1
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Tseng CY, Fu YH, Ou DL, Lu JW, Hou HA, Lin LI. Anti-leukemia effects of omipalisib in acute myeloid leukemia: inhibition of PI3K/AKT/mTOR signaling and suppression of mitochondrial biogenesis. Cancer Gene Ther 2023; 30:1691-1701. [PMID: 37821641 DOI: 10.1038/s41417-023-00675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Omipalisib (GSK2126458), a potent dual PI3K/mTOR inhibitor, is reported to exhibit anti-tumor effect in several kinds of cancers. More than 50% of acute myeloid leukemia (AML) patients display a hyperactivation of PI3K/AKT/mTOR signaling. We investigated the anti-proliferative effect of omipalisib in AML cell lines with varied genetic backgrounds. The OCI-AML3 and THP-1 cell lines had a significant response to omipalisib, with IC50 values of 17.45 nM and 8.93 nM, respectively. We integrated transcriptomic profile and metabolomic analyses, and followed by gene set enrichment analysis (GSEA) and metabolite enrichment analysis. Our findings showed that in addition to inhibiting PI3K/AKT/mTOR signaling and inducing cell cycle arrest at the G0/G1 phase, omipalisib also suppressed mitochondrial respiration and biogenesis. Furthermore, omipalisib downregulated several genes associated with serine, glycine, threonine, and glutathione metabolism, and decreased their protein and glutathione levels. In vivo experiments revealed that omipalisib significantly inhibited tumor growth and prolonged mouse survival without weight loss. Gedatolisib and dactolisib, another two PI3K/mTOR inhibitors, exerted similar effects without affecting mitochondria biogenesis. These results highlight the multifaceted anti-leukemic effect of omipalisib, revealing its potential as a novel therapeutic agent in AML treatment.
Collapse
Affiliation(s)
- Chi-Yang Tseng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Fu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, 2200, Denmark
- The Finsen Laboratory, Rigs Hospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Hsin-An Hou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Crossland NA, Beck S, Tan WY, Lo M, Mason JB, Zhang C, Guo W, Crott JW. Fecal microbiota transplanted from old mice promotes more colonic inflammation, proliferation, and tumor formation in azoxymethane-treated A/J mice than microbiota originating from young mice. Gut Microbes 2023; 15:2288187. [PMID: 38031252 PMCID: PMC10730208 DOI: 10.1080/19490976.2023.2288187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Aging is a strong risk factor for colorectal cancer (CRC). It is well established that gut microbial dysbiosis can play a role in the etiology of CRC. Although the composition of the gut microbial community changes with age and is reported to become more pro-inflammatory, it is unclear whether such changes are also pro-tumorigenic for the colon. To address this gap, we conducted fecal microbiota transplants (FMT) from young (DY, ~6 wk) and old (DO, ~72 wk) donor mice into young (8 wk) recipient mice that were pre-treated with antibiotics. After initiating tumorigenesis with azoxymethane, recipients were maintained for 19 wk during which time they received monthly FMT boosters. Compared to recipients of young donors (RY), recipients of old donors (RO) had an approximately 3-fold higher prevalence of histologically confirmed colon tumors (15.8 vs 50%, Chi2 P = .03), approximately 2-fold higher proliferating colonocytes as well as significantly elevated colonic IL-6, IL-1β and Tnf-α. Transcriptomics analysis of the colonic mucosa revealed a striking upregulation of mitochondria-related genes in the RO mice, a finding corroborated by increased mitochondrial abundance. Amongst the differences in fecal microbiome observed between DY and DO mice, the genera Ruminoclostridium, Lachnoclostridium and Marvinbryantia were more abundant in DY mice while the genera Bacteroides and Akkermansia were more abundant in DO mice. Amongst recipients, Ruminoclostridium and Lachnoclostridium were higher in RY mice while Bacteroides was higher in RO mice. Differences in fecal microbiota were observed between young and old mice, some of which persisted upon transplant into recipient mice. Recipients of old donors displayed significantly higher colonic proliferation, inflammation and tumor abundance compared to recipients of young donors. These findings support an etiological role for altered gut microbial communities in the increased risk for CRC with increasing age and establishes that such risk can be transmitted between individuals.
Collapse
Affiliation(s)
- Nicholas A. Crossland
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
- Comparative Pathology Laboratory, Boston University National Emerging Infectious Disease Laboratories, Boston, MA, USA
| | - Samuel Beck
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Wei Yu Tan
- Comparative Pathology Laboratory, Boston University National Emerging Infectious Disease Laboratories, Boston, MA, USA
| | - Ming Lo
- Comparative Pathology Laboratory, Boston University National Emerging Infectious Disease Laboratories, Boston, MA, USA
| | - Joel B. Mason
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Chao Zhang
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Weimin Guo
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Jimmy W. Crott
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
4
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
5
|
Frodyma DE, Troia TC, Rao C, Svoboda RA, Berg JA, Shinde DD, Thomas VC, Lewis RE, Fisher KW. PGC-1β and ERRα Promote Glutamine Metabolism and Colorectal Cancer Survival via Transcriptional Upregulation of PCK2. Cancers (Basel) 2022; 14:4879. [PMID: 36230802 PMCID: PMC9562873 DOI: 10.3390/cancers14194879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have shown that Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Beta (PGC-1β) and Estrogen-Related Receptor Alpha (ERRα) are over-expressed in colorectal cancer and promote tumor survival. METHODS In this study, we use immunoprecipitation of epitope tagged endogenous PGC-1β and inducible PGC-1β mutants to show that amino acid motif LRELL on PGC-1β is responsible for the physical interaction with ERRα and promotes ERRα mRNA and protein expression. We use RNAsequencing to determine the genes regulated by both PGC-1β & ERRα and find that mitochondrial Phosphoenolpyruvate Carboxykinase 2 (PCK2) is the gene that decreased most significantly after depletion of both genes. RESULTS Depletion of PCK2 in colorectal cancer cells was sufficient to reduce anchorage-independent growth and inhibit glutamine utilization by the TCA cycle. Lastly, shRNA-mediated depletion of ERRα decreased anchorage-independent growth and glutamine metabolism, which could not be rescued by plasmid derived expression of PCK2. DISCUSSION These findings suggest that transcriptional control of PCK2 is one mechanism used by PGC-1β and ERRα to promote glutamine metabolism and colorectal cancer cell survival.
Collapse
Affiliation(s)
- Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas C. Troia
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chaitra Rao
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jordan A. Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Dhananjay D. Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Wu Z, Xu C, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. A critical role of AMP-activated protein kinase in regulating intestinal nutrient absorption, barrier function, and intestinal diseases. J Cell Physiol 2022; 237:3705-3716. [PMID: 35892164 DOI: 10.1002/jcp.30841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023]
Abstract
As one of the most important organs in animals, the intestine is responsible for nutrient absorption and acts as a barrier between the body and the environment. Intestinal physiology and function require the participation of energy. 5'-adenosine monophosphate-activated protein kinase (AMPK), a classical and highly expressed energy regulator in intestinal cells, regulates the process of nutrient absorption and barrier function and is also involved in the therapy of intestinal diseases. Studies have yielded findings that AMPK regulates the absorption of glucose, amino acids, and fatty acids in the intestine primarily by regulating transportation systems, as we detailed here. Moreover, AMPK is involved in the regulation of the intestinal mechanical barrier and immune barrier through manipulating the expression of tight junctions, antimicrobial peptides, and secretory immunoglobulins. In addition, AMPK also participates in the regulation of intestinal diseases, which indicates that AMPK is a promising therapeutic target for intestinal diseases and cancer. In this review, we summarized the current understanding regarding how AMPK regulates intestinal nutrient absorption, barrier function, and intestinal diseases.
Collapse
Affiliation(s)
- Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengfei Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
The Function and Prognostic Value of RNA-Binding Proteins in Colorectal Adenocarcinoma Were Analyzed Based on Bioinformatics of Smart Medical Big Data. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5536330. [PMID: 34188789 PMCID: PMC8192207 DOI: 10.1155/2021/5536330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022]
Abstract
Colon cancer is the third most frequent cancer in the world and is mainly adenocarcinoma in terms of pathological type. It has been confirmed that the dysregulation of RNA-binding proteins (RBPs) significantly participates in the occurrence and development of numerous malignant tumors. Therefore, we analyzed the RBPs associated with colon adenocarcinoma (COAD) to assess their possible biological effects and prognostic value. A total of 398 COAD tissue datasets and 39 normal tissue datasets were retrieved from the TCGA data resource and screened out the RBPs, which are differentially expressed between tumor tissues and nontumor tissues. Then, bioinformatics analyses based on smart medical big data were conducted on these RBPs. Overall, 181 differentially expressed RBPs were uncovered, consisting of 121 upregulated RBPs and 60 downregulated RBPs. Finally, we selected 7 prognostic-related RBPs with research prospects and constructed a prognostic model according to the median risk score. There were remarkable differences in OS between the high-risk and low-risk groups. In addition, the performance of the prognostic model was evaluated and verified with other COAD patient data in the TCGA database. The results showed that the area under the ROC curve (AUC) for the train group was 0.744 and the one for the test group was 0.661, confirming that the model assesses patients' prognosis to some extent. And based on 7 hub RBPs, we constructed a nomogram as a reference for evaluating the survival rate of COAD patients.
Collapse
|
8
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Rao C, Frodyma DE, Southekal S, Svoboda RA, Black AR, Guda C, Mizutani T, Clevers H, Johnson KR, Fisher KW, Lewis RE. KSR1- and ERK-dependent translational regulation of the epithelial-to-mesenchymal transition. eLife 2021; 10:e66608. [PMID: 33970103 PMCID: PMC8195604 DOI: 10.7554/elife.66608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/09/2021] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here, we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Danielle E Frodyma
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Robert A Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Adrian R Black
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Keith R Johnson
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
- Department of Oral Biology, University of Nebraska Medical CenterOmahaUnited States
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Robert E Lewis
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
10
|
Jurado M, Castaño Ó, Zorzano A. Stochastic modulation evidences a transitory EGF-Ras-ERK MAPK activity induced by PRMT5. Comput Biol Med 2021; 133:104339. [PMID: 33910125 DOI: 10.1016/j.compbiomed.2021.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway involves a three-step cascade of kinases that transduce signals and promote processes such as cell growth, development, and apoptosis. An aberrant response of this pathway is related to the proliferation of cell diseases and tumors. By using simulation modeling, we document that the protein arginine methyltransferase 5 (PRMT5) modulates the MAPK pathway and thus avoids an aberrant behavior. PRMT5 methylates the Raf kinase, reducing its catalytic activity and thereby, reducing the activation of ERK in time and amplitude. Two minimal computational models of the epidermal growth factor (EGF)-Ras-ERK MAPK pathway influenced by PRMT5 were proposed: a first model in which PRMT5 is activated by EGF and a second one in which PRMT5 is stimulated by the cascade response. The reported results show that PRMT5 reduces the time duration and the expression of the activated ERK in both cases, but only in the first model PRMT5 limits the EGF range that generates an ERK activation. Based on our data, we propose the protein PRMT5 as a regulatory factor to develop strategies to fight against an excessive activity of the MAPK pathway, which could be of use in chronic diseases and cancer.
Collapse
Affiliation(s)
- Manuel Jurado
- Biotechnology Ph.D. Programme, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Óscar Castaño
- Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Bioelectronics Unit and Nanobioengineering Lab., Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain.
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Moon H, Ro SW. Ras Mitogen-activated Protein Kinase Signaling and Kinase Suppressor of Ras as Therapeutic Targets for Hepatocellular Carcinoma. JOURNAL OF LIVER CANCER 2021; 21:1-11. [PMID: 37384270 PMCID: PMC10035721 DOI: 10.17998/jlc.21.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 06/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a high incidence cancer and a major health concern worldwide. Among the many molecular signaling pathways that are dysregulated in HCC, the Ras mitogen-activated protein kinase (Ras/Raf/MAPK) signaling pathway has gained renewed attention from basic and clinical researchers. Mutations in Ras and Raf genes which are known to activate the Ras/Raf/MAPK signaling pathway have been infrequently detected in human HCC; however, the Ras/Raf/MAPK signaling pathway is activated in more than 50% of HCC cases, suggesting an alternative mechanism for the activation of the signaling pathway. Kinase suppressor of Ras acts as a molecular scaffold for facilitating the assembly of Ras/Raf/MAPK signaling pathway components and has been implicated in the regulation of this signaling pathway. In this review, we provide important insights into the cellular and molecular mechanisms involved in the activation of the Ras/Raf/MAPK signaling pathway and discuss potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Hyuk Moon
- Department of Genetic Engineering, Kyung Hee University College of Life Sciences, Yongin, Korea
| | - Simon Weonsang Ro
- Department of Genetic Engineering, Kyung Hee University College of Life Sciences, Yongin, Korea
| |
Collapse
|
12
|
Rao C, Huisman DH, Vieira HM, Frodyma DE, Neilsen BK, Chakraborty B, Hight SK, White MA, Fisher KW, Lewis RE. A Gene Expression High-Throughput Screen (GE-HTS) for Coordinated Detection of Functionally Similar Effectors in Cancer. Cancers (Basel) 2020; 12:E3143. [PMID: 33120942 PMCID: PMC7692652 DOI: 10.3390/cancers12113143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Genome-wide, loss-of-function screening can be used to identify novel vulnerabilities upon which specific tumor cells depend for survival. Functional Signature Ontology (FUSION) is a gene expression-based high-throughput screening (GE-HTS) method that allows researchers to identify functionally similar proteins, small molecules, and microRNA mimics, revealing novel therapeutic targets. FUSION uses cell-based high-throughput screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA libraries to identify putative protein targets and mechanisms of action (MoA) for several previously undescribed natural products. We have used FUSION to screen for functional analogues to Kinase suppressor of Ras 1 (KSR1), a scaffold protein downstream of Ras in the Raf-MEK-ERK kinase cascade, and biologically validated several proteins with functional similarity to KSR1. FUSION incorporates bioinformatics analysis that may offer higher resolution of the endpoint readout than other screens which utilize Boolean outputs regarding a single pathway activation (i.e., synthetic lethal and cell proliferation). Challenges associated with FUSION and other high-content genome-wide screens include variation, batch effects, and controlling for potential off-target effects. In this review, we discuss the efficacy of FUSION to identify novel inhibitors and oncogene-induced changes that may be cancer cell-specific as well as several potential pitfalls within FUSION and best practices to avoid them.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Dianna H. Huisman
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Heidi M. Vieira
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Beth K. Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Binita Chakraborty
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Suzie K. Hight
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA;
| | - Michael A. White
- Chief Scientific Officer, Samumed, LLC, San Diego, CA 92121, USA;
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| |
Collapse
|
13
|
Neilsen BK, Kelly DL, Chakraborty B, Kim HS, White MA, Lewis RE, Fisher KW. High-throughput identification of protein functional similarities using a gene-expression-based siRNA screen. Sci Data 2020; 7:27. [PMID: 31964871 PMCID: PMC6972743 DOI: 10.1038/s41597-020-0365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022] Open
Abstract
A gene expression-based siRNA screen was used to evaluate functional similarity between genetic perturbations to identify functionally similar proteins. A siRNA library (siGenome library, Dharmacon) consisting of multiple siRNAs per gene that have been pooled in to one well per gene was arrayed in a 384-well format and used to individually target 14,335 proteins for depletion in HCT116 colon cancer cells. For each protein depletion, the gene expression of eight genes was quantified using the multiplexed Affymetrix Quantigene 2.0 assay in technical triplicate. As a proof of concept, six genes (BNIP3, NDRG1, ALDOC, LOXL2, ACSL5, BNIP3L) whose expression pattern reliably reflect the disruption of the molecular scaffold KSR1 were measured upon each protein depletion. The remaining two genes (PPIB and HPRT) are housekeeping genes used for normalization. The gene expression signatures from this screen can be used to estimate the functional similarity between any two proteins and successfully identified functional relationships for specific proteins such as KSR1 and more generalized processes, such as autophagy. Measurement(s) | gene expression • KSR1 pathway regulation | Technology Type(s) | Microarray • RNA interference | Factor Type(s) | target RNA | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11418018
Collapse
Affiliation(s)
- Beth K Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David L Kelly
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Binita Chakraborty
- Duke University Medical Center, Pharmacology and Cancer Biology, Durham, NC, 27710, USA
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert E Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
LKB1/AMPK Pathway and Drug Response in Cancer: A Therapeutic Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8730816. [PMID: 31781355 PMCID: PMC6874879 DOI: 10.1155/2019/8730816] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
Inactivating mutations of the tumor suppressor gene Liver Kinase B1 (LKB1) are frequently detected in non-small-cell lung cancer (NSCLC) and cervical carcinoma. Moreover, LKB1 expression is epigenetically regulated in several tumor types. LKB1 has an established function in the control of cell metabolism and oxidative stress. Clinical and preclinical studies support a role of LKB1 as a central modifier of cellular response to different stress-inducing drugs, suggesting LKB1 pathway as a highly promising therapeutic target. Loss of LKB1-AMPK signaling confers sensitivity to energy depletion and to redox homeostasis impairment and has been associated with an improved outcome in advanced NSCLC patients treated with chemotherapy. In this review, we provide an overview of the interplay between LKB1 and its downstream targets in cancer and focus on potential therapeutic strategies whose outcome could depend from LKB1.
Collapse
|
15
|
Neilsen BK, Frodyma DE, McCall JL, Fisher KW, Lewis RE. ERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells. PLoS One 2019; 14:e0209224. [PMID: 30629587 PMCID: PMC6328106 DOI: 10.1371/journal.pone.0209224] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
The cell cycle is under circadian regulation. Oncogenes can dysregulate circadian-regulated genes to disrupt the cell cycle, promoting tumor cell proliferation. As a regulator of G2/M arrest in response to DNA damage, the circadian gene Timeless Circadian Clock (TIMELESS) coordinates this connection and is a potential locus for oncogenic manipulation. TIMELESS expression was evaluated using RNASeq data from TCGA and by RT-qPCR and western blot analysis in a panel of colon cancer cell lines. TIMELESS expression following ERK inhibition was examined via western blot. Cell metabolic capacity, propidium iodide, and CFSE staining were used to evaluate the effect of TIMELESS depletion on colon cancer cell survival and proliferation. Cell metabolic capacity following TIMELESS depletion in combination with Wee1 or CHK1 inhibition was assessed. TIMELESS is overexpressed in cancer and required for increased cancer cell proliferation. ERK activation promotes TIMELESS expression. TIMELESS depletion increases γH2AX, a marker of DNA damage, and triggers G2/M arrest via increased CHK1 and CDK1 phosphorylation. TIMELESS depletion in combination with Wee1 or CHK1 inhibition causes an additive decrease in cancer cell metabolic capacity with limited effects in non-transformed human colon epithelial cells. The data show that ERK activation contributes to the overexpression of TIMELESS in cancer. Depletion of TIMELESS increases γH2AX and causes G2/M arrest, limiting cell proliferation. These results demonstrate a role for TIMELESS in cancer and encourage further examination of the link between circadian rhythm dysregulation and cancer cell proliferation.
Collapse
Affiliation(s)
- Beth K. Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jamie L. McCall
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kurt W. Fisher
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
16
|
Role of AMP activated protein kinase signaling pathway in intestinal development of mammals. Ann Anat 2018; 220:51-54. [DOI: 10.1016/j.aanat.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|
17
|
Das B, Neilsen BK, Fisher KW, Gehring D, Hu Y, Volle DJ, Kim HS, McCall JL, Kelly DL, MacMillan JB, White MA, Lewis RE. A Functional Signature Ontology (FUSION) screen detects an AMPK inhibitor with selective toxicity toward human colon tumor cells. Sci Rep 2018; 8:3770. [PMID: 29491475 PMCID: PMC5830883 DOI: 10.1038/s41598-018-22090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
AMPK is a serine threonine kinase composed of a heterotrimer of a catalytic, kinase-containing α and regulatory β and γ subunits. Here we show that individual AMPK subunit expression and requirement for survival varies across colon cancer cell lines. While AMPKα1 expression is relatively consistent across colon cancer cell lines, AMPKα1 depletion does not induce cell death. Conversely, AMPKα2 is expressed at variable levels in colon cancer cells. In high expressing SW480 and moderate expressing HCT116 colon cancer cells, siRNA-mediated depletion induces cell death. These data suggest that AMPK kinase inhibition may be a useful component of future therapeutic strategies. We used Functional Signature Ontology (FUSION) to screen a natural product library to identify compounds that were inhibitors of AMPK to test its potential for detecting small molecules with preferential toxicity toward human colon tumor cells. FUSION identified 5'-hydroxy-staurosporine, which competitively inhibits AMPK. Human colon cancer cell lines are notably more sensitive to 5'-hydroxy-staurosporine than are non-transformed human colon epithelial cells. This study serves as proof-of-concept for unbiased FUSION-based detection of small molecule inhibitors of therapeutic targets and highlights its potential to identify novel compounds for cancer therapy development.
Collapse
Affiliation(s)
- Binita Das
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pharmacology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Beth K Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kurt W Fisher
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Drew Gehring
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Youcai Hu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peeking Union Medical College, 1 Xian Nong Tan Street, Beijing, China
| | - Deanna J Volle
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hyun Seok Kim
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Avison Biomedical Research Center, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jamie L McCall
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - David L Kelly
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John B MacMillan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael A White
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert E Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Alterations in PGC1α expression levels are involved in colorectal cancer risk: a qualitative systematic review. BMC Cancer 2017; 17:731. [PMID: 29121859 PMCID: PMC5679491 DOI: 10.1186/s12885-017-3725-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is a major global public health problem and the second leading cause of cancer-related death. Mitochondrial dysfunction has long been suspected to be involved in this type of tumorigenesis, as supported by an accumulating body of research evidence. However, little is known about how mitochondrial alterations contribute to tumorigenesis. Mitochondrial biogenesis is a fundamental cellular process required to maintain functional mitochondria and as an adaptive mechanism in response to changing energy requirements. Mitochondrial biogenesis is regulated by peroxisome proliferator-activated receptor gamma coactivator 1-α (PPARGC1A or PGC1α). In this paper, we report a systematic review to summarize current evidence on the role of PGC1α in the initiation and progression of CRC. The aim is to provide a basis for more comprehensive research. Methods The literature search, data extraction and quality assessment were performed according to the document Guidance on the Conduct of Narrative Synthesis in Systematic Reviews and the PRISMA declaration. Results The studies included in this review aimed to evaluate whether increased or decreased PGC1α expression affects the development of CRC. Each article proposes a possible molecular mechanism of action and we create two concept maps. Conclusion Our systematic review indicates that altered expression of PGC1α modifies CRC risk. Most studies showed that overexpression of this gene increases CRC risk, while some studies indicated that lower than normal expression levels could increase CRC risk. Thus, various authors propose PGC1α as a good candidate molecular target for cancer therapy. Reducing expression of this gene could help to reduce risk or progression of CRC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3725-3) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Abstract
Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.
Collapse
|
20
|
Durand S, Trillet K, Uguen A, Saint-Pierre A, Le Jossic-Corcos C, Corcos L. A transcriptome-based protein network that identifies new therapeutic targets in colorectal cancer. BMC Genomics 2017; 18:758. [PMID: 28962550 PMCID: PMC5622428 DOI: 10.1186/s12864-017-4139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Colon cancer occurrence is increasing worldwide, making it the third most frequent cancer. Although many therapeutic options are available and quite efficient at the early stages, survival is strongly decreased when the disease has spread to other organs. The identification of molecular markers of colon cancer is likely to help understanding its course and, eventually, to uncover novel genes to be targeted by drugs. In this study, we compared gene expression in a set of 95 human colon cancer samples to that in 19 normal colon mucosae, focusing on 401 genes from 5 selected pathways (Apoptosis, Cancer, Cholesterol metabolism and lipoprotein signaling, Drug metabolism, Wnt/beta-catenin). Deregulation of mRNA levels largely matched that of proteins, leading us to build in silico protein networks, starting from mRNA levels, to identify key proteins central to network activity. Results Among the analyzed genes, 10.5% (42) had no reported link with colon cancer, including the SFRP1, IGF1 and ADH1B (down), and MYC and IL8 (up), whose encoded proteins were most interacting with other proteins from the same or even distinct networks. Analyzing all pathways globally led us to uncover novel functional links between a priori unrelated or rather remotely connected pathways, such as the Drug metabolism and the Cancer pathways or, even more strikingly, between the Cholesterol metabolism and lipoprotein signaling and the Cancer pathways. In addition, we analyzed the responsiveness of some of the deregulated genes essential to network activities, to chemotherapeutic agents used alone or in presence of Lovastatin, a lipid-lowering drug. Some of these treatments could oppose the deregulations occurring in cancer samples, including those of the CHECK2, CYP51A1, HMGCS1, ITGA2, NME1 or VEGFA genes. Conclusions Our network-based approach allowed discovering genes not previously known to play regulatory roles in colon cancer. Our results also showed that selected drug treatments might revert the cancer-specific deregulation of genes playing prominent roles within the networks operating to maintain colon homeostasis. Among those genes, some could constitute novel testable targets to eliminate colon cancer cells, either directly or, potentially, through the use of lipid-lowering drugs such as statins, in association with selected anticancer drugs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4139-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Durand
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France
| | - Killian Trillet
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France
| | - Arnaud Uguen
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France.,Department of Pathology, Brest University Hospital, F-29200, Brest, France
| | - Aude Saint-Pierre
- INSERM 1078 Unit, "Epidemiology, genetic Epidemiology and population genetics" team, 46 rue Félix Le Dantec, F-29200, Brest, France
| | - Catherine Le Jossic-Corcos
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France
| | - Laurent Corcos
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France. .,INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" laboratory, University of Western Brittany (UBO), Faculty of medicine, 22, rue Camille Desmoulins, 29200, Brest, France.
| |
Collapse
|
21
|
Frodyma D, Neilsen B, Costanzo-Garvey D, Fisher K, Lewis R. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras. F1000Res 2017; 6:1621. [PMID: 29026529 PMCID: PMC5583734 DOI: 10.12688/f1000research.11895.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2) play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role as a scaffold protein for the Raf/MEK/ERK kinase cascade, its regulation of various cellular pathways mediated through different binding partners, and the phenotypic consequences of KSR1 or KSR2 genetic inactivation. Mammalian KSR proteins have a demonstrated role in cellular and organismal energy balance with implications for cancer and obesity. Targeting KSR1 in cancer using small molecule inhibitors has potential for therapy with reduced toxicity to the patient. RNAi and small molecule screens using KSR1 as a reference standard have the potential to expose and target vulnerabilities in cancer. Interestingly, although KSR1 and KSR2 are similar in structure, KSR2 has a distinct physiological role in regulating energy balance. Although KSR proteins have been studied for two decades, additional analysis is required to elucidate both the regulation of these molecular scaffolds and their potent effect on the spatial and temporal control of ERK activation in health and disease.
Collapse
Affiliation(s)
- Danielle Frodyma
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Beth Neilsen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Diane Costanzo-Garvey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kurt Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Robert Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
22
|
Kumazoe M, Takai M, Hiroi S, Takeuchi C, Kadomatsu M, Nojiri T, Onda H, Bae J, Huang Y, Takamatsu K, Yamashita S, Kangawa K, Tachibana H. The FOXO3/PGC-1β signaling axis is essential for cancer stem cell properties of pancreatic ductal adenocarcinoma. J Biol Chem 2017; 292:10813-10823. [PMID: 28507102 PMCID: PMC5491768 DOI: 10.1074/jbc.m116.772111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
In 95% of patients with pancreatic ductal adenocarcinoma, recurrence is observed following chemotherapy. Findings from several studies have indicated that cancer stem cells (CSCs) are resistant to anticancer agents and may be involved in cancer recurrence and metastasis. The CD44 protein is a major CSC marker, and CD44 also plays an indispensable role in the CSC properties in several cancers, including pancreatic cancer; however, no clinical approach exists to inhibit CD44 activity. Here, we have performed knock-in/knockdown experiments, and we demonstrate that the forkhead box O3 (FOXO3)/liver kinase B1 (LKB1)/AMP-activated protein kinase/peroxisome proliferator-activated receptor-γ co-activator-1β (PGC-1β)/pyruvate dehydrogenase-A1 pathway is essential for CD44 expression and CSC properties. We observed that patients exhibiting high pyruvate dehydrogenase-A1 expression have a poor prognosis. Systemic PGC-1β knock-out mice are fertile and viable and do not exhibit an overt phenotype under normal conditions. This suggests that cGMP induction and PGC-1β inhibition represent potential strategies for treating patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
- the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka 565-8565, Japan
| | - Mika Takai
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Shun Hiroi
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Chieri Takeuchi
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Mai Kadomatsu
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Takashi Nojiri
- the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka 565-8565, Japan
| | - Hiroaki Onda
- the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka 565-8565, Japan
| | - Jaehoon Bae
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Yuhui Huang
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Kanako Takamatsu
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Shuya Yamashita
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Kenji Kangawa
- the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka 565-8565, Japan
| | - Hirofumi Tachibana
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan and
| |
Collapse
|
23
|
Li J, Zhong L, Wang F, Zhu H. Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharm Sin B 2017; 7:249-259. [PMID: 28540163 PMCID: PMC5430814 DOI: 10.1016/j.apsb.2016.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/12/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
AMP-activated protein kinase (AMPK), known as a sensor and a master of cellular energy balance, integrates various regulatory signals including anabolic and catabolic metabolic processes. Accompanying the application of genetic methods and a plethora of AMPK agonists, rapid progress has identified AMPK as an attractive therapeutic target for several human diseases, such as cancer, type 2 diabetes, atherosclerosis, myocardial ischemia/reperfusion injury and neurodegenerative disease. The role of AMPK in metabolic and energetic modulation both at the intracellular and whole body levels has been reviewed elsewhere. In the present review, we summarize and update the paradoxical role of AMPK implicated in the diseases mentioned above and put forward the challenge encountered. Thus it will be expected to provide important clues for exploring rational methods of intervention in human diseases.
Collapse
Affiliation(s)
- Jin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Liping Zhong
- Life Science College of Tarim University, Xinjiang 843300, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Corresponding author. Tel./fax: +86 10 62810295.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Corresponding author at: Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China. Tel./fax: +86 10 63188106.
| |
Collapse
|
24
|
Neilsen BK, Frodyma DE, Lewis RE, Fisher KW. KSR as a therapeutic target for Ras-dependent cancers. Expert Opin Ther Targets 2017; 21:499-509. [PMID: 28333549 DOI: 10.1080/14728222.2017.1311325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Targeting downstream effectors required for oncogenic Ras signaling is a potential alternative or complement to the development of more direct approaches targeting Ras in the treatment of Ras-dependent cancers. Areas covered: Here we review literature pertaining to the molecular scaffold Kinase Suppressor of Ras (KSR) and its role in promoting signals critical to tumor maintenance. We summarize the phenotypes in knockout models, describe the role of KSR in cancer, and outline the structure and function of the KSR1 and KSR2 proteins. We then focus on the most recent literature that describes the crystal structure of the kinase domain of KSR2 in complex with MEK1, KSR-RAF dimerization particularly in response to RAF inhibition, and novel attempts to target KSR proteins directly. Expert opinion: KSR is a downstream effector of Ras-mediated tumorigenesis that is dispensable for normal growth and development, making it a desirable target for the development of novel therapeutics with a high therapeutic index. Recent advances have revealed that KSR can be functionally inhibited using a small molecule that stabilizes KSR in an inactive conformation. The efficacy and potential for this novel approach to be used clinically in the treatment of Ras-driven cancers is still being investigated.
Collapse
Affiliation(s)
- Beth K Neilsen
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Danielle E Frodyma
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Robert E Lewis
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kurt W Fisher
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
25
|
Guo L, Costanzo-Garvey DL, Smith DR, Neilsen BK, MacDonald RG, Lewis RE. Kinase Suppressor of Ras 2 (KSR2) expression in the brain regulates energy balance and glucose homeostasis. Mol Metab 2016; 6:194-205. [PMID: 28180061 PMCID: PMC5279912 DOI: 10.1016/j.molmet.2016.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/03/2022] Open
Abstract
Objective Kinase Suppressor of Ras 2 (KSR2) is a molecular scaffold coordinating Raf/MEK/ERK signaling that is expressed at high levels in the brain. KSR2 disruption in humans and mice causes obesity and insulin resistance. Understanding the anatomical location and mechanism of KSR2 function should lead to a better understanding of physiological regulation over energy balance. Methods Mice bearing floxed alleles of KSR2 (KSR2fl/fl) were crossed with mice expressing the Cre recombinase expressed by the Nestin promoter (Nes-Cre) to produce Nes-CreKSR2fl/fl mice. Growth, body composition, food consumption, cold tolerance, insulin and free fatty acid levels, glucose, and AICAR tolerance were measured in gender and age matched KSR2−/− mice Results Nes-CreKSR2fl/fl mice lack detectable levels of KSR2 in the brain. The growth and onset of obesity of Nes-CreKSR2fl/fl mice parallel those observed in KSR2−/− mice. As in KSR2−/− mice, Nes-CreKSR2fl/fl are glucose intolerant with elevated fasting and cold intolerance. Male Nes-CreKSR2fl/fl mice are hyperphagic, but female Nes-CreKSR2fl/fl mice are not. Unlike KSR2−/− mice, Nes-CreKSR2fl/fl mice respond normally to leptin and AICAR, which may explain why the degree of obesity of adult Nes-CreKSR2fl/fl mice is not as severe as that observed in KSR2−/− animals. Conclusions These observations suggest that, in the brain, KSR2 regulates energy balance via control of feeding behavior and adaptive thermogenesis, while a second KSR2-dependent mechanism, functioning through one or more other tissues, modulates sensitivity to leptin and activators of the energy sensor AMPK. Brain-specific KSR2 knockout causes obesity and glucose intolerance in both genders, but hyperphagia only in male mice. Brain-specific KSR2 knockout suppresses body temperature, before obesity. KSR2 in the brain regulates energy balance via control of feeding behavior and adaptive thermogenesis.
Collapse
Affiliation(s)
- Lili Guo
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Diane L Costanzo-Garvey
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Deandra R Smith
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Beth K Neilsen
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Richard G MacDonald
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA; Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| |
Collapse
|
26
|
KSR1 and EPHB4 Regulate Myc and PGC1β To Promote Survival of Human Colon Tumors. Mol Cell Biol 2016; 36:2246-61. [PMID: 27273865 DOI: 10.1128/mcb.00087-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/26/2016] [Indexed: 01/05/2023] Open
Abstract
Identification and characterization of survival pathways active in tumor cells but absent in normal tissues provide opportunities to develop effective anticancer therapies with reduced toxicity to the patient. We show here that, like kinase suppressor of Ras 1 (KSR1), EPH (erythropoietin-producing hepatocellular carcinoma) receptor B4 (EPHB4) is aberrantly overexpressed in human colon tumor cell lines and selectively required for their survival. KSR1 and EPHB4 support tumor cell survival by promoting the expression of downstream targets, Myc and the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β). While KSR1 promotes the aberrant expression of Myc and the PGC1β protein via a posttranscriptional mechanism, EPHB4 has a greater effect on Myc and PGC1β expression via its ability to elevate mRNA levels. Subsequent analysis of the posttranscriptional regulation demonstrated that KSR1 promotes the translation of Myc protein. These findings reveal novel KSR1- and EPHB4-dependent signaling pathways supporting the survival of colorectal cancer cells through regulation of Myc and PGC1β, suggesting that inhibition of KSR1 or EPHB4 effectors may lead to selective toxicity in colorectal tumors.
Collapse
|
27
|
Ross FA, MacKintosh C, Hardie DG. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J 2016; 283:2987-3001. [PMID: 26934201 PMCID: PMC4995730 DOI: 10.1111/febs.13698] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is expressed in essentially all eukaryotic cells, suggesting that it arose during early eukaryotic evolution. It occurs universally as heterotrimeric complexes containing catalytic α subunits and regulatory β and γ subunits. Although Drosophila melanogaster contains single genes encoding each subunit, in mammals, each subunit exists as multiple isoforms encoded by distinct genes, giving rise to up to 12 heterotrimeric combinations. The multiple isoforms of each subunit are 2R-ohnologues generated by the two rounds of whole genome duplication that occurred at the evolutionary origin of the vertebrates. Although the differential roles of these isoform combinations remain only partly understood, there are indications that they may have different subcellular locations, different inputs and outputs, and different functions. The multiple isoforms are of particular interest with respect to the roles of AMPK in cancer because the genes encoding some isoforms, such as PRKAA1 and PRKAB2 (encoding α1 and β2), are quite frequently amplified in tumour cells, whereas the genes encoding others, such as PRKAA2 (encoding α2), tend to be mutated, which, in some but not all cases, may result in a loss of function. Thus, although AMPK acts downstream of the tumour suppressor liver kinase B1, and some of its isoform combinations may act as tumour suppressors that restrain the growth and proliferation of tumour cells, other isoform combinations may paradoxically act as oncogenes, perhaps by aiding the survival of tumour cells undergoing environmental stresses such as hypoxia or nutrient deprivation.
Collapse
Affiliation(s)
- Fiona A Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Scotland, UK
| | - Carol MacKintosh
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Scotland, UK
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Scotland, UK
| |
Collapse
|