1
|
Wen B, Li E, Wang G, Kalin TR, Gao D, Lu P, Kalin TV, Kalinichenko VV. CRISPR-Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat. Am J Respir Crit Care Med 2024; 210:167-177. [PMID: 38507610 PMCID: PMC11273307 DOI: 10.1164/rccm.202306-0964oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."
Collapse
Affiliation(s)
- Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Pulmonary Biology and
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, Arizona
| |
Collapse
|
2
|
Mohammed AN, Kohram F, Lan YW, Li E, Kolesnichenko OA, Kalin TV, Kalinichenko VV. Transplantation of alveolar macrophages improves the efficacy of endothelial progenitor cell therapy in mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2024; 327:L114-L125. [PMID: 38772902 PMCID: PMC11380942 DOI: 10.1152/ajplung.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.
Collapse
Affiliation(s)
- Afzaal Nadeem Mohammed
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Fatemeh Kohram
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Ying-Wei Lan
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Enhong Li
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Olena A Kolesnichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Vladimir V Kalinichenko
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, United States
| |
Collapse
|
3
|
Wang G, Wen B, Guo M, Li E, Zhang Y, Whitsett JA, Kalin TV, Kalinichenko VV. Identification of endothelial and mesenchymal FOXF1 enhancers involved in alveolar capillary dysplasia. Nat Commun 2024; 15:5233. [PMID: 38898031 PMCID: PMC11187179 DOI: 10.1038/s41467-024-49477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers. We demonstrate that endothelial FOXF1 enhancers are autoactivated, whereas mesenchymal FOXF1 enhancers are regulated by EBF1 and GLI1. The cell-specificity of FOXF1 enhancers is validated by disrupting these enhancers in mouse embryonic stem cells using CRISPR/Cpf1 genome editing followed by lineage-tracing of mutant embryonic stem cells in mouse embryos using blastocyst complementation. This study resolves an important clinical question why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to the disease.
Collapse
Affiliation(s)
- Guolun Wang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Bingqiang Wen
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Enhong Li
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Yufang Zhang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanya V Kalin
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA.
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Li E, Wen B, Gao D, Kalin TR, Wang G, Kalin TV, Kalinichenko VV. The bone marrow of mouse-rat chimeras contains progenitors of multiple pulmonary cell lineages. Front Cell Dev Biol 2024; 12:1394098. [PMID: 38694819 PMCID: PMC11061410 DOI: 10.3389/fcell.2024.1394098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common complication of anti-cancer treatments for thoracic and hematologic malignancies. Bone marrow (BM) transplantation restores hematopoietic cell lineages in cancer patients. However, it is ineffective in improving lung repair after RILI due to the paucity of respiratory progenitors in BM transplants. In the present study, we used blastocyst injection to create mouse-rat chimeras, these are artificial animals in which BM is enriched with mouse-derived progenitor cells. FACS-sorted mouse BM cells from mouse-rat chimeras were transplanted into lethally irradiated syngeneic mice, and the contribution of donor cells to the lung tissue was examined using immunostaining and flow cytometry. Donor BM cells provided long-term contributions to all lung-resident hematopoietic cells which includes alveolar macrophages and dendritic cells. Surprisingly, donor BM cells also contributed up to 8% in pulmonary endothelial cells and stromal cells after RILI. To identify respiratory progenitors in donor BM, we performed single-cell RNA sequencing (scRNAseq). Compared to normal mouse BM, increased numbers of hematopoietic progenitors were found in the BM of mouse-rat chimeras. We also identified unique populations of hemangioblast-like progenitor cells expressing Hes1, Dntt and Ebf1, along with mesenchymal stromal cells expressing Cpox, Blvrb and Ermap that were absent or ultra-rare in the normal mouse BM. In summary, by using rats as "bioreactors", we created a unique mouse BM cell transplant that contributes to multiple respiratory cell types after RILI. Interspecies chimeras have promise for future generations of BM transplants enriched in respiratory progenitor cells.
Collapse
Affiliation(s)
- Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Guolun Wang
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Center for Cancer and Blood Diseases, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ, United States
| |
Collapse
|
5
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
6
|
Kohram F, Deng Z, Zhang Y, Al Reza A, Li E, Kolesnichenko OA, Shukla S, Ustiyan V, Gomez-Arroyo J, Acharya A, Shi D, Kalinichenko VV, Kenny AP. Demonstration of Safety in Wild Type Mice of npFOXF1, a Novel Nanoparticle-Based Gene Therapy for Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins. Biologics 2023; 17:43-55. [PMID: 36969329 PMCID: PMC10031269 DOI: 10.2147/btt.s400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Introduction Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malpositioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and reconstitutes normal alveolar-capillary architecture. The aim of the present study is to investigate the safety of intravenous administration of FOXF1-expressing PEI-PEG nanoparticles (npFOXF1), our pioneering treatment for ACDMPV. Methods npFOXF1 was constructed, validated, and subsequently administered in a single dose to postnatal day 14 (P14) mice via retro-orbital injection. Biochemical, serologic, and histologic safety were monitored at postnatal day 16 (P16) and postnatal day 21 (P21). Results With treatment we observed no lethality, and the general condition of mice revealed no obvious abnormalities. Serum chemistry, whole blood, and histologic toxicity was assayed on P16 and P21 and revealed no abnormality. Discussion In conclusion, npFOXF1 has a very good safety profile and combined with preceding studies showing therapeutic efficacy, npFOXF1 can be considered as a good candidate therapy for ACDMPV in human neonates.
Collapse
Affiliation(s)
- Fatemeh Kohram
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Enhong Li
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Samriddhi Shukla
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jose Gomez-Arroyo
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Acharya
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alan P Kenny
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Li E, Ustiyan V, Wen B, Kalin GT, Whitsett JA, Kalin TV, Kalinichenko VV. Blastocyst complementation reveals that NKX2-1 establishes the proximal-peripheral boundary of the airway epithelium. Dev Dyn 2021; 250:1001-1020. [PMID: 33428297 DOI: 10.1002/dvdy.298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos. RESULTS While Nkx2-1-/- mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1-/- mice. Complementation of Nkx2-1-/- embryos with NKX2-1-sufficient embryonic stem cells (ESCs) enabled the formation of all tissue components of the peripheral lung but did not enhance ESC colonization of the most proximal regions of the airways. In chimeric mice, a precise boundary was formed between NKX2-1-deficient basal cells co-expressing SOX2 and SOX9 in large airways and ESC-derived NKX2-1+ SOX9+ epithelial cells of smaller airways. NKX2-1-sufficient ESCs were able to selectively complement peripheral, rather than most proximal regions of the airways. ESC complementation did not prevent ectopic expression of SOX9 but restored β-catenin signaling in Nkx2-1-/- basal cells of large airways. CONCLUSIONS NKX2-1 and β-catenin function in an epithelial cell-autonomous manner to establish the proximal-peripheral boundary along developing airways.
Collapse
Affiliation(s)
- Enhong Li
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Gregory T Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Yang X, Yang S, Song J, Yang W, Ji Y, Zhang F, Rao J. Dysregulation of miR-23b-5p promotes cell proliferation via targeting FOXM1 in hepatocellular carcinoma. Cell Death Discov 2021; 7:47. [PMID: 33723252 PMCID: PMC7960996 DOI: 10.1038/s41420-021-00440-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Growing evidence demonstrates that MicroRNAs (miRNAs) play an essential role in contributing to tumor development and progression. However, the underlying role and mechanisms of miR-23b-5p in hepatocellular carcinoma (HCC) formation remain unclear. Our study showed that miR-23b-5p was downregulated in the HCC tissues and cell lines, and lower expression of miR-23b-5p was associated with more severe tumor size and poorer survival. Gain- or loss-of-function assays demonstrated that miR-23b-5p induced G0/G1 cell cycle arrest and inhibited cell proliferation both in vitro and in vivo. qRT-PCR, western blot and luciferase assays verified that Mammalian transcription factor Forkhead Box M1 (FOXM1), upregulated in HCC specimens, was negatively correlated with miR-23b-5p expression and acted as a direct downstream target of miR-23b-5p. In addition, miR-23b-5p could regulate cyclin D1 and c-MYC expression by directly targeting FOXM1. Further study revealed that restoration of FOXM1 neutralized the cell cycle arrest and cell proliferation inhibition caused by miR-23b-5p. Taken together, our findings suggest that miR-23b-5p acted as a tumor suppressor role in HCC progression by targeting FOXM1 and may serve as a potential novel biomarker for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xinchen Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Shikun Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Wenjie Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Yang Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China.
| | - Jianhua Rao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China.
| |
Collapse
|
9
|
Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 64:292-307. [PMID: 33095997 PMCID: PMC7909340 DOI: 10.1165/rcmb.2020-0306tr] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Department of Pediatrics, College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
10
|
Wen B, Li E, Ustiyan V, Wang G, Guo M, Na CL, Kalin GT, Galvan V, Xu Y, Weaver TE, Kalin TV, Whitsett JA, Kalinichenko VV. In Vivo Generation of Lung and Thyroid Tissues from Embryonic Stem Cells Using Blastocyst Complementation. Am J Respir Crit Care Med 2021; 203:471-483. [PMID: 32877203 PMCID: PMC7885842 DOI: 10.1164/rccm.201909-1836oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.Objectives: To determine whether ESCs are capable of generating lung tissue in Nkx2-1-/- mouse embryos with lung agenesis.Methods: Blastocyst complementation was used to produce chimeras from normal mouse ESCs and Nkx2-1-/- embryos, which lack pulmonary tissues. Nkx2-1-/- chimeras were examined using immunostaining, transmission electronic microscopy, fluorescence-activated cell sorter analysis, and single-cell RNA sequencing.Measurements and Main Results: Although peripheral pulmonary and thyroid tissues are entirely lacking in Nkx2-1 gene-deleted embryos, pulmonary and thyroid structures in Nkx2-1-/- chimeras were restored after ESC complementation. Respiratory epithelial cell lineages in restored lungs of Nkx2-1-/- chimeras were derived almost entirely from ESCs, whereas endothelial, immune, and stromal cells were mosaic. ESC-derived cells from multiple respiratory cell lineages were highly differentiated and indistinguishable from endogenous cells based on morphology, ultrastructure, gene expression signatures, and cell surface proteins used to identify cell types by fluorescence-activated cell sorter.Conclusions: Lung and thyroid tissues were generated in vivo from ESCs by blastocyst complementation. Nkx2-1-/- chimeras can be used as "bioreactors" for in vivo differentiation and functional studies of ESC-derived progenitor cells.
Collapse
Affiliation(s)
- Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute
| | - Enhong Li
- Center for Lung Regenerative Medicine, Perinatal Institute
| | | | - Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute
| | - Minzhe Guo
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | | | | | - Veronica Galvan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Yan Xu
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Timothy E. Weaver
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Tanya V. Kalin
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Mullen DJ, Yan C, Kang DS, Zhou B, Borok Z, Marconett CN, Farnham PJ, Offringa IA, Rhie SK. TENET 2.0: Identification of key transcriptional regulators and enhancers in lung adenocarcinoma. PLoS Genet 2020; 16:e1009023. [PMID: 32925947 PMCID: PMC7515200 DOI: 10.1371/journal.pgen.1009023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/24/2020] [Accepted: 08/02/2020] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death and lung adenocarcinoma is its most common subtype. Although genetic alterations have been identified as drivers in subsets of lung adenocarcinoma, they do not fully explain tumor development. Epigenetic alterations have been implicated in the pathogenesis of tumors. To identify epigenetic alterations driving lung adenocarcinoma, we used an improved version of the Tracing Enhancer Networks using Epigenetic Traits method (TENET 2.0) in primary normal lung and lung adenocarcinoma cells. We found over 32,000 enhancers that appear differentially activated between normal lung and lung adenocarcinoma. Among the identified transcriptional regulators inactivated in lung adenocarcinoma vs. normal lung, NKX2-1 was linked to a large number of silenced enhancers. Among the activated transcriptional regulators identified, CENPA, FOXM1, and MYBL2 were linked to numerous cancer-specific enhancers. High expression of CENPA, FOXM1, and MYBL2 is particularly observed in a subgroup of lung adenocarcinomas and is associated with poor patient survival. Notably, CENPA, FOXM1, and MYBL2 are also key regulators of cancer-specific enhancers in breast adenocarcinoma of the basal subtype, but they are associated with distinct sets of activated enhancers. We identified individual lung adenocarcinoma enhancers linked to CENPA, FOXM1, or MYBL2 that were associated with poor patient survival. Knockdown experiments of FOXM1 and MYBL2 suggest that these factors regulate genes involved in controlling cell cycle progression and cell division. For example, we found that expression of TK1, a potential target gene of a MYBL2-linked enhancer, is associated with poor patient survival. Identification and characterization of key transcriptional regulators and associated enhancers in lung adenocarcinoma provides important insights into the deregulation of lung adenocarcinoma epigenomes, highlighting novel potential targets for clinical intervention.
Collapse
Affiliation(s)
- Daniel J. Mullen
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Chunli Yan
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Diane S. Kang
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Zea Borok
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Crystal N. Marconett
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Peggy J. Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Ite A. Offringa
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, CA, United States of America
| | - Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, CA, United States of America
| |
Collapse
|
12
|
Bolte C, Ustiyan V, Ren X, Dunn AW, Pradhan A, Wang G, Kolesnichenko OA, Deng Z, Zhang Y, Shi D, Greenberg JM, Jobe AH, Kalin TV, Kalinichenko VV. Nanoparticle Delivery of Proangiogenic Transcription Factors into the Neonatal Circulation Inhibits Alveolar Simplification Caused by Hyperoxia. Am J Respir Crit Care Med 2020; 202:100-111. [PMID: 32240596 PMCID: PMC7328311 DOI: 10.1164/rccm.201906-1232oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/02/2020] [Indexed: 01/03/2023] Open
Abstract
Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.
Collapse
Affiliation(s)
- Craig Bolte
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Vladimir Ustiyan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Xiaomeng Ren
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Andrew W. Dunn
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Arun Pradhan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Guolun Wang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Olena A. Kolesnichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Zicheng Deng
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Yufang Zhang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Donglu Shi
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - James M. Greenberg
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Alan H. Jobe
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Tanya V. Kalin
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Vladimir V. Kalinichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
| |
Collapse
|
13
|
Black M, Arumugam P, Shukla S, Pradhan A, Ustiyan V, Milewski D, Kalinichenko VV, Kalin TV. FOXM1 nuclear transcription factor translocates into mitochondria and inhibits oxidative phosphorylation. Mol Biol Cell 2020; 31:1411-1424. [PMID: 32348194 PMCID: PMC7353143 DOI: 10.1091/mbc.e19-07-0413] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Forkhead box M1 (FOXM1), a nuclear transcription factor that activates cell cycle regulatory genes, is highly expressed in a majority of human cancers. The function of FOXM1 independent of nuclear transcription is unknown. In the present study, we found the FOXM1 protein inside the mitochondria. Using site-directed mutagenesis, we generated FOXM1 mutant proteins that localized to distinct cellular compartments, uncoupling the nuclear and mitochondrial functions of FOXM1. Directing FOXM1 into the mitochondria decreased mitochondrial mass, membrane potential, respiration, and electron transport chain (ETC) activity. In mitochondria, the FOXM1 directly bound to and increased the pentatricopeptide repeat domain 1 (PTCD1) protein, a mitochondrial leucine-specific tRNA binding protein that inhibits leucine-rich ETC complexes. Mitochondrial FOXM1 did not change cellular proliferation. Thus, FOXM1 translocates into mitochondria and inhibits mitochondrial respiration by increasing PTCD1. We identify a new paradigm that FOXM1 regulates mitochondrial homeostasis in a process independent of nuclear transcription.
Collapse
Affiliation(s)
- Markaisa Black
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
| | - Paritha Arumugam
- Translational Pulmonary Science Center and Division of Pulmonary Biology, Cincinnati, OH 45229-3039
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Samriddhi Shukla
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
| | - Arun Pradhan
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Vladimir Ustiyan
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Milewski
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
| | - Vladimir V. Kalinichenko
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Tanya V. Kalin
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
14
|
Zeng M, Chen Q, Ge S, He W, Zhang L, Yi H, Lin S. Overexpression of FoxM1 promotes differentiation of bone marrow mesenchymal stem cells into alveolar type II cells through activating Wnt/β-catenin signalling. Biochem Biophys Res Commun 2020; 528:311-317. [PMID: 32475644 DOI: 10.1016/j.bbrc.2020.05.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) becomes a serious challenge in critical care medicine due to the lack of effective therapy. As the damage of alveolar epithelium is a characteristic feature of ARDS, inducing mesenchymal stem cells (MSCs) to differentiate into alveolar epithelial cells turns out to be a promising therapy for ARDS, but the differentiation efficiency is yet to be improved. The study aimed to investigate the effect of overexpressing FoxM1 on MSCs' differentiation into alveolar epithelial cells. METHODS MSCs were isolated from mouse bone marrow, followed by transfected with lentivirus carrying the FoxM1 plasmid. Small airway epithelial cell growth medium was used as a culture system for inducing MSCs' differentiation into alveolar epithelial cells. Differentiation efficiency was assessed by detecting the expression levels of specific markers of alveolar epithelial cells mainly using quantitative reverse-transcription polymerase chain reaction and Western blot. To examine whether Wnt/β-catenin signalling was involved in the regulation mechanism, a specific inhibitor of the pathway XAV-939 was used and nuclear and cytoplasmic proteins were also analysed respectively. Co-immunoprecipitation was performed to examine the potential interaction between FoxM1 and β-catenin. RESULTS Overexpressing FoxM1 statistically significantly increased the expression levels of specific markers of type II alveolar epithelial cells prosurfactant protein C and surfactant protein B, which was partially reversed by XAV-939 treatment, while the expression levels of specific marker of type I alveolar epithelial cells aquaporin 5 did not change significantly. Overexpressing FoxM1 also increased the nuclear translocation of β-catenin and its transcriptional activity. A direct interaction between FoxM1 and β-catenin was found in co-immunoprecipitation assay. CONCLUSION Overexpression of FoxM1 could improve the efficiency of MSCs' differentiation into type II alveolar epithelial cells partly by activating Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanhui Ge
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lishan Zhang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Yi
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
15
|
Wang S, Chen C, Li J, Xu X, Chen W, Li F. The CXCL12/CXCR4 axis confers temozolomide resistance to human glioblastoma cells via up-regulation of FOXM1. J Neurol Sci 2020; 414:116837. [PMID: 32334273 DOI: 10.1016/j.jns.2020.116837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignancy in the adult central nervous, and is characterized by high aggressiveness and a high mortality rate. The high mortality rate is largely due to the development of drug resistance. Temozolomide (TMZ) resistance is considered to be one of the major reasons responsible for GBM therapy failure. CXCL12/CXCR4 has been demonstrated to be involved in cell proliferation, migration, invasion, angiogenesis, and radioresistance in GBM. However, its role in TMZ resistance in GBM is unknown. In this study, we aimed to evaluate the role of CXCL12/CXCR4 in mediating the TMZ resistance to GBM cells and explore the underlying mechanisms. We found that the CXCL12/CXCR4 axis enhanced TMZ resistance in GBM cells. Further study showed that CXCL12/CXCR4 conferred TMZ resistance and promoted the migration and invasion of GBM cells by up-regulating FOXM1. This resistance was partially reversed by suppressing CXCL12/CXCR4 and FOXM1 silencing. Our study revealed the vital role of CXCL12/CXCR4 in mediating the resistance of GBM cells to TMZ, and suggested that targeting CXCL12/CXCR4 axis may attenuate the resistance to TMZ in GBM.
Collapse
Affiliation(s)
- Shengwen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
16
|
Goda C, Balli D, Black M, Milewski D, Le T, Ustiyan V, Ren X, Kalinichenko VV, Kalin TV. Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway. PLoS Genet 2020; 16:e1008692. [PMID: 32271749 PMCID: PMC7173935 DOI: 10.1371/journal.pgen.1008692] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/21/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease with high mortality and is refractory to treatment. Pulmonary macrophages can both promote and repress fibrosis, however molecular mechanisms regulating macrophage functions during fibrosis remain poorly understood. FOXM1 is a transcription factor and is not expressed in quiescent lungs. Herein, we show that FOXM1 is highly expressed in pulmonary macrophages within fibrotic lungs of IPF patients and mouse fibrotic lungs. Macrophage-specific deletion of Foxm1 in mice (myFoxm1-/-) exacerbated pulmonary fibrosis. Inactivation of FOXM1 in vivo and in vitro increased p38 MAPK signaling in macrophages and decreased DUSP1, a negative regulator of p38 MAPK pathway. FOXM1 directly activated Dusp1 promoter. Overexpression of DUSP1 in FOXM1-deficient macrophages prevented activation of p38 MAPK pathway. Adoptive transfer of wild-type monocytes to myFoxm1-/- mice alleviated bleomycin-induced fibrosis. Altogether, contrary to known pro-fibrotic activities in lung epithelium and fibroblasts, FOXM1 has anti-fibrotic function in macrophages by regulating p38 MAPK.
Collapse
Affiliation(s)
- Chinmayee Goda
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - David Balli
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Markaisa Black
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - David Milewski
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xiaomeng Ren
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Tanya V. Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| |
Collapse
|
17
|
Bolte C, Kalin TV, Kalinichenko VV. Molecular, cellular, and bioengineering approaches to stimulate lung regeneration after injury. Semin Cell Dev Biol 2020; 100:101-108. [PMID: 31669132 DOI: 10.1016/j.semcdb.2019.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
Abstract
The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| |
Collapse
|
18
|
Goodman A, Mahmud W, Buckingham L. Gene variant profiles and tumor metabolic activity as measured by FOXM1 expression and glucose uptake in lung adenocarcinoma. J Pathol Transl Med 2020; 54:237-245. [PMID: 32126739 PMCID: PMC7253958 DOI: 10.4132/jptm.2020.02.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/08/2020] [Indexed: 11/17/2022] Open
Abstract
Background Cancer cells displaying aberrant metabolism switch energy production from oxidative phosphorylation to glycolysis. Measure of glucose standardized uptake value (SUV) by positron emission tomography (PET), used for staging of adenocarcinoma in high-risk patients, can reflect cellular use of the glycolysis pathway. The transcription factor, FOXM1 plays a role in regulation of glycolytic genes. Cancer cell transformation is driven by mutations in tumor suppressor genes such as TP53 and STK11 and oncogenes such as KRAS and EGFR. In this study, SUV and FOXM1 gene expression were compared in the background of selected cancer gene mutations. Methods Archival tumor tissue from cases of lung adenocarcinoma were analyzed. SUV was collected from patient records. FOXM1 gene expression was assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Gene mutations were detected by allele-specific PCR and gene sequencing. Results SUV and FOXM1 gene expression patterns differed in the presence of single and coexisting gene mutations. Gene mutations affected SUV and FOXM1 differently. EGFR mutations were found in tumors with lower FOXM1 expression but did not affect SUV. Tumors with TP53 mutations had increased SUV (p = .029). FOXM1 expression was significantly higher in tumors with STK11 mutations alone (p < .001) and in combination with KRAS or TP53 mutations (p < .001 and p = .002, respectively). Conclusions Cancer gene mutations may affect tumor metabolic activity. These observations support consideration of tumor cell metabolic state in the presence of gene mutations for optimal prognosis and treatment strategy.
Collapse
Affiliation(s)
- Ashley Goodman
- Rush University College of Health Sciences, Chicago, IL, USA
| | - Waqas Mahmud
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Lela Buckingham
- Rush University College of Health Sciences, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
19
|
Li R, Wang X, Zhao X, Zhang X, Chen H, Ma Y, Liu Y. Centromere protein F and Forkhead box M1 correlation with prognosis of non-small cell lung cancer. Oncol Lett 2020; 19:1368-1374. [PMID: 31966068 PMCID: PMC6956421 DOI: 10.3892/ol.2019.11232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. Altered expression of centromere protein F (CENPF), a transient kinetochore protein, has been found in a variety of human cancers. However, its clinical significance in NSCLC remains unknown. In the present study the results of quantitative PCR and western blot analyses demonstrated that CENPF and Forkhead box M1 (FOXM1) were significantly higher in NSCLC tissues than in the non-cancerous controls at both transcriptional and translational levels. Immunohistochemical staining results showed 58.7% (44/75) and 64.0% (48/75) of NSCLC tissues displayed high expression of CENPF and FOXM1, respectively. CENPF protein expression showed a positive correlation with tumor size (P=0.0179), vital status (P=0.0008) and FOXM1 expression (P=0.0013) in NSCLC. Poor overall survival was correlated with high levels of CENPF and FOXM1 in NSCLC patients as evaluated by Kaplan-Meier and log rank test. Multivariate analyses showed that CENPF expression was an independent prognostic factor for NSCLC. In conclusion, our study provides evidence of the prognostic function of CENPF in NSCLC.
Collapse
Affiliation(s)
- Rui Li
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xia Wang
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xiaoqian Zhao
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xiaohong Zhang
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Honghai Chen
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Yue Ma
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Yandong Liu
- Admin Office, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| |
Collapse
|
20
|
Ren X, Ustiyan V, Guo M, Wang G, Bolte C, Zhang Y, Xu Y, Whitsett JA, Kalin TV, Kalinichenko VV. Postnatal Alveologenesis Depends on FOXF1 Signaling in c-KIT + Endothelial Progenitor Cells. Am J Respir Crit Care Med 2019; 200:1164-1176. [PMID: 31233341 PMCID: PMC6888649 DOI: 10.1164/rccm.201812-2312oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Rationale: Disruption of alveologenesis is associated with severe pediatric lung disorders, including bronchopulmonary dysplasia (BPD). Although c-KIT+ endothelial cell (EC) progenitors are abundant in embryonic and neonatal lungs, their role in alveolar septation and the therapeutic potential of these cells remain unknown.Objectives: To determine whether c-KIT+ EC progenitors stimulate alveologenesis in the neonatal lung.Methods: We used single-cell RNA sequencing of neonatal human and mouse lung tissues, immunostaining, and FACS analysis to identify transcriptional and signaling networks shared by human and mouse pulmonary c-KIT+ EC progenitors. A mouse model of perinatal hyperoxia-induced lung injury was used to identify molecular mechanisms that are critical for the survival, proliferation, and engraftment of c-KIT+ EC progenitors in the neonatal lung.Measurements and Main Results: Pulmonary c-KIT+ EC progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and TIE2 lacked mature arterial, venal, and lymphatic cell-surface markers. The transcriptomic signature of c-KIT+ ECs was conserved in mouse and human lungs and enriched in FOXF1-regulated transcriptional targets. Expression of FOXF1 and c-KIT was decreased in the lungs of infants with BPD. In the mouse, neonatal hyperoxia decreased the number of c-KIT+ EC progenitors. Haploinsufficiency or endothelial-specific deletion of Foxf1 in mice increased apoptosis and decreased proliferation of c-KIT+ ECs. Inactivation of either Foxf1 or c-Kit caused alveolar simplification. Adoptive transfer of c-KIT+ ECs into the neonatal circulation increased lung angiogenesis and prevented alveolar simplification in neonatal mice exposed to hyperoxia.Conclusions: Cell therapy involving c-KIT+ EC progenitors can be beneficial for the treatment of BPD.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | | | - Guolun Wang
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Craig Bolte
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Yufang Zhang
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Yan Xu
- Division of Pulmonary Biology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tanya V. Kalin
- Division of Pulmonary Biology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
Pradhan A, Dunn A, Ustiyan V, Bolte C, Wang G, Whitsett JA, Zhang Y, Porollo A, Hu YC, Xiao R, Szafranski P, Shi D, Stankiewicz P, Kalin TV, Kalinichenko VV. The S52F FOXF1 Mutation Inhibits STAT3 Signaling and Causes Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2019; 200:1045-1056. [PMID: 31199666 PMCID: PMC6794119 DOI: 10.1164/rccm.201810-1897oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.
Collapse
Affiliation(s)
- Arun Pradhan
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Andrew Dunn
- Department of Pediatrics
- Center for Lung Regenerative Medicine
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | | | - Craig Bolte
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Guolun Wang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | | | - Yufang Zhang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Alexey Porollo
- Department of Pediatrics
- Center for Autoimmune Genomics and Etiology, and
| | - Yueh-Chiang Hu
- Department of Pediatrics
- Transgenic Animal and Genome Editing Core Facility, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Rui Xiao
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Pawel Stankiewicz
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
22
|
Jia XX, Zhu TT, Huang Y, Zeng XX, Zhang H, Zhang WX. Wnt/β-catenin signaling pathway regulates asthma airway remodeling by influencing the expression of c-Myc and cyclin D1 via the p38 MAPK-dependent pathway. Exp Ther Med 2019; 18:3431-3438. [PMID: 31602218 PMCID: PMC6777302 DOI: 10.3892/etm.2019.7991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Airway remodeling is the main characteristic of asthma; however, the mechanisms underlying this pathophysiological change have not been fully elucidated. Previous studies have indicated that the Wnt/β-catenin and mitogen-activated protein kinase (MAPK) signaling pathway are involved in the development of airway remodeling during asthma. Therefore, the present study established an airway remodeling rat model, after which β-catenin, cyclin D1 and c-Myc protein expressions were analyzed via western blotting in the lung tissue and airway smooth muscle cells (ASMCs) of rats. The mRNA expression of the aforementioned proteins were evaluated via reverse transcription-quantitative PCR. β-catenin, cyclin D1 and c-Myc are core transcription factors and target genes of the Wnt/β-catenin and MAPK signaling pathways. Furthermore, β-catenin, c-Myc and cyclin D1 protein expression were determined following blocking of the p38 MAPK signaling pathway in vitro. The results demonstrated that higher expressions of β-catenin, cyclin D1 and c-Myc were detected in lung tissues and ASMCs in the asthma group compared with the control. Blocking the p38 MAPK signaling pathway with a specific inhibitor SB203580 also downregulated the expressions of β-catenin, cyclin D1 and c-Myc in vitro. Taken together, these results indicated that the Wnt/β-catenin signaling pathway may regulate the process of airway remodeling via the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Xiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ting-Ting Zhu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yue Huang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xin-Xin Zeng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hong Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei-Xi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
23
|
Ogawa F, Walters MS, Shafquat A, O'Beirne SL, Kaner RJ, Mezey JG, Zhang H, Leopold PL, Crystal RG. Role of KRAS in regulating normal human airway basal cell differentiation. Respir Res 2019; 20:181. [PMID: 31399087 PMCID: PMC6688249 DOI: 10.1186/s12931-019-1129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/08/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND KRAS is a GTPase that activates pathways involved in cell growth, differentiation and survival. In normal cells, KRAS-activity is tightly controlled, but with specific mutations, the KRAS protein is persistently activated, giving cells a growth advantage resulting in cancer. While a great deal of attention has been focused on the role of mutated KRAS as a common driver mutation for lung adenocarcinoma, little is known about the role of KRAS in regulating normal human airway differentiation. METHODS To assess the role of KRAS signaling in regulating differentiation of the human airway epithelium, primary human airway basal stem/progenitor cells (BC) from nonsmokers were cultured on air-liquid interface (ALI) cultures to mimic the airway epithelium in vitro. Modulation of KRAS signaling was achieved using siRNA-mediated knockdown of KRAS or lentivirus-mediated over-expression of wild-type KRAS or the constitutively active G12 V mutant. The impact on differentiation was quantified using TaqMan quantitative PCR, immunofluorescent and immunohistochemical staining analysis for cell type specific markers. Finally, the impact of cigarette smoke exposure on KRAS and RAS protein family activity in the airway epithelium was assessed in vitro and in vivo. RESULTS siRNA-mediated knockdown of KRAS decreased differentiation of BC into secretory and ciliated cells with a corresponding shift toward squamous cell differentiation. Conversely, activation of KRAS signaling via lentivirus mediated over-expression of the constitutively active G12 V KRAS mutant had the opposite effect, resulting in increased secretory and ciliated cell differentiation and decreased squamous cell differentiation. Exposure of BC to cigarette smoke extract increased KRAS and RAS protein family activation in vitro. Consistent with these observations, airway epithelium brushed from healthy smokers had elevated RAS activation compared to nonsmokers. CONCLUSIONS Together, these data suggest that KRAS-dependent signaling plays an important role in regulating the balance of secretory, ciliated and squamous cell differentiation of the human airway epithelium and that cigarette smoking-induced airway epithelial remodeling is mediated in part by abnormal activation of KRAS-dependent signaling mechanisms.
Collapse
Affiliation(s)
- Fumihiro Ogawa
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Matthew S Walters
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Afrah Shafquat
- Computational Biology, Cornell University, Ithaca, NY, USA
| | - Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.,Computational Biology, Cornell University, Ithaca, NY, USA
| | - Haijun Zhang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Li Y, Wu F, Tan Q, Guo M, Ma P, Wang X, Zhang S, Xu J, Luo P, Jin Y. The multifaceted roles of FOXM1 in pulmonary disease. Cell Commun Signal 2019; 17:35. [PMID: 30992007 PMCID: PMC6469073 DOI: 10.1186/s12964-019-0347-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box M1 (FOXM1), a transcriptional regulator of G1/S and G2/M transition and M phase progression in the cell cycle, plays a principal role in many physiological and pathological processes. A growing number of studies have focused on the relationship between abnormal FOXM1 expression and pulmonary diseases, such as lung cancer, chronic obstructive pulmonary disease (COPD), asthma, acute lung injury (ALI), pulmonary fibrosis, and pulmonary arterial hypertension (PAH). These studies indicate that the FOXM1 regulatory network is a major predictor of poor outcomes, especially in lung cancer, and provide novel insight into various pulmonary diseases. For the first time, this review summarizes the mechanistic relationship between FOXM1 dysregulation and pulmonary diseases, the benefits of targeting abnormal FOXM1 expression, and the questions that remain to be addressed in the future.
Collapse
Affiliation(s)
- Yumei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xuan Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
25
|
Flood HM, Bolte C, Dasgupta N, Sharma A, Zhang Y, Gandhi CR, Kalin TV, Kalinichenko VV. The Forkhead box F1 transcription factor inhibits collagen deposition and accumulation of myofibroblasts during liver fibrosis. Biol Open 2019; 8:bio039800. [PMID: 30670377 PMCID: PMC6398469 DOI: 10.1242/bio.039800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblast's transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated αSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1α2, Col5α2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs.
Collapse
Affiliation(s)
- Hannah M Flood
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Craig Bolte
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Yufang Zhang
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Tanya V Kalin
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| |
Collapse
|
26
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
27
|
Solberg NT, Melheim M, Strand MF, Olsen PA, Krauss S. MEK Inhibition Induces Canonical WNT Signaling through YAP in KRAS Mutated HCT-15 Cells, and a Cancer Preventive FOXO3/FOXM1 Ratio in Combination with TNKS Inhibition. Cancers (Basel) 2019; 11:cancers11020164. [PMID: 30717152 PMCID: PMC6406699 DOI: 10.3390/cancers11020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023] Open
Abstract
The majority of colorectal cancers are induced by subsequent mutations in APC and KRAS genes leading to aberrant activation of both canonical WNT and RAS signaling. However, due to induction of feedback rescue mechanisms some cancers do not respond well to targeted inhibitor treatments. In this study we show that the APC and KRAS mutant human colorectal cancer cell line HCT-15 induces canonical WNT signaling through YAP in a MEK dependent mechanism. This inductive loop is disrupted with combined tankyrase (TNKS) and MEK inhibition. RNA sequencing analysis suggests that combined TNKS/MEK inhibition induces metabolic stress responses in HCT-15 cells promoting a positive FOXO3/FOXM1 ratio to reduce antioxidative and cryoprotective systems.
Collapse
Affiliation(s)
- Nina Therese Solberg
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | - Maria Melheim
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | - Martin Frank Strand
- Department of Health Sciences, Kristiania University College, PB 1190 Sentrum, 0107 Oslo, Norway.
| | - Petter Angell Olsen
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | - Stefan Krauss
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
28
|
A serine in exon 11 determines the full transcriptional activity of TCF-4 in lung carcinoma cells. Biochem Biophys Res Commun 2018; 508:675-681. [PMID: 30527807 DOI: 10.1016/j.bbrc.2018.11.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023]
Abstract
Activation of T cell factor-4 (TCF-4) is causally linked to the development of lung carcinoma, while the mechanism of sequence-dependent TCF-4 activity is still obscure. Using reverse transcription-polymerase chain reaction (RT-PCR), here, we demonstrated that sequences of exon 11 in TCF-4 were present in lung carcinoma cells but not in normal lung epithelial cells. Loss of exon 11 in TCF-4 inhibited TCF-4-induced cell growth of lung carcinoma and prolonged the survival time of Lewis lung carcinoma (LLC) tumor-bearing mice. Mechanistically, loss of exon 11 in TCF-4 attenuated the binding activity between TCF-4 protein and its canonical binding site, inhibited TOP/FOP luciferase activity and suppressed mRNA expression of Wnt signaling targets. By performing truncated and site-directed mutations, we further demonstrated that the 16th amino acid serine in exon 11 was responsible for TCF-4-mediated Wnt signaling. In vivo experiments indicated that a mutation of the 16th amino acid serine in exon 11 of TCF-4 could mimic the anti-tumor effect of Wnt signaling inhibitor. Taken together, we identified a serine determining the transcriptional activity of TCF-4 in lung carcinoma cells, and sequencing of TCF-4 mRNA might be an effective strategy to evaluate the Wnt pathway activation and prognosis in lung cancer.
Collapse
|
29
|
Ustiyan V, Bolte C, Zhang Y, Han L, Xu Y, Yutzey KE, Zorn AM, Kalin TV, Shannon JM, Kalinichenko VV. FOXF1 transcription factor promotes lung morphogenesis by inducing cellular proliferation in fetal lung mesenchyme. Dev Biol 2018; 443:50-63. [PMID: 30153454 DOI: 10.1016/j.ydbio.2018.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022]
Abstract
Organogenesis is regulated by mesenchymal-epithelial signaling events that induce expression of cell-type specific transcription factors critical for cellular proliferation, differentiation and appropriate tissue patterning. While mesenchymal transcription factors play a key role in mesenchymal-epithelial interactions, transcriptional networks in septum transversum and splanchnic mesenchyme remain poorly characterized. Forkhead Box F1 (FOXF1) transcription factor is expressed in mesenchymal cell lineages; however, its role in organogenesis remains uncharacterized due to early embryonic lethality of Foxf1-/- mice. In the present study, we generated mesenchyme-specific Foxf1 knockout mice (Dermo1-Cre Foxf1-/-) and demonstrated that FOXF1 is required for development of respiratory, cardiovascular and gastrointestinal organ systems. Deletion of Foxf1 from mesenchyme caused embryonic lethality in the middle of gestation due to multiple developmental defects in the heart, lung, liver and esophagus. Deletion of Foxf1 inhibited mesenchyme proliferation and delayed branching lung morphogenesis. Gene expression profiling of micro-dissected distal lung mesenchyme and ChIP sequencing of fetal lung tissue identified multiple target genes activated by FOXF1, including Wnt2, Wnt11, Wnt5A and Hoxb7. FOXF1 decreased expression of the Wnt inhibitor Wif1 through direct transcriptional repression. Furthermore, using a global Foxf1 knockout mouse line (Foxf1-/-) we demonstrated that FOXF1-deficiency disrupts the formation of the lung bud in foregut tissue explants. Finally, deletion of Foxf1 from smooth muscle cell lineage (smMHC-Cre Foxf1-/-) caused hyper-extension of esophagus and trachea, loss of tracheal and esophageal muscle, mispatterning of esophageal epithelium and decreased proliferation of smooth muscle cells. Altogether, FOXF1 promotes lung morphogenesis by regulating mesenchymal-epithelial signaling and stimulating cellular proliferation in fetal lung mesenchyme.
Collapse
Affiliation(s)
- Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Craig Bolte
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Lu Han
- Developmental Biology and Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Yan Xu
- Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Katherine E Yutzey
- Molecular Cardiovascular Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Aaron M Zorn
- Developmental Biology and Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Tanya V Kalin
- Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - John M Shannon
- Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Developmental Biology and Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States.
| |
Collapse
|
30
|
Ostrin EJ, Little DR, Gerner-Mauro KN, Sumner EA, Ríos-Corzo R, Ambrosio E, Holt SE, Forcioli-Conti N, Akiyama H, Hanash SM, Kimura S, Huang SXL, Chen J. β-Catenin maintains lung epithelial progenitors after lung specification. Development 2018; 145:dev.160788. [PMID: 29440304 DOI: 10.1242/dev.160788] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
The entire lung epithelium arises from SRY box 9 (SOX9)-expressing progenitors that form the respiratory tree and differentiate into airway and alveolar cells. Despite progress in understanding their initial specification within the embryonic foregut, how these progenitors are subsequently maintained is less clear. Using inducible, progenitor-specific genetic mosaic mouse models, we showed that β-catenin (CTNNB1) maintains lung progenitors by promoting a hierarchical lung progenitor gene signature, suppressing gastrointestinal (GI) genes, and regulating NK2 homeobox 1 (NKX2.1) and SRY box 2 (SOX2) in a developmental stage-dependent manner. At the early, but not later, stage post-lung specification, CTNNB1 cell-autonomously maintained normal NKX2.1 expression levels and suppressed ectopic SOX2 expression. Genetic epistasis analyses revealed that CTNNB1 is required for fibroblast growth factor (Fgf)/Kirsten rat sarcoma viral oncogene homolog (Kras)-mediated promotion of the progenitors. In silico screening of Eurexpress and translating ribosome affinity purification (TRAP)-RNAseq identified a progenitor gene signature, a subset of which depends on CTNNB1. Wnt signaling also maintained NKX2.1 expression and suppressed GI genes in cultured human lung progenitors derived from embryonic stem cells.
Collapse
Affiliation(s)
- Edwin J Ostrin
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of General Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Danielle R Little
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elizabeth A Sumner
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Ricardo Ríos-Corzo
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Elizabeth Ambrosio
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Samantha E Holt
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nicolas Forcioli-Conti
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Sam M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
31
|
Han S, Ma X, Zhao Y, Zhao H, Batista A, Zhou S, Zhou X, Yang Y, Wang T, Bi J, Xia Z, Bai Z, Garkavtsev I, Zhang Z. Identification of Glypican-3 as a potential metastasis suppressor gene in gastric cancer. Oncotarget 2018; 7:44406-44416. [PMID: 27259271 PMCID: PMC5190106 DOI: 10.18632/oncotarget.9763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is a prevalent tumor that is usually detected at an advanced metastatic stage. Currently, standard therapies are mostly ineffective. Here, we report that Glypican-3 (GPC3) is absent in invasive tumors and metastatic lymph nodes, in particular in aggressive and highly disseminated signet ring cell carcinomas. We demonstrate that loss of GPC3 correlates with poor overall survival in patients. Moreover, we show that absence of GPC3 causes up-regulation of MAPK/FoxM1 signaling and that blockade of this pathway alters cellular invasion. An inverse correlation between GPC3 and FoxM1 is also shown in patient samples. These data identify GPC3 as a potential metastasis suppressor gene and suggest its value as a prognostic marker in gastric cancer. Development of therapies targeting signaling downstream of GPC3 are warranted.
Collapse
Affiliation(s)
- Shiwei Han
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xuemei Ma
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongying Zhao
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ana Batista
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Sheng Zhou
- Institute of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Zhou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Tingting Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingtao Bi
- Department of General Surgery, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
| | - Zheng Xia
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Igor Garkavtsev
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
32
|
Kelleher FC, O'Sullivan H. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget 2018; 7:42792-42804. [PMID: 27074562 PMCID: PMC5173172 DOI: 10.18632/oncotarget.8669] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
FOXM1 is a pro-proliferative transcription factor that promotes cell cycle progression at the G1-S, and G2-M transitions. It is activated by phosphorylation usually mediated by successive cyclin – cyclin dependent kinase complexes, and is highly expressed in sarcoma. p53 down regulates FOXM1 and FOXM1 inhibition is also partly dependent on Rb and p21. Abnormalities of p53 or Rb are frequent in sporadic sarcomas with bone or soft tissue sarcoma, accounting for 36% of index cancers in the high penetrance TP53 germline disorder, Li-Fraumeni syndrome. FOXM1 stimulates transcription of pluripotency related genes including SOX2, KLF4, OCT4, and NANOG many of which are important in sarcoma, a disorder of mesenchymal stem cell/ partially committed progenitor cells. In a selected specific, SOX2 is uniformly expressed in synovial sarcoma. Embryonic pathways preferentially used in stem cell such as Hippo, Hedgehog, and Wnt dominate in FOXM1 stoichiometry to alter rates of FOXM1 production or degradation. In undifferentiated pleomorphic sarcoma, liposarcoma, and fibrosarcoma, dysregulation of the Hippo pathway increases expression of the effector co-transcriptional activator Yes-Associated Protein (YAP). A complex involving YAP and the transcription factor TEAD elevates FOXM1 in these sarcoma subtypes. In another scenario 80% of desmoid tumors have nuclear localization of β-catenin, the Wnt pathway effector molecule. Thiazole antibiotics inhibit FOXM1 and because they have an auto-regulator loop FOXM1 expression is also inhibited. Current systemic treatment of sarcoma is of limited efficacy and inhibiting FOXM1 represents a potential new strategy.
Collapse
Affiliation(s)
- Fergal C Kelleher
- St. James Hospital, Dublin, Ireland.,Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
33
|
Yang J, Yang T, Yan W, Li D, Wang F, Wang Z, Guo Y, Bai P, Tan N, Chen L. TAK1 inhibition by natural cyclopeptide RA-V promotes apoptosis and inhibits protective autophagy in Kras-dependent non-small-cell lung carcinoma cells. RSC Adv 2018; 8:23451-23458. [PMID: 35540129 PMCID: PMC9081588 DOI: 10.1039/c8ra04241a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 02/05/2023] Open
Abstract
TAK1 kinase is required for the survival of Kras-dependent non-small-cell lung carcinoma (NSCLC) cells.
Collapse
|
34
|
Bolte C, Whitsett JA, Kalin TV, Kalinichenko VV. Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 228:1-20. [PMID: 29288383 DOI: 10.1007/978-3-319-68483-3_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lung morphogenesis is a highly orchestrated process beginning with the appearance of lung buds on approximately embryonic day 9.5 in the mouse. Endodermally derived epithelial cells of the primitive lung buds undergo branching morphogenesis to generate the tree-like network of epithelial-lined tubules. The pulmonary vasculature develops in close proximity to epithelial progenitor cells in a process that is regulated by interactions between the developing epithelium and underlying mesenchyme. Studies in transgenic and knockout mouse models demonstrate that normal lung morphogenesis requires coordinated interactions between cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive network of capillaries. Multiple growth factors, microRNAs, transcription factors, and their associated signaling cascades regulate cellular proliferation, migration, survival, and differentiation during formation of the peripheral lung. Dysregulation of signaling events caused by gene mutations, teratogens, or premature birth causes severe congenital and acquired lung diseases in which normal alveolar architecture and the pulmonary capillary network are disrupted. Herein, we review scientific progress regarding signaling and transcriptional mechanisms regulating the development of pulmonary vasculature during lung morphogenesis.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA. .,Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA. .,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
| |
Collapse
|
35
|
Milewski D, Balli D, Ustiyan V, Le T, Dienemann H, Warth A, Breuhahn K, Whitsett JA, Kalinichenko VV, Kalin TV. FOXM1 activates AGR2 and causes progression of lung adenomas into invasive mucinous adenocarcinomas. PLoS Genet 2017; 13:e1007097. [PMID: 29267283 PMCID: PMC5755924 DOI: 10.1371/journal.pgen.1007097] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/05/2018] [Accepted: 11/01/2017] [Indexed: 02/03/2023] Open
Abstract
Lung cancer remains one of the most prominent public health challenges, accounting for the highest incidence and mortality among all human cancers. While pulmonary invasive mucinous adenocarcinoma (PIMA) is one of the most aggressive types of non-small cell lung cancer, transcriptional drivers of PIMA remain poorly understood. In the present study, we found that Forkhead box M1 transcription factor (FOXM1) is highly expressed in human PIMAs and associated with increased extracellular mucin deposition and the loss of NKX2.1. To examine consequences of FOXM1 expression in tumor cells in vivo, we employed an inducible, transgenic mouse model to express an activated FOXM1 transcript in urethane-induced benign lung adenomas. FOXM1 accelerated tumor growth, induced progression from benign adenomas to invasive, metastatic adenocarcinomas, and induced SOX2, a marker of poorly differentiated tumor cells. Adenocarcinomas in FOXM1 transgenic mice expressed increased MUC5B and MUC5AC, and reduced NKX2.1, which are characteristics of mucinous adenocarcinomas. Expression of FOXM1 in KrasG12D transgenic mice increased the mucinous phenotype in KrasG12D-driven lung tumors. Anterior Gradient 2 (AGR2), an oncogene critical for intracellular processing and packaging of mucins, was increased in mouse and human PIMAs and was associated with FOXM1. FOXM1 directly bound to and transcriptionally activated human AGR2 gene promoter via the -257/-247 bp region. Finally, using orthotopic xenografts we demonstrated that inhibition of either FOXM1 or AGR2 in human PIMAs inhibited mucinous characteristics, and reduced tumor growth and invasion. Altogether, FOXM1 is necessary and sufficient to induce mucinous phenotypes in lung tumor cells in vivo.
Collapse
MESH Headings
- A549 Cells
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma of Lung
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Adenoma/genetics
- Adenoma/metabolism
- Adenoma/pathology
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Disease Progression
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Heterografts
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Mucoproteins
- Oncogene Proteins
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/metabolism
Collapse
Affiliation(s)
- David Milewski
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - David Balli
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | | | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg, Im Neuenheimer Feld, Heidelberg Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg, Im Neuenheimer Feld, Heidelberg Germany
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Tanya V. Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
FOXF1 transcription factor promotes lung regeneration after partial pneumonectomy. Sci Rep 2017; 7:10690. [PMID: 28878348 PMCID: PMC5587533 DOI: 10.1038/s41598-017-11175-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022] Open
Abstract
FOXF1, a member of the forkhead box family of transcription factors, has been previously shown to be critical for lung development, homeostasis, and injury responses. However, the role of FOXF1 in lung regeneration is unknown. Herein, we performed partial pneumonectomy, a model of lung regeneration, in mice lacking one Foxf1 allele in endothelial cells (PDGFb-iCre/Foxf1 fl/+ mice). Endothelial cell proliferation was significantly reduced in regenerating lungs from mice deficient for endothelial Foxf1. Decreased endothelial proliferation was associated with delayed lung regeneration as shown by reduced respiratory volume in Foxf1-deficient lungs. FACS-sorted endothelial cells isolated from regenerating PDGFb-iCre/Foxf1 fl/+ and control lungs were used for RNAseq analysis to identify FOXF1 target genes. Foxf1 deficiency altered expression of numerous genes including those regulating extracellular matrix remodeling (Timp3, Adamts9) and cell cycle progression (Cdkn1a, Cdkn2b, Cenpj, Tubb4a), which are critical for lung regeneration. Deletion of Foxf1 increased Timp3 mRNA and protein, decreasing MMP14 activity in regenerating lungs. ChIPseq analysis for FOXF1 and histone methylation marks identified DNA regulatory regions within the Cd44, Cdkn1a, and Cdkn2b genes, indicating they are direct FOXF1 targets. Thus FOXF1 stimulates lung regeneration following partial pneumonectomy via direct transcriptional regulation of genes critical for extracellular matrix remodeling and cell cycle progression.
Collapse
|
37
|
Sun L, Ren X, Wang IC, Pradhan A, Zhang Y, Flood HM, Han B, Whitsett JA, Kalin TV, Kalinichenko VV. The FOXM1 inhibitor RCM-1 suppresses goblet cell metaplasia and prevents IL-13 and STAT6 signaling in allergen-exposed mice. Sci Signal 2017; 10:10/475/eaai8583. [PMID: 28420758 DOI: 10.1126/scisignal.aai8583] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Goblet cell metaplasia and excessive mucus secretion associated with asthma, cystic fibrosis, and chronic obstructive pulmonary disease contribute to morbidity and mortality worldwide. We performed a high-throughput screen to identify small molecules targeting a transcriptional network critical for the differentiation of goblet cells in response to allergens. We identified RCM-1, a nontoxic small molecule that inhibited goblet cell metaplasia and excessive mucus production in mice after exposure to allergens. RCM-1 blocked the nuclear localization and increased the proteasomal degradation of Forkhead box M1 (FOXM1), a transcription factor critical for the differentiation of goblet cells from airway progenitor cells. RCM-1 reduced airway resistance, increased lung compliance, and decreased proinflammatory cytokine production in mice exposed to the house dust mite and interleukin-13 (IL-13), which triggers goblet cell metaplasia. In cultured airway epithelial cells and in mice, RCM-1 reduced IL-13 and STAT6 (signal transducer and activator of transcription 6) signaling and prevented the expression of the STAT6 target genes Spdef and Foxa3, which are key transcriptional regulators of goblet cell differentiation. These results suggest that RCM-1 is an inhibitor of goblet cell metaplasia and IL-13 signaling, providing a new therapeutic candidate to treat patients with asthma and other chronic airway diseases.
Collapse
Affiliation(s)
- Lifeng Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China.,Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaomeng Ren
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - I-Ching Wang
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Arun Pradhan
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hannah M Flood
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bo Han
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. .,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
38
|
Zhang W, Duan N, Zhang Q, Song T, Li Z, Zhang C, Chen X, Wang K. DNA Methylation Mediated Down-Regulation of miR-370 Regulates Cell Growth through Activation of the Wnt/β-Catenin Signaling Pathway in Human Osteosarcoma Cells. Int J Biol Sci 2017; 13:561-573. [PMID: 28539830 PMCID: PMC5441174 DOI: 10.7150/ijbs.19032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-370 (miR-370) has been observed to act as a tumor suppressor through the targeting of different proteins in a variety of tumors. Our previous study indicated that miR-370 was able to target forkhead box protein M1 (FOXM1) to inhibit cell growth and metastasis in human osteosarcoma cells. In this study, we reported that FOXM1 interacted with β-catenin in vitro and in vivo. Similar to FOXM1, critical components of the Wnt signaling pathway, including β-catenin, c-Myc, and Cyclin D1, were also highly expressed in different human osteosarcoma cells lines. Pharmacological inhibition of FOXM1 or β-catenin but not of c-Myc was associated with the increased expression of miR-370. Ectopic expression of miR-370 inhibited the downstream signaling of β-catenin. Moreover, osteosarcoma cells treated with 5-AZA-2'-deoxycytidine (AZA), a DNA methylation inhibitor, exhibited increased levels of miR-370 and decreased levels of β-catenin downstream targets, which resulted in inhibition of cell proliferation and colony formation ability. In conclusion, our results supported a model in which the DNA methylation-mediated down-regulation of miR-370 reduced its inhibitory effect on FOXM1, thereby promoting FOXM1-β-catenin interaction and activating the Wnt/β-Catenin signaling pathway in human osteosarcoma cells.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China.,Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Ning Duan
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Qian Zhang
- The second department of surgery room, Shaanxi Provincial Tumor Hospital, Xi'an 710061, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Zhong Li
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Kunzheng Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China
| |
Collapse
|
39
|
Pradhan A, Ustiyan V, Zhang Y, Kalin TV, Kalinichenko VV. Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response. Oncotarget 2016; 7:1912-26. [PMID: 26625197 PMCID: PMC4811506 DOI: 10.18632/oncotarget.6422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/− mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells.
Collapse
Affiliation(s)
- Arun Pradhan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Yufang Zhang
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
40
|
Boucherat O, Landry-Truchon K, Aoidi R, Houde N, Nadeau V, Charron J, Jeannotte L. Lung development requires an active ERK/MAPK pathway in the lung mesenchyme. Dev Dyn 2016; 246:72-82. [PMID: 27748998 DOI: 10.1002/dvdy.24464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reciprocal epithelial-mesenchymal communications are critical throughout lung development, dictating branching morphogenesis and cell specification. Numerous signaling molecules are involved in these interactions, but the way epithelial-mesenchymal crosstalk is coordinated remains unclear. The ERK/MAPK pathway transduces several important signals in lung formation. Epithelial inactivation of both Mek genes, encoding ERK/MAPK kinases, causes lung agenesis and death. Conversely, Mek mutation in mesenchyme results in lung hypoplasia, trachea cartilage malformations, kyphosis, omphalocele, and death. Considering the negative impact of kyphosis and omphalocele on intrathoracic space and, consequently, on lung growth, the exact role of ERK/MAPK pathway in lung mesenchyme remains unresolved. RESULTS To address the role of the ERK/MAPK pathway in lung mesenchyme in absence of kyphosis and omphalocele, we used the Tbx4Cre deleter mouse line, which acts specifically in lung mesenchyme. These Mek mutants did not develop kyphosis and omphalocele but they presented lung hypoplasia, tracheal defects, and neonatal death. Tracheal cartilage anomalies suggested a role for the ERK/MAPK pathway in the control of chondrocyte hypertrophy. Moreover, expression data indicated potential interactions between the ERK/MAPK and canonical Wnt pathways during lung formation. CONCLUSIONS Lung development necessitates a functional ERK/MAPK pathway in the lung mesenchymal layer in order to coordinate efficient epithelial-mesenchymal interactions. Developmental Dynamics 246:72-82, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Kim Landry-Truchon
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Rifdat Aoidi
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Valérie Nadeau
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada, G1V 0A6
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 3S3
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada, G1V 0A6
| |
Collapse
|
41
|
Pedersen NM, Thorvaldsen TE, Schultz SW, Wenzel EM, Stenmark H. Formation of Tankyrase Inhibitor-Induced Degradasomes Requires Proteasome Activity. PLoS One 2016; 11:e0160507. [PMID: 27482906 PMCID: PMC4970726 DOI: 10.1371/journal.pone.0160507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022] Open
Abstract
In canonical Wnt signaling, the protein levels of the key signaling mediator β-catenin are under tight regulation by the multimeric destruction complex that mediates proteasomal degradation of β-catenin. In colorectal cancer, destruction complex activity is often compromised due to mutations in the multifunctional scaffolding protein Adenomatous Polyposis Coli (APC), leading to a stabilization of β-catenin. Recently, tankyrase inhibitors (TNKSi), a novel class of small molecule inhibitors, were shown to re-establish a functional destruction complex in APC-mutant cancer cell lines by stabilizing AXIN1/2, whose protein levels are usually kept low via poly(ADP-ribosyl)ation by the tankyrase enzymes (TNKS1/2). Surprisingly, we found that for the formation of the morphological correlates of destruction complexes, called degradasomes, functional proteasomes are required. In addition we found that AXIN2 is strongly upregulated after 6 h of TNKS inhibition. The proteasome inhibitor MG132 counteracted TNKSi-induced degradasome formation and AXIN2 stabilization, and this was accompanied by reduced transcription of AXIN2. Mechanistically we could implicate the transcription factor FoxM1 in this process, which was recently shown to be a transcriptional activator of AXIN2. We observed a substantial reduction in TNKSi-induced stabilization of AXIN2 after siRNA-mediated depletion of FoxM1 and found that proteasome inhibition reduced the active (phosphorylated) fraction of FoxM1. This can explain the decreased protein levels of AXIN2 after MG132 treatment. Our findings have implications for the design of in vitro studies on the destruction complex and for clinical applications of TNKSi.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sebastian Wolfgang Schultz
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| |
Collapse
|
42
|
Cai Y, Bolte C, Le T, Goda C, Xu Y, Kalin TV, Kalinichenko VV. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal 2016; 9:ra40. [PMID: 27095594 DOI: 10.1126/scisignal.aad1899] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.
Collapse
Affiliation(s)
- Yuqi Cai
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Craig Bolte
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tien Le
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Chinmayee Goda
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
43
|
Ustiyan V, Zhang Y, Perl AKT, Whitsett JA, Kalin TV, Kalinichenko VV. β-catenin and Kras/Foxm1 signaling pathway are critical to restrict Sox9 in basal cells during pulmonary branching morphogenesis. Dev Dyn 2016; 245:590-604. [PMID: 26869074 DOI: 10.1002/dvdy.24393] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lung morphogenesis is regulated by interactions between the canonical Wnt/β-catenin and Kras/ERK/Foxm1 signaling pathways that establish proximal-peripheral patterning of lung tubules. How these interactions influence the development of respiratory epithelial progenitors to acquire airway as compared to alveolar epithelial cell fate is unknown. During branching morphogenesis, SOX9 transcription factor is normally restricted from conducting airway epithelial cells and is highly expressed in peripheral, acinar progenitor cells that serve as precursors of alveolar type 2 (AT2) and AT1 cells as the lung matures. RESULTS To identify signaling pathways that determine proximal-peripheral cell fate decisions, we used the SFTPC gene promoter to delete or overexpress key members of Wnt/β-catenin and Kras/ERK/Foxm1 pathways in fetal respiratory epithelial progenitor cells. Activation of β-catenin enhanced SOX9 expression in peripheral epithelial progenitors, whereas deletion of β-catenin inhibited SOX9. Surprisingly, deletion of β-catenin caused accumulation of atypical SOX9-positive basal cells in conducting airways. Inhibition of Wnt/β-catenin signaling by Kras(G12D) or its downstream target Foxm1 stimulated SOX9 expression in basal cells. Genetic inactivation of Foxm1 from Kras(G12D) -expressing epithelial cells prevented the accumulation of SOX9-positive basal cells in developing airways. CONCLUSIONS Interactions between the Wnt/β-catenin and the Kras/ERK/Foxm1 pathways are essential to restrict SOX9 expression in basal cells. Developmental Dynamics 245:590-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vladimir Ustiyan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Yufang Zhang
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Anne-Karina T Perl
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio.,Division of Developmental Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio.,Division of Developmental Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| |
Collapse
|
44
|
Xue J, Zhou A, Tan C, Wu Y, Lee HT, Li W, Xie K, Huang S. Forkhead Box M1 Is Essential for Nuclear Localization of Glioma-associated Oncogene Homolog 1 in Glioblastoma Multiforme Cells by Promoting Importin-7 Expression. J Biol Chem 2015; 290:18662-70. [PMID: 26085085 DOI: 10.1074/jbc.m115.662882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
The transcription factors glioma-associated oncogene homolog 1 (GLI1), a primary marker of Hedgehog pathway activation, and Forkhead box M1 (FOXM1) are aberrantly activated in a wide range of malignancies, including glioma. However, the mechanism of nuclear localization of GLI1 and whether FOXM1 regulates the Hedgehog signaling pathway are poorly understood. Here we found that FOXM1 promotes nuclear import of GLI1 in glioblastoma multiforme cells and thus increases the expression of its target genes. Conversely, knockdown of FOXM1 expression with FOXM1 siRNA abrogated its nuclear import and inhibited the expression of its target genes. Also, genetic deletion of FOXM1 in mouse embryonic fibroblasts abolished nuclear localization of GLI1. We observed that FOXM1 directly binds to the importin-7 (IPO7) promoter and increases its promoter activity. IPO7 interacted with GLI1, leading to enhanced nuclear import of GLI1. Depletion of IPO7 by IPO7 siRNA reduced nuclear accumulation of GLI1. In addition, FOXM1 induced nuclear import of GLI1 by promoting IPO7 expression. Moreover, the FOXM1/IPO7/GLI1 axis promoted cell proliferation, migration, and invasion in vitro. Finally, expression of FOXM1 was markedly correlated with that of GLI1 in human glioblastoma specimens. These data suggest that FOXM1 and GLI1 form a positive feedback loop that contributes to glioblastoma development. Furthermore, our study revealed a mechanism that controls nuclear import of GLI1 in glioblastoma multiforme cells.
Collapse
Affiliation(s)
- Jianfei Xue
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
| | - Aidong Zhou
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Christina Tan
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yamei Wu
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hsueh-Te Lee
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Wenliang Li
- the Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, and the Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China, and
| | - Keping Xie
- the Departments of Gastroenterology, Hepatology & Nutrition and Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Suyun Huang
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
45
|
Kalinichenko VV, Kalin TV. Is there potential to target FOXM1 for 'undruggable' lung cancers? Expert Opin Ther Targets 2015; 19:865-7. [PMID: 25936405 DOI: 10.1517/14728222.2015.1042366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Published studies with transgenic mice convincingly showed that Forkhead Box transcription factor M1 (FOXM1) transcription factor is an important component of the KRAS/ERK signaling pathway in respiratory epithelial cells. FOXM1 is required for oncogenic KRAS signaling in mouse lung cancer models and therefore, clear potential exists to target FOXM1 in human NSCLC driven by activated KRAS mutations. To date, several approaches to inhibit FOXM1 in cancer cells have been explored. These include siRNA/shRNA-mediated inhibition of Foxm1 mRNA, sequestration of FOXM1 protein in nucleoli using ARF peptide, inhibition of FOXM1 binding to its target promoter DNAs by the FDI-6 small-molecule compound and inhibition of proteasomes by thiazole antibiotics. Additional studies are needed to determine if inhibition of FOXM1 is beneficial for treatment of KRAS mutant NSCLCs in human patients and to develop effective delivery systems for FOXM1 inhibitors. If successful, additional strategies can be explored to screen for novel FOXM1 inhibitors, such as targeting FOXM1 nuclear localization, nuclear export or protein-protein interactions with activating kinases and co-activator proteins. Altogether, inhibition of FOXM1, either alone or in combination with other anticancer drugs, could be beneficial for treatment of KRAS mutant NSCLCs that are resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology , 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229 , USA +1 513 636 4822 ; +1 513 636 2423 ;
| | | |
Collapse
|
46
|
Bolte C, Ren X, Tomley T, Ustiyan V, Pradhan A, Hoggatt A, Kalin TV, Herring BP, Kalinichenko VV. Forkhead box F2 regulation of platelet-derived growth factor and myocardin/serum response factor signaling is essential for intestinal development. J Biol Chem 2015; 290:7563-75. [PMID: 25631042 DOI: 10.1074/jbc.m114.609487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alterations in the forkhead box F2 gene expression have been reported in numerous pathologies, and Foxf2(-/-) mice are perinatal lethal with multiple malformations; however, molecular mechanisms pertaining to Foxf2 signaling are severely lacking. In this study, Foxf2 requirements in murine smooth muscle cells were examined using a conditional knock-out approach. We generated novel Foxf2-floxed mice, which we bred to smMHC-Cre-eGFP mice to generate a mouse line with Foxf2 deleted specifically from smooth muscle. These mice exhibited growth retardation due to reduced intestinal length as well as inflammation and remodeling of the small intestine. Colons of Tg(smMHC-Cre-eGFP(+/-));Foxf2(-/-) mice had expansion of the myenteric nerve plexus and increased proliferation of smooth muscle cells leading to thickening of the longitudinal smooth muscle layer. Foxf2 deficiency in colonic smooth muscle was associated with increased expression of Foxf1, PDGFa, PDGFb, PDGF receptor α, and myocardin. FOXF2 bound to promoter regions of these genes indicating direct transcriptional regulation. Foxf2 repressed Foxf1 promoter activity in co-transfection experiments. We also show that knockdown of Foxf2 in colonic smooth muscle cells in vitro and in transgenic mice increased myocardin/serum response factor signaling and increased expression of contractile proteins. Foxf2 attenuated myocardin/serum response factor signaling in smooth muscle cells through direct binding to the N-terminal region of myocardin. Our results indicate that Foxf2 signaling in smooth muscle cells is essential for intestinal development and serum response factor signaling.
Collapse
Affiliation(s)
- Craig Bolte
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Xiaomeng Ren
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Tatiana Tomley
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Vladimir Ustiyan
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Arun Pradhan
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - April Hoggatt
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tanya V Kalin
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - B Paul Herring
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Vladimir V Kalinichenko
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| |
Collapse
|
47
|
Rotblat B, Grunewald TGP, Leprivier G, Melino G, Knight RA. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget 2014; 4:2577-90. [PMID: 24342878 PMCID: PMC3926850 DOI: 10.18632/oncotarget.1658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple carcinomas while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, GO, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB and FOXM1, and relay on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.
Collapse
Affiliation(s)
- Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | | | | | | | | |
Collapse
|
48
|
Ren X, Ustiyan V, Pradhan A, Cai Y, Havrilak JA, Bolte CS, Shannon JM, Kalin TV, Kalinichenko VV. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res 2014; 115:709-20. [PMID: 25091710 DOI: 10.1161/circresaha.115.304382] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. OBJECTIVE Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. METHODS AND RESULTS A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. CONCLUSIONS FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling.
Collapse
Affiliation(s)
- Xiaomeng Ren
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - Vladimir Ustiyan
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - Arun Pradhan
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - Yuqi Cai
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - Jamie A Havrilak
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - Craig S Bolte
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - John M Shannon
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - Tanya V Kalin
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH
| | - Vladimir V Kalinichenko
- From the Divisons of Pulmonary Biology (X.R., V.U., A.P., Y.C., J.A.H., C.S.B., J.M.S., T.V.K., V.V.K.) and Developmental Biology (V.V.K.), Perinatal Institute, Cincinnati Children's Research Foundation, OH.
| |
Collapse
|
49
|
Bella L, Zona S, Nestal de Moraes G, Lam EWF. FOXM1: A key oncofoetal transcription factor in health and disease. Semin Cancer Biol 2014; 29:32-9. [PMID: 25068996 DOI: 10.1016/j.semcancer.2014.07.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 12/25/2022]
Abstract
Forkhead Box M1 (FOXM1) is a bona fide oncofoetal transcription factor, which orchestrates complex temporal and spatial gene expression throughout embryonic and foetal development as well as during adult tissue homeostasis and repair. Controlled FOXM1 expression and activity provides a balanced transcriptional programme to ensure proper growth and maturation during embryogenesis and foetal development as well as to manage appropriate homeostasis and repair of adult tissues. Conversely, deregulated FOXM1 upregulation likely affects cell migration, invasion, angiogenesis, stem cell renewal, DNA damage repair and cellular senescence, which impact tumour initiation, progression, metastasis, angiogenesis and drug resistance. A thorough understanding of the regulation and role of FOXM1 in health and in cancer should contribute to the development of better diagnostics and treatments for cancer as well as congenital disorders and other developmental diseases.
Collapse
Affiliation(s)
- Laura Bella
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Gabriela Nestal de Moraes
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom.
| |
Collapse
|
50
|
Abstract
α-Catenin (α-cat) is an actin-binding protein required for cell-cell cohesion. Although this adhesive function for α-cat is well appreciated, cells contain a substantial amount of nonjunctional α-cat that may be used for other functions. We show that α-cat is a nuclear protein that can interact with β-catenin (β-cat) and T-cell factor (TCF) and that the nuclear accumulation of α-cat depends on β-cat. Using overexpression, knockdown, and chromatin immunoprecipitation approaches, we show that α-cat attenuates Wnt/β-cat-responsive genes in a manner that is downstream of β-cat/TCF loading on promoters. Both β-cat- and actin-binding domains of α-cat are required to inhibit Wnt signaling. A nuclear-targeted form of α-cat induces the formation of nuclear filamentous actin, whereas cells lacking α-cat show altered nuclear actin properties. Formation of nuclear actin filaments correlates with reduced RNA synthesis and altered chromatin organization. Conversely, nuclear extracts made from cells lacking α-cat show enhanced general transcription in vitro, an activity that can be partially rescued by restoring the C-terminal actin-binding region of α-cat. These data demonstrate that α-cat may limit gene expression by affecting nuclear actin organization.
Collapse
|