPN promoter by interacting with EZH2. Besides, we also found that MAZ increased the transcription level of ZNF217, and subsequently inhibited the FPN expression and their iron–related activities. Strikingly, the expression of MAZ, EZH2 and ZNF217 were concurrently upregulated in PCa, leading to decreased expression of FPN, which induce disordered iron metabolism. Collectively, this study underscored that elevated expression of ZNF217 promotes prostate cancer growth by restraining FPN-conducted iron egress.
Collapse
Affiliation(s)
- Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Hongtuan Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Xiaoming Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ranlu Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Kuo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| |
Collapse
|
11
|
Bellanger A, Donini CF, Vendrell JA, Lavaud J, Machuca-Gayet I, Ruel M, Vollaire J, Grisard E, Győrffy B, Bièche I, Peyruchaud O, Coll JL, Treilleux I, Maguer-Satta V, Josserand V, Cohen PA. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol 2017; 242:73-89. [PMID: 28207159 DOI: 10.1002/path.4882] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
Abstract
Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Caterina F Donini
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Unité Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Julie A Vendrell
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jonathan Lavaud
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Irma Machuca-Gayet
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Maëva Ruel
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Vollaire
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Evelyne Grisard
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Institut Curie, Paris, France
| | - Olivier Peyruchaud
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Jean-Luc Coll
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | | | - Véronique Maguer-Satta
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Véronique Josserand
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Pascale A Cohen
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Cohen PA, Donini CF, Nguyen NT, Lincet H, Vendrell JA. The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value. Oncotarget 2016; 6:41566-81. [PMID: 26431164 PMCID: PMC4747174 DOI: 10.18632/oncotarget.5893] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022] Open
Abstract
The recently described oncogene ZNF217 belongs to a chromosomal region that is frequently amplified in human cancers. Recent findings have revealed that alternative mechanisms such as epigenetic regulation also govern the expression of the encoded ZNF217 protein. Newly discovered molecular functions of ZNF217 indicate that it orchestrates complex intracellular circuits as a new key regulator of tumorigenesis. In this review, we focus on recent research on ZNF217-driven molecular functions in human cancers, revisiting major hallmarks of cancer and highlighting the downstream molecular targets and signaling pathways of ZNF217. We also discuss the exciting translational medicine investigating ZNF217 expression levels as a new powerful biomarker, and ZNF217 as a candidate target for future anti-cancer therapies.
Collapse
Affiliation(s)
- Pascale A Cohen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Caterina F Donini
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Nhan T Nguyen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Julie A Vendrell
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
13
|
Lee DF, Walsh MJ, Aguiló F. ZNF217/ZFP217 Meets Chromatin and RNA. Trends Biochem Sci 2016; 41:986-988. [PMID: 27519282 DOI: 10.1016/j.tibs.2016.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
The Kruppel-like transcription factor zinc finger protein (ZNF)217 (mouse homolog ZFP217) contributes to tumorigenesis by dysregulating gene expression programs. The newly discovered molecular function of ZFP217 in controlling N6-methyladenosine (m6A) deposition in embryonic stem cells (ESCs) sheds new light on the role of this transcription factor in tumor development.
Collapse
Affiliation(s)
- Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Martin J Walsh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Francesca Aguiló
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Current address: Wallenberg Centre for Molecular Medicine, Department of Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
14
|
Mazumdar S, Arendt LM, Phillips S, Sedic M, Kuperwasser C, Gill G. CoREST1 promotes tumor formation and tumor stroma interactions in a mouse model of breast cancer. PLoS One 2015; 10:e0121281. [PMID: 25793264 PMCID: PMC4368644 DOI: 10.1371/journal.pone.0121281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/29/2015] [Indexed: 01/14/2023] Open
Abstract
Regulators of chromatin structure and gene expression contribute to tumor formation and progression. The co-repressor CoREST1 regulates the localization and activity of associated histone modifying enzymes including lysine specific demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1). Although several CoREST1 associated proteins have been reported to enhance breast cancer progression, the role of CoREST1 in breast cancer is currently unclear. Here we report that knockdown of CoREST1 in the basal-type breast cancer cell line, MDA-MB-231, led to significantly reduced incidence and diminished size of tumors compared to controls in mouse xenograft studies. Notably, CoREST1-depleted cells gave rise to tumors with a marked decrease in angiogenesis. CoREST1 knockdown led to a decrease in secreted angiogenic and inflammatory factors, and mRNA analysis suggests that CoREST1 promotes expression of genes related to angiogenesis and inflammation including VEGF-A and CCL2. CoREST1 knockdown decreased the ability of MDA-MB-231 conditioned media to promote endothelial cell tube formation and migration. Further, tumors derived from CoREST1-depleted cells had reduced macrophage infiltration and the secretome of CoREST1 knockdown cells was deficient in promoting macrophage migration and macrophage-mediated angiogenesis. Taken together, these findings reveal that the epigenetic regulator CoREST1 promotes tumorigenesis in a breast cancer model at least in part through regulation of gene expression patterns in tumor cells that have profound non-cell autonomous effects on endothelial and inflammatory cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Sohini Mazumdar
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lisa M. Arendt
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Sarah Phillips
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Maja Sedic
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Cellular, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Grace Gill
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ansems M, Søndergaard JN, Sieuwerts AM, Looman MWG, Smid M, de Graaf AMA, de Weerd V, Zuidscherwoude M, Foekens JA, Martens JWM, Adema GJ. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells. Breast Cancer Res Treat 2015; 149:693-703. [PMID: 25663546 PMCID: PMC4326655 DOI: 10.1007/s10549-015-3281-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/18/2015] [Indexed: 01/07/2023]
Abstract
Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prognostic marker in ESR1 (ERα gene)-positive breast cancer patients. In this study, we further investigated the molecular mechanism on how DC-SCRIPT inhibits breast cancer cell growth. DC-SCRIPT mRNA levels from 190 primary ESR1-positive breast tumors were related to global gene expression, followed by gene ontology and pathway analysis. The effect of DC-SCRIPT on breast cancer cell growth and cell cycle arrest was investigated using novel DC-SCRIPT-inducible MCF7 breast cancer cell lines. Genome-wide expression profiling of DC-SCRIPT-expressing MCF7 cells was performed to investigate the effect of DC-SCRIPT on cell cycle-related gene expression. Findings were validated by real-time PCR in a cohort of 1,132 ESR1-positive breast cancer patients. In the primary ESR1-positive breast tumors, DC-SCRIPT expression negatively correlated with several cell cycle gene ontologies and pathways. DC-SCRIPT expression strongly reduced breast cancer cell growth in vitro, breast tumor growth in vivo, and induced cell cycle arrest. In addition, in the presence of DC-SCRIPT, multiple cell cycles related genes were differentially expressed including the tumor suppressor gene CDKN2B. Moreover, in 1,132 primary ESR1-positive breast tumors, DC-SCRIPT expression also correlated with CDKN2B expression. Collectively, these data show that DC-SCRIPT acts as a novel regulator of CDKN2B and induces cell cycle arrest in ESR1-positive breast cancer cells.
Collapse
Affiliation(s)
- Marleen Ansems
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Z, Du L, Dong Z, Yang Y, Zhang X, Wang L, Li J, Zheng G, Qu A, Wang C. MiR-203 suppresses ZNF217 upregulation in colorectal cancer and its oncogenicity. PLoS One 2015; 10:e0116170. [PMID: 25621839 PMCID: PMC4306553 DOI: 10.1371/journal.pone.0116170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022] Open
Abstract
Zinc finger protein 217 (ZNF217) is essential for cell proliferation and has been implicated in tumorigenesis. However, its expression and exact roles in colorectal cancer (CRC) remain unclear. In this study, we demonstrated that ZNF217 expression was aberrantly upregulated in CRC tissues and associated with poor overall survival of CRC patients. In addition, we found that ZNF217 was a putative target of microRNA (miR)-203 using bioinformatics analysis and confirmed that using luciferase reporter assay. Moreover, in vitro knockdown of ZNF217 or enforced expression of miR-203 attenuated CRC cell proliferation, invasion and migration. Furthermore, combined treatment of ZNF217 siRNA and miR-203 exhibited synergistic inhibitory effects. Taken together, our results provide new evidences that ZNF217 has an oncogenic role in CRC and is regulated by miR-203, and open up the possibility of ZNF217- and miR-203-targeted therapy for CRC.
Collapse
Affiliation(s)
- Zewu Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lutao Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ailin Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail:
| |
Collapse
|
17
|
Frietze S, O'Geen H, Littlepage LE, Simion C, Sweeney CA, Farnham PJ, Krig SR. Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with ERalpha. BMC Genomics 2014; 15:520. [PMID: 24962896 PMCID: PMC4082627 DOI: 10.1186/1471-2164-15-520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/18/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The ZNF217 gene, encoding a C2H2 zinc finger protein, is located at 20q13 and found amplified and overexpressed in greater than 20% of breast tumors. Current studies indicate ZNF217 drives tumorigenesis, yet the regulatory mechanisms of ZNF217 are largely unknown. Because ZNF217 associates with chromatin modifying enzymes, we postulate that ZNF217 functions to regulate specific gene signaling networks. Here, we present a large-scale functional genomic analysis of ZNF217, which provides insights into the regulatory role of ZNF217 in MCF7 breast cancer cells. RESULTS ChIP-seq analysis reveals that the majority of ZNF217 binding sites are located at distal regulatory regions associated with the chromatin marks H3K27ac and H3K4me1. Analysis of ChIP-seq transcription factor binding sites shows clustering of ZNF217 with FOXA1, GATA3 and ERalpha binding sites, supported by the enrichment of corresponding motifs for the ERalpha-associated cis-regulatory sequences. ERalpha expression highly correlates with ZNF217 in lysates from breast tumors (n = 15), and ERalpha co-precipitates ZNF217 and its binding partner CtBP2 from nuclear extracts. Transcriptome profiling following ZNF217 depletion identifies differentially expressed genes co-bound by ZNF217 and ERalpha; gene ontology suggests a role for ZNF217-ERalpha in expression programs associated with ER+ breast cancer studies found in the Molecular Signature Database. Data-mining of expression data from breast cancer patients correlates ZNF217 with reduced overall survival. CONCLUSIONS Our genome-wide ZNF217 data suggests a functional role for ZNF217 at ERalpha target genes. Future studies will investigate whether ZNF217 expression contributes to aberrant ERalpha regulatory events in ER+ breast cancer and hormone resistance.
Collapse
Affiliation(s)
- Seth Frietze
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
A functional interplay between ZNF217 and estrogen receptor alpha exists in luminal breast cancers. Mol Oncol 2014; 8:1441-57. [PMID: 24973012 DOI: 10.1016/j.molonc.2014.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 01/15/2023] Open
Abstract
We aimed at highlighting the role of ZNF217, a Krüppel-like finger protein, in Estrogen Receptor-α (ERα)-positive (ER+) and luminal breast cancers. Here we report for the first time that ZNF217 and ERα proteins bind to each other in both breast cancer cells and breast tumour samples, via the ERα hinge domain and the ZNF217 C-terminal domain. ZNF217 enhances the recruitment of ERα to its estrogen response elements (ERE) and the ERα-dependent transcription of the GREB1 estrogen-regulated gene. The prognostic power of ZNF217 mRNA expression levels is most discriminatory in breast cancers classified with a "good prognosis", particularly the Luminal-A subclass. A new immunohistochemistry ZNF217 index, based on nuclear and cytoplasmic ZNF217 staining, also allowed the identification of intermediate/poor relapse-free survivors in the Luminal-A subgroup. ZNF217 confers tamoxifen resistance in ER+ breast cancer cells and is a predictor of relapse under endocrine therapy in patients with ER+ breast cancer. ZNF217 thus allows the re-stratification of patients with ER+ breast cancers considered as cancers with good prognosis where no other biomarkers are currently available and widely used. Here we propose a model in ER+ breast cancer where ZNF217-driven aggressiveness incorporates ZNF217 as a positive enhancer of ERα direct genomic activity and where ZNF217 possesses its highest discriminatory prognostic value.
Collapse
|
19
|
Abstract
Clear cell carcinomas of the female genital tract are rare tumours with a fearsome reputation for having poor responses to conventional platinum-based chemotherapy and poor prognosis. However, it is now clear that early-stage ovarian clear cell carcinoma has an excellent prognosis and may not require any adjuvant therapy. In addition, radiotherapy may also have a key role to play in adjuvant management of clear cell tumours. Identification of patients who truly do not need adjuvant chemotherapy is important. The past 3 years has seen a significant improvement in our understanding of clear cell carcinoma biology-in particular, the role of mutations in the chromatin remodelling gene ARID1A as key drivers that are common to clear cell carcinomas of ovarian and endometrial origin. Moreover, gynaecological clear cell carcinomas appear to share many features with renal clear cell tumours, suggesting a common pathogenesis. This raises the possibility of clinical trials that include patients with clear cell tumours from different organs of origin. Dissecting the role of disordered chromatin organisation in clear cell carcinoma pathogenesis is a key priority. Finally, the role of endometriosis and the attendant chronic inflammation are recognised. The inflammatory cytokine interleukin-6 appears to play a key role in clear cell carcinoma biology and is an excellent potential therapeutic target.
Collapse
|
20
|
Chitilian J, Thillainadesan G, Manias J, Chang W, Walker E, Isovic M, Stanford W, Torchia J. Critical Components of the Pluripotency Network Are Targets for the p300/CBP Interacting Protein (p/CIP) in Embryonic Stem Cells. Stem Cells 2014; 32:204-15. [DOI: 10.1002/stem.1564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 01/21/2023]
Affiliation(s)
- J.M. Chitilian
- Department of Oncology; The London Regional Cancer Program and the Lawson Health Research Institute; London Ontario Canada
- Department of Biochemistry; The University of Western Ontario; London Ontario Canada
| | - G. Thillainadesan
- Department of Oncology; The London Regional Cancer Program and the Lawson Health Research Institute; London Ontario Canada
- Department of Biochemistry; The University of Western Ontario; London Ontario Canada
| | - J.L. Manias
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; Faculty of Medicine; University of Ottawa; Ottawa Ontario Canada
| | - W.Y. Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - E. Walker
- Centre for the Commercialization of Regenerative Medicine; Toronto Ontario Canada
| | - M. Isovic
- Department of Oncology; The London Regional Cancer Program and the Lawson Health Research Institute; London Ontario Canada
| | - W.L. Stanford
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine; Faculty of Medicine; University of Ottawa; Ottawa Ontario Canada
| | - J. Torchia
- Department of Oncology; The London Regional Cancer Program and the Lawson Health Research Institute; London Ontario Canada
- Department of Biochemistry; The University of Western Ontario; London Ontario Canada
| |
Collapse
|
21
|
Chromatin-modifying agents for epigenetic reprogramming and endogenous neural stem cell-mediated repair in stroke. Transl Stroke Res 2013; 2:7-16. [PMID: 24014083 DOI: 10.1007/s12975-010-0051-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The recent explosion of interest in epigenetics and chromatin biology has made a significant impact on our understanding of the pathophysiology of cerebral ischemia and led to the identification of new treatment strategies for stroke, such as those that employ histone deacetylase inhibitors. These are key advances; however, the rapid pace of discovery in chromatin biology and innovation in the development of chromatin-modifying agents implies there are emerging classes of drugs that may also have potential benefits in stroke. Herein, we discuss how various chromatin regulatory factors and their recently identified inhibitors may serve as drug targets and therapeutic agents for stroke, respectively. These factors primarily include members of the repressor element-1 silencing transcription factor (REST)/neuron-restrictive silencer factor macromolecular complex, polycomb group (PcG) proteins, and associated chromatin remodeling factors, which have been linked to the pathophysiology of cerebral ischemia. Further, we suggest that, because of the key roles played by REST, PcG proteins and other chromatin remodeling factors in neural stem and progenitor cell (NSPC) biology, chromatin-modifying agents can be utilized not only to mitigate ischemic injury directly but also potentially to promote endogenous NSPC-mediated brain repair mechanisms.
Collapse
|
22
|
Madison DL, Wirz JA, Siess D, Lundblad JR. Nicotinamide adenine dinucleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem 2013; 288:27836-48. [PMID: 23940047 DOI: 10.1074/jbc.m113.493569] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional co-repressor C-terminal binding protein (CtBP) interacts with a number of repressor proteins and chromatin modifying enzymes. How the biochemical properties including binding of dinucleotide, oligomerization, and dehydrogenase domains of CtBP1 direct the assembly of a functional co-repressor to influence gene expression is not well understood. In the current study we demonstrate that CtBP1 assembles into a tetramer in a NAD(H)-dependent manner, proceeding through a dimeric intermediate. We find that NAD-dependent oligomerization correlates with NAD(+) binding affinity and that the carboxyl terminus is required for assembly of a dimer of dimers. Mutant CtBP1 proteins that abrogate dinucleotide-binding retain wild type affinity for the PXDLS motif, but do not self-associate either in vitro or in vivo. CtBP1 proteins with mutations in the dehydrogenase domain still retain the ability to self-associate and bind target proteins. Both co-immunoprecipitation and mammalian two-hybrid experiments demonstrate that CtBP1 self-association occurs within the nucleus, and depends on dinucleotide binding. Repression of transcription does not depend on dinucleotide binding or an intact dehydrogenase domain, but rather depends on the amino-terminal domain that recruits PXDLS containing targets. We show that tryptophan 318 (Trp(318)) is a critical residue for tetramer assembly and likely functions as a switch for effective dimerization following NAD(+) binding. These results suggest that dinucleotide binding permits CtBP1 to form an intranuclear homodimer through a Trp(318) switch, creating a nucleation site for multimerization through the C-terminal domain for tetramerization to form an effective repression complex.
Collapse
|
23
|
Tenga MJ, Lazar IM. Proteomic snapshot of breast cancer cell cycle: G1/S transition point. Proteomics 2013; 13:48-60. [PMID: 23152136 DOI: 10.1002/pmic.201200188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/22/2012] [Accepted: 10/25/2012] [Indexed: 01/16/2023]
Abstract
The biological processes that unfold during the G1-phase of the cell cycle are dependent on extracellular mitogenic factors that signal the cell to enter a state of quiescence, or commit to a cell-cycle round by passing the restriction point (R-point) and enter the S-phase. Unlike normal cells, cancer cells evolved the ability to evade the R-point and continue through the cell cycle even in the presence of extensive DNA damage or absence of mitogenic signals. The purpose of this study was to perform a quantitative proteomic evaluation of the biological processes that are responsible for driving MCF-7 breast cancer cells into division even when molecular checkpoints such as the G1/S R-point are in place. Nuclear and cytoplasmic fractions of the G1 and S cell-cycle phases were analyzed by LC-MS/MS to result in the confident identification of more than 2700 proteins. Statistical evaluation of the normalized data resulted in the selection of proteins that displayed twofold or more change in spectral counts in each cell state. Pathway mapping, functional annotation clustering, and protein interaction network analysis revealed that the top-scoring clusters that could play a role in overriding the G1/S transition point included DNA damage response, chromatin remodeling, transcription/translation regulation, and signaling proteins.
Collapse
Affiliation(s)
- Milagros J Tenga
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 246021, USA
| | | |
Collapse
|
24
|
Prestat E, de Morais SR, Vendrell JA, Thollet A, Gautier C, Cohen PA, Aussem A. Learning the local Bayesian network structure around the ZNF217 oncogene in breast tumours. Comput Biol Med 2013; 43:334-41. [PMID: 23375235 DOI: 10.1016/j.compbiomed.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 07/23/2012] [Accepted: 12/07/2012] [Indexed: 01/18/2023]
Abstract
In this study, we discuss and apply a novel and efficient algorithm for learning a local Bayesian network model in the vicinity of the ZNF217 oncogene from breast cancer microarray data without having to decide in advance which genes have to be included in the learning process. ZNF217 is a candidate oncogene located at 20q13, a chromosomal region frequently amplified in breast and ovarian cancer, and correlated with shorter patient survival in these cancers. To properly address the difficulties in managing complex gene interactions given our limited sample, statistical significance of edge strengths was evaluated using bootstrapping and the less reliable edges were pruned to increase the network robustness. We found that 13 out of the 35 genes associated with deregulated ZNF217 expression in breast tumours have been previously associated with survival and/or prognosis in cancers. Identifying genes involved in lipid metabolism opens new fields of investigation to decipher the molecular mechanisms driven by the ZNF217 oncogene. Moreover, nine of the 13 genes have already been identified as putative ZNF217 targets by independent biological studies. We therefore suggest that the algorithms for inferring local BNs are valuable data mining tools for unraveling complex mechanisms of biological pathways from expression data. The source code is available at http://www710.univ-lyon1.fr/∼aaussem/Software.html.
Collapse
|
25
|
Grivas PD, Papavassiliou AG. Transcriptional corepressors in cancer: emerging targets for therapeutic intervention. Cancer 2012; 119:1120-8. [PMID: 23224952 DOI: 10.1002/cncr.27908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/02/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023]
Abstract
The normal cell transcriptional process entails a high degree of combinatorial effects and time-dependent "flexibility" to translate cellular signaling into differential gene expression levels. Transcriptional corepressors can function as histone-modifying enzymes to regulate epigenetic events, modulate chromatin structure, and hence control transcriptional activity. Various corepressor complexes have been described; qualitative and quantitative alterations of corepressors can crucially influence the transcriptional output of both normal and malignant cells. Because these molecules can exert epigenetic control of tumorigenic signaling pathways, they can be considered potential regulators of cancer cell-related phenomena. Alterations of the expression level and/or function of transcriptional corepressors have been reported in a wide range of human cancers; thus, corepressors may present rational therapeutic targets as well as potential biomarkers of response to selective therapeutic interventions. Deeper insights into the context-specific and time-specific physical connections among transcription factors, coregulators, and gene regulatory elements, as well as epigenetic modifications, and their interactions, can enhance the capacity to interfere with small molecules that may restore the normal transcriptome/interactome in a cancer cell. There are several conceivable mechanisms of corepressor targeting in cancer that create enthusiasm. However, design, discovery, and testing of such innovative treatment approaches require extensive elaboration before they can achieve practical implementation in the clinic.
Collapse
Affiliation(s)
- Petros D Grivas
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
26
|
Genome-wideChIP-DSLprofiling of promoter methylation patterns associated with cancer and stem cell differentiation. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Vaiopoulos AG, Kostakis ID, Athanasoula KC, Papavassiliou AG. Targeting transcription factor corepressors in tumor cells. Cell Mol Life Sci 2012; 69:1745-53. [PMID: 22527719 PMCID: PMC11114811 DOI: 10.1007/s00018-012-0986-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 01/17/2023]
Abstract
By being the "integration" center of transcriptional control as they move and target transcription factors, corepressors fine-tune the epigenetic status of the nucleus. Many of them utilize enzymatic activities to modulate chromatin through histone modification or chromatin remodeling. The clinical and etiological relevance of the corepressors to neoplastic growth is increasingly being recognized. Aberrant expression or function (both loss and gain of) of corepressors has been associated with malignancy and contribute to the generation of transcriptional "inflexibility" manifested as distorted signaling along certain axes. Understanding and predicting the consequences of corepressor alterations in tumor cells has diagnostic and prognostic value, and also have the capacity to be targeted through selective epigenetic regimens. Here, we evaluate corepressors with the most promising therapeutic potential based on their physiological roles and involvement in malignant development, and also highlight areas that can be exploited for molecular targeting of a large proportion of clinical cancers and their complications.
Collapse
Affiliation(s)
| | - Ioannis D. Kostakis
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | | | | |
Collapse
|
28
|
Cellular GCN5 is a novel regulator of human adenovirus E1A-conserved region 3 transactivation. J Virol 2012; 86:8198-209. [PMID: 22623781 DOI: 10.1128/jvi.00289-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The largest isoform of adenovirus early region 1A (E1A) contains a unique region termed conserved region 3 (CR3). This region activates viral gene expression by recruiting cellular transcription machinery to the early viral promoters. Recent studies have suggested that there is an optimal level of E1A-dependent transactivation required by human adenovirus (hAd) during infection and that this may be achieved via functional cross talk between the N termini of E1A and CR3. The N terminus of E1A binds GCN5, a cellular lysine acetyltransferase (KAT). We have identified a second independent interaction of E1A with GCN5 that is mediated by CR3, which requires residues 178 to 188 in hAd5 E1A. GCN5 was recruited to the viral genome during infection in an E1A-dependent manner, and this required both GCN5 interaction sites on E1A. Ectopic expression of GCN5 repressed transactivation by both E1A CR3 and full-length E1A. In contrast, RNA interference (RNAi) depletion of GCN5 or treatment with the KAT inhibitor cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH2) resulted in increased E1A CR3 transactivation. Moreover, activation of the adenovirus E4 promoter by E1A was increased during infection of homozygous GCN5 KAT-defective (hat/hat) mouse embryonic fibroblasts (MEFs) compared to wild-type control MEFs. Enhanced histone H3 K9/K14 acetylation at the viral E4 promoter required the newly identified binding site for GCN5 within CR3 and correlated with repression and reduced occupancy by phosphorylated RNA polymerase II. Treatment with CPTH2 during infection also reduced virus yield. These data identify GCN5 as a new negative regulator of transactivation by E1A and suggest that its KAT activity is required for optimal virus replication.
Collapse
|
29
|
Vendrell JA, Thollet A, Nguyen NT, Ghayad SE, Vinot S, Bièche I, Grisard E, Josserand V, Coll JL, Roux P, Corbo L, Treilleux I, Rimokh R, Cohen PA. ZNF217 Is a Marker of Poor Prognosis in Breast Cancer That Drives Epithelial–Mesenchymal Transition and Invasion. Cancer Res 2012; 72:3593-606. [DOI: 10.1158/0008-5472.can-11-3095] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Littlepage LE, Adler AS, Kouros-Mehr H, Huang G, Chou J, Krig SR, Griffith OL, Korkola JE, Qu K, Lawson DA, Xue Q, Sternlicht MD, Dijkgraaf GJP, Yaswen P, Rugo HS, Sweeney CA, Collins CC, Gray JW, Chang HY, Werb Z. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov 2012; 2:638-51. [PMID: 22728437 DOI: 10.1158/2159-8290.cd-12-0093] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED The transcription factor ZNF217 is a candidate oncogene in the amplicon on chromosome 20q13 that occurs in 20% to 30% of primary human breast cancers and that correlates with poor prognosis. We show that Znf217 overexpression drives aberrant differentiation and signaling events, promotes increased self-renewal capacity, mesenchymal marker expression, motility, and metastasis, and represses an adult tissue stem cell gene signature downregulated in cancers. By in silico screening, we identified candidate therapeutics that at low concentrations inhibit growth of cancer cells expressing high ZNF217. We show that the nucleoside analogue triciribine inhibits ZNF217-induced tumor growth and chemotherapy resistance and inhibits signaling events [e.g., phospho-AKT, phospho-mitogen-activated protein kinase (MAPK)] in vivo. Our data suggest that ZNF217 is a biomarker of poor prognosis and a therapeutic target in patients with breast cancer and that triciribine may be part of a personalized treatment strategy in patients overexpressing ZNF217. Because ZNF217 is amplified in numerous cancers, these results have implications for other cancers. SIGNIFICANCE This study finds that ZNF217 is a poor prognostic indicator and therapeutic target in patients with breast cancer and may be a strong biomarker of triciribine treatment efficacy in patients. Because previous clinical trials for triciribine did not include biomarkers of treatment efficacy, this study provides a rationale for revisiting triciribine in the clinical setting as a therapy for patients with breast cancer who overexpress ZNF217.
Collapse
Affiliation(s)
- Laurie E Littlepage
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thillainadesan G, Chitilian JM, Isovic M, Ablack JNG, Mymryk JS, Tini M, Torchia J. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell 2012; 46:636-49. [PMID: 22560925 DOI: 10.1016/j.molcel.2012.03.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/30/2012] [Accepted: 03/29/2012] [Indexed: 12/13/2022]
Abstract
In this study we examine the mechanisms of dynamic DNA methylation of the p15(ink4b) tumor suppressor gene. Using conventional ChIP and ChiPseq, we identify the p15(ink4b) promoter as a target for the ZNF217 oncogene, the CoREST complex, and DNMT3A. Treatment of cells with TGF-β triggers active demethylation involving loss of ZNF217/CoREST/DNMT3A and the corecruitment of SMAD2/3, CBP, and the DNA glycosylase TDG. Knockdown of TDG, or its functional homolog MBD4, prevents TGF-β-dependent demethylation of p15(ink4b). DNA immunoprecipitation of 5mC and 5hmC indicates that 5mC undergoes conversion to 5hmC prior to activation of p15(ink4b). Remarkably, overexpression of ZNF217 inhibits active demethylation and expression of the p15(ink4b) gene by preventing recruitment of SMAD2/3 and TDG. These findings suggest that active demethylation is essential for regulating a subset of TGF-β-dependent genes. Importantly, disruption of active demethylation by the ZNF217 oncogene may be a paradigm for other oncogenic signals on DNA methylation dynamics.
Collapse
Affiliation(s)
- Gobi Thillainadesan
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Carnevale J, Palander O, Seifried LA, Dick FA. DNA damage signals through differentially modified E2F1 molecules to induce apoptosis. Mol Cell Biol 2012; 32:900-12. [PMID: 22184068 PMCID: PMC3295199 DOI: 10.1128/mcb.06286-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/12/2011] [Indexed: 01/28/2023] Open
Abstract
E2F transcription can lead to cell proliferation or apoptosis, indicating that E2Fs control opposing functions. In a similar manner, DNA double-strand breaks can signal to induce cell cycle arrest or apoptosis. Specifically, pRB is activated following DNA damage, allowing it to bind to E2Fs and block transcription at cell cycle promoters; however, E2F1 is simultaneously activated, leading to transcription at proapoptotic promoters. We examined this paradoxical control of E2F transcription by studying how E2F1's interaction with pRB is regulated following DNA damage. Our work reveals that DNA damage signals create multiple forms of E2F1 that contain mutually exclusive posttranslational modifications. Specifically, E2F1 phospho-serine 364 is found only in complex with pRB, while E2F1 phosphorylation at serine 31 and acetylation function to create a pRB-free form of E2F1. Both pRB-bound and pRB-free modifications on E2F1 are essential for the activation of TA-p73 and the maximal induction of apoptosis. Chromatin immunoprecipitation demonstrated that E2F1 phosphorylated on serine 364 is also present at proapoptotic gene promoters during the induction of apoptosis. This indicates that distinct populations of E2F1 are organized in response to DNA damage signaling. Surprisingly, these complexes act in parallel to activate transcription of proapoptotic genes. Our data suggest that DNA damage signals alter pRB and E2F1 to engage them in functions leading to apoptotic induction that are distinct from pRB-E2F regulation in cell cycle control.
Collapse
Affiliation(s)
- Jasmyne Carnevale
- London Regional Cancer Program
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Oliva Palander
- London Regional Cancer Program
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Laurie A. Seifried
- London Regional Cancer Program
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Frederick A. Dick
- London Regional Cancer Program
- Children's Health Research Institute
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
33
|
Rotili D, Mai A. Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes Cancer 2011; 2:663-79. [PMID: 21941621 DOI: 10.1177/1947601911417976] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to genetic disorders, epigenetic alterations have been shown to be involved in cancer, through misregulation of histone modifications. Miswriting, misreading, and mis-erasing of histone acetylation as well as methylation marks can be actually associated with oncogenesis and tumor proliferation. Historically, methylation of Arg and Lys residues has been considered a stable, irreversible process due to the slow turnover of methyl groups in chromatin. The discovery in recent years of a large number of histone Lys demethylases (KDMs, belonging to either the amino oxidase or the JmjC family) totally changed this point of view and suggested a new role for dynamic histone methylation in biological processes. Since overexpression, alteration, or mutation of a number of KDMs has been found in many types of cancers, such enzymes could represent diagnostic tools as well as epigenetic targets to modulate for obtaining novel therapeutic weapons against cancer. The first little steps in this direction are described here.
Collapse
Affiliation(s)
- Dante Rotili
- Pasteur Institute-Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
34
|
Nunez N, Clifton MMK, Funnell APW, Artuz C, Hallal S, Quinlan KGR, Font J, Vandevenne M, Setiyaputra S, Pearson RCM, Mackay JP, Crossley M. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain. J Biol Chem 2011; 286:38190-38201. [PMID: 21908891 DOI: 10.1074/jbc.m111.301234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.
Collapse
Affiliation(s)
- Noelia Nunez
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Molly M K Clifton
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Alister P W Funnell
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Crisbel Artuz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Samantha Hallal
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Kate G R Quinlan
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Josep Font
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Surya Setiyaputra
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Richard C M Pearson
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Merlin Crossley
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
35
|
Iordanskaia T, Nawshad A. Mechanisms of transforming growth factor β induced cell cycle arrest in palate development. J Cell Physiol 2011; 226:1415-24. [PMID: 20945347 DOI: 10.1002/jcp.22477] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immaculate and complete palatal seam disintegration, which takes place at the last phase of palate development, is essential for normal palate development. And in absence of palatal midline epithelial seam (MES) disintegration, cleft palate may arise. It has been established that transforming growth factor (TGF) β induces both epithelial mesenchymal transition (EMT) and/or apoptosis during MES disintegration. It is likely that MES might cease cell cycle to facilitate cellular changes prior to undergoing transformation or apoptosis, which has never been studied before. This study was designed to explore whether TGFβ, which is crucial for palatal MES disintegration, is capable of inducing cell cycle arrest. We studied the effects of TGFβ1 and TGFβ3, potent negative regulators of the cell cycle, on p15ink4b activity in MES cells. We surprisingly found that TGFβ1, but not TGFβ3, plays a major role in activation of the p15ink4b gene. In contrast, following successful cell cycle arrest by TGFβ1, it is TGFβ3 but not TGFβ1 that causes later cellular morphogenesis, such as EMT and apoptosis. Since TGFβ signaling activates Smads, we analyzed the roles of three Smad binding elements (SBEs) on the p15ink4b mouse promoter by site specific mutagenesis and found that these binding sites are functional. The ChIP assay demonstrated that TGFβ1, not TGFβ3, promotes Smad4 binding to two 5' terminal SBEs but not the 3' terminal site. Thus, TGFβ1 and TGFβ3 play separate yet complimentary roles in achieving cell cycle arrest and EMT/apoptosis and cell cycle arrest is a prerequisite for later cellular changes.
Collapse
Affiliation(s)
- Tatiana Iordanskaia
- Department of Oral Biology, College of Dentistry, The University of Nebraska Medical Center, Lincoln, Nebraska 68512, USA
| | | |
Collapse
|
36
|
Lim S, Metzger E, Schüle R, Kirfel J, Buettner R. Epigenetic regulation of cancer growth by histone demethylases. Int J Cancer 2010; 127:1991-8. [PMID: 20607829 DOI: 10.1002/ijc.25538] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer is traditionally viewed as a primarily genetic disorder. However, it is now increasingly apparent that epigenetic abnormalities play a fundamental role in cancer development. Aberrant expression of histone-modifying enzymes has been implicated in the course of tumor initiation and progression. The discovery of a large number of histone demethylases suggests an important role for dynamic regulation of histone methylation in biological processes. The observation that overexpression, amplification or mutations of several histone demethylases have been found in many types of tumors, raise the possibility of using these enzymes as diagnostic tools as well as pave a way for the discovery of novel therapeutic targets and treatment modalities. Here, we review the current knowledge of the potential role of H3K4, H3K9 and H3K27 histone demethylases in tumorigenesis.
Collapse
Affiliation(s)
- Soyoung Lim
- Institute of Pathology, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
37
|
ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Oncogene 2010; 29:5500-10. [PMID: 20661224 PMCID: PMC4256946 DOI: 10.1038/onc.2010.289] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding the mechanisms underlying ErbB3 overexpression in breast cancer will facilitate the rational design of therapies to disrupt ErbB2-ErbB3 oncogenic function. Although ErbB3 overexpression is frequently observed in breast cancer, the factors mediating its aberrant expression are poorly understood. In particular, the ErbB3 gene is not significantly amplified, raising the question as to how ErbB3 overexpression is achieved. In this study we showed that the ZNF217 transcription factor, amplified at 20q13 in ∼20% of breast tumors, regulates ErbB3 expression. Analysis of a panel of human breast cancer cell lines (n = 50) and primary human breast tumors (n = 15) showed a strong positive correlation between ZNF217 and ErbB3 expression. Ectopic expression of ZNF217 in human mammary epithelial cells induced ErbB3 expression, whereas ZNF217 silencing in breast cancer cells resulted in decreased ErbB3 expression. Although ZNF217 has previously been linked with transcriptional repression because of its close association with C-terminal-binding protein (CtBP)1/2 repressor complexes, our results show that ZNF217 also activates gene expression. We showed that ZNF217 recruitment to the ErbB3 promoter is CtBP1/2-independent and that ZNF217 and CtBP1/2 have opposite roles in regulating ErbB3 expression. In addition, we identify ErbB3 as one of the mechanisms by which ZNF217 augments PI-3K/Akt signaling.
Collapse
|
38
|
Battaglia S, Maguire O, Campbell MJ. Transcription factor co-repressors in cancer biology: roles and targeting. Int J Cancer 2010; 126:2511-9. [PMID: 20091860 DOI: 10.1002/ijc.25181] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Normal transcription displays a high degree of flexibility over the choice, timing and magnitude of mRNA expression levels that tend to oscillate and cycle. These processes allow for combinatorial actions, feedback control and fine-tuning. A central role has emerged for the transcriptional co-repressor proteins such as NCOR1, NCOR2/SMRT, CoREST and CTBPs, to control the actions of many transcriptional factors, in large part, by recruitment and activation of a range of chromatin remodeling enzymes. Thus, co-repressors and chromatin remodeling factors are recruited to transcription factors at specific promoter/enhancer regions and execute changes in the chromatin structure. The specificity of this recruitment is controlled in a spatial-temporal manner. By playing a central role in transcriptional control, as they move and target transcription factors, co-repressors act as a key driver in the epigenetic economy of the nucleus. Co-repressor functions are selectively distorted in malignancy, by both loss and gain of function and contribute to the generation of transcriptional rigidity. Features of transcriptional rigidity apparent in cancer cells include the distorted signaling of nuclear receptors and the WNTs/beta-catenin axis. Understanding and predicting the consequences of altered co-repressor expression patterns in cancer cells has diagnostic and prognostic significance, and also have the capacity to be targeted through selective epigenetic therapies.
Collapse
Affiliation(s)
- Sebastiano Battaglia
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
39
|
Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF. Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLoS One 2009; 4:e7665. [PMID: 19888342 PMCID: PMC2766030 DOI: 10.1371/journal.pone.0007665] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/03/2009] [Indexed: 02/07/2023] Open
Abstract
Background The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation. Methodology/Principal Findings We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes. Conclusions/Significance Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the coupling of neurogenesis and gliogenesis and neuronal-glial interactions that underlie synaptic and neural network plasticity and homeostasis in health and in specific neurological disease states.
Collapse
Affiliation(s)
- Joseph J Abrajano
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | | | | | | | | |
Collapse
|
40
|
Banck MS, Li S, Nishio H, Wang C, Beutler AS, Walsh MJ. The ZNF217 oncogene is a candidate organizer of repressive histone modifiers. Epigenetics 2009; 4:100-6. [PMID: 19242095 DOI: 10.4161/epi.4.2.7953] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The zinc finger protein 217 (ZNF217) is an important oncogene based on the high frequency of amplification and overexpression in many cancer types, but its molecular mode of gene regulation is poorly understood. We purified a complex of nuclear ZNF217-binding proteins by affinity chromatography and identified its components by mass spectrometry as Jarid1b/Plu-1, G9a, LSD1, CoREST and CtBP1. Individual binding of these with ZNF217 was confirmed by co-immunoprecipiation (IP). Known activities of these proteins suggested a role of the ZNF217 complex in histone modification. Using in vitro assays the following activities were demonstrated: Histone H3 lysine 4 trimethyl (H3K4me3) demethylase activity, which co-fractionated with Jarid1b/Plu-1 in anion-exchange chromatography; H3K9 methylation, the known principal activity of G9a; and H3K27 methylation. The latter suggested EZH2 as another ZNF217 binding candidate, which could be confirmed by co-IP. Taken together, these findings suggest that ZNF217 assembles a distinct set of histone modifying proteins at target DNA sites that act synergistically in transcriptional repression.
Collapse
Affiliation(s)
- Michaela S Banck
- Department of Medicine (Hematology/Oncology), Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Chinnadurai G. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 2009; 69:731-4. [PMID: 19155295 DOI: 10.1158/0008-5472.can-08-3349] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CtBP1 and CtBP2 are closely related and evolutionarily conserved transcriptional corepressors. There is strong evidence linking CtBPs to tumorigenesis and tumor progression. CtBPs promote epithelial-mesenchymal transition and function as apoptosis antagonists. Also, CtBPs mediate repression of several tumor suppressor genes. Certain tumor suppressors also target CtBPs to restrain their tumor-promoting activity. Down-regulation of CtBPs mediated by some tumor suppressors results in p53-independent apoptosis and reduced tumor cell migration and invasion. The role of CtBPs in modulating the activities of different tumor suppressors is reviewed here. The results discussed here suggest that CtBPs may constitute a novel p53-independent anticancer target.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, Doisy Research Center, St Louis, Missouri 63104, USA.
| |
Collapse
|