1
|
Weyer Y, Teis D. The Dsc complex and its role in Golgi quality control. Biochem Soc Trans 2024; 52:2023-2034. [PMID: 39324639 PMCID: PMC11555709 DOI: 10.1042/bst20230375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
Membrane proteins play crucial roles in cellular functions. However, processes such as the insertion of membrane proteins into the endoplasmic reticulum (ER), their folding into native structures, the assembly of multi-subunit membrane protein complexes, and their targeting from the ER to specific organelles are prone to errors and have a relatively high failure rate. To prevent the accumulation of defective or orphaned membrane proteins, quality control mechanisms assess folding, quantity, and localization of these proteins. This quality control is vital for preserving organelle integrity and maintaining cellular health. In this mini-review, we will focus on how selective membrane protein quality control at the Golgi apparatus, particularly through the defective for SREBP cleavage (Dsc) ubiquitin ligase complex, detects orphaned proteins and prevents their mis-localization to other organelles.
Collapse
Affiliation(s)
- Yannick Weyer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Rajakumar T, Hossain MA, Stopka SA, Micoogullari Y, Ang J, Agar NYR, Hanna J. Dysregulation of ceramide metabolism causes phytoceramide-dependent induction of the unfolded protein response. Mol Biol Cell 2024; 35:ar117. [PMID: 39024283 PMCID: PMC11449394 DOI: 10.1091/mbc.e24-03-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The unfolded protein response (UPR) detects and mitigates the harmful effects of dysregulated endoplasmic reticulum (ER) function. The UPR has been best characterized as a protein quality control response, and the sole UPR sensor in yeast, Ire1, is known to detect misfolded ER proteins. However, recent work suggests the UPR can also sense diverse defects within the ER membrane, including increased fatty acid saturation and altered phospholipid abundance. These and other lipid-related stimuli have been referred to as lipid bilayer stress and may be sensed independently through Ire1's transmembrane domain. Here, we show that the loss of Isc1, a phospholipase that catabolizes complex ceramides, causes UPR induction, even in the absence of exogenous stress. A series of chemical and genetic approaches identified a requirement for very long-chain fatty acid (VLCFA)-containing phytoceramides for UPR induction. In parallel, comprehensive lipidomics analyses identified large increases in the abundance of specific VLCFA-containing phytoceramides in the isc1Δ mutant. We failed to identify evidence of an accompanying defect in protein quality control or ER-associated protein degradation. These results extend our understanding of lipid bilayer stress in the UPR and provide a foundation for mechanistic investigation of this fascinating intersection between ceramide metabolism, membrane homeostasis, and the UPR.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Md Amin Hossain
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Sylwia A. Stopka
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Yagmur Micoogullari
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Jessie Ang
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| |
Collapse
|
3
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
4
|
Ali R, Alhaj Sulaiman A, Memon B, Pradhan S, Algethami M, Aouida M, McKay G, Madhusudan S, Abdelalim EM, Ramotar D. Altered Regulation of the Glucose Transporter GLUT3 in PRDX1 Null Cells Caused Hypersensitivity to Arsenite. Cells 2023; 12:2682. [PMID: 38067110 PMCID: PMC10705171 DOI: 10.3390/cells12232682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Targeting tumour metabolism through glucose transporters is an attractive approach. However, the role these transporters play through interaction with other signalling proteins is not yet defined. The glucose transporter SLC2A3 (GLUT3) is a member of the solute carrier transporter proteins. GLUT3 has a high affinity for D-glucose and regulates glucose uptake in the neurons, as well as other tissues. Herein, we show that GLUT3 is involved in the uptake of arsenite, and its level is regulated by peroxiredoxin 1 (PRDX1). In the absence of PRDX1, GLUT3 mRNA and protein expression levels are low, but they are increased upon arsenite treatment, correlating with an increased uptake of glucose. The downregulation of GLUT3 by siRNA or deletion of the gene by CRISPR cas-9 confers resistance to arsenite. Additionally, the overexpression of GLUT3 sensitises the cells to arsenite. We further show that GLUT3 interacts with PRDX1, and it forms nuclear foci, which are redistributed upon arsenite exposure, as revealed by immunofluorescence analysis. We propose that GLUT3 plays a role in mediating the uptake of arsenite into cells, and its homeostatic and redox states are tightly regulated by PRDX1. As such, GLUT3 and PRDX1 are likely to be novel targets for arsenite-based cancer therapy.
Collapse
Affiliation(s)
- Reem Ali
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Abdallah Alhaj Sulaiman
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
| | - Singdhendubala Pradhan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar; (S.P.); (G.M.)
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (M.A.); (S.M.)
| | - Mustapha Aouida
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar; (S.P.); (G.M.)
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (M.A.); (S.M.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Essam M. Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
| | - Dindial Ramotar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| |
Collapse
|
5
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
6
|
Wen Y, Chairattanawat C, Vo KTX, Liu J, Zhang J, Pan T, Kim DY, Martinoia E, Zhong CY, Wang MH, Jeon JS, Song WY. VOZ1 and VOZ2 transcription factors regulate arsenic tolerance and distribution in rice and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1209860. [PMID: 37799560 PMCID: PMC10548236 DOI: 10.3389/fpls.2023.1209860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
Rice is the major source of arsenic (As) intake in humans, as this staple crop readily accumulates As in the grain. Identifying the genes and molecular mechanisms underlying As accumulation and tolerance is a crucial step toward developing rice with reduced As levels. We identified 25 rice genes that improve As tolerance in yeast cells by expressing a complementary DNA (cDNA) library generated from As-treated rice roots. Among them, a zinc finger-type transcription factor VASCULAR PLANT ONE- ZINC FINGER 1 (OsVOZ1) (OsVOZ1) conferred the most pronounced As tolerance. OsVOZ1 inhibits As accumulation in yeast via activation of As efflux transporter Acr3p by post-transcriptional modification in yeast. The Arabidopsis voz1 voz2 double-knockout mutant exhibited As hypersensitivity, altered As concentrations in various tissues, and reduced As transport activity via the phloem. Arabidopsis and rice VOZs were highly expressed in phloem cells in various tissues, which are critical for As distribution in plant tissues. The double-knockdown and single-knockout plants of OsVOZ1 and OsVOZ2 reduced As accumulation in their seeds. These findings suggest that rice and Arabidopsis VOZs regulate the translocation of As into tissues by regulating the phloem loading of this element.
Collapse
Affiliation(s)
- Ying Wen
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Chayanee Chairattanawat
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Jiayou Liu
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Jie Zhang
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Ting Pan
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Do-Young Kim
- Advanced Bio-convergence Center, Pohang Technopark, Pohang, Republic of Korea
| | - Enrico Martinoia
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
| | - Chun-Yan Zhong
- Zhaoqing Institute of Agricultural Sciences, Zhaoqing, China
| | - Mao-Hui Wang
- Zhaoqing Institute of Agricultural Sciences, Zhaoqing, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Won-Yong Song
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
7
|
Zhang J, Wysocki R, Li F, Yu M, Martinoia E, Song WY. Role of ubiquitination in arsenic tolerance in plants. TRENDS IN PLANT SCIENCE 2023; 28:880-892. [PMID: 37002000 DOI: 10.1016/j.tplants.2023.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Arsenic (As) is harmful to all living organisms, including humans and plants. To limit As uptake and avoid its toxicity, plants employ systems that regulate the uptake of As from the soil and its translocation from roots to grains. Ubiquitination, a highly conserved post-translational modification (PTM) in all eukaryotes, plays crucial roles in modulating As detoxification mechanisms in budding yeast (Saccharomyces cerevisiae), but little is known about its roles in As tolerance and transport in plants. In this opinion article we review recent findings and suggest that ubiquitination plays a crucial role in regulating As transport in plants. We also propose ideas for future research to explore the importance of ubiquitination for enhancing As tolerance in crops.
Collapse
Affiliation(s)
- Jie Zhang
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China
| | - Robert Wysocki
- Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Yu
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China.
| | - Enrico Martinoia
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China; Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | - Won-Yong Song
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China; Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
8
|
Geng A, Lian W, Wang X, Chen G. Regulatory Mechanisms Underlying Arsenic Uptake, Transport, and Detoxification in Rice. Int J Mol Sci 2023; 24:11031. [PMID: 37446207 DOI: 10.3390/ijms241311031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Arsenic (As) is a metalloid environmental pollutant ubiquitous in nature that causes chronic and irreversible poisoning to humans through its bioaccumulation in the trophic chain. Rice, the staple food crop for 350 million people worldwide, accumulates As more easily compared to other cereal crops due to its growth characteristics. Therefore, an in-depth understanding of the molecular regulatory mechanisms underlying As uptake, transport, and detoxification in rice is of great significance to solving the issue of As bioaccumulation in rice, improving its quality and safety and protecting human health. This review summarizes recent studies on the molecular mechanisms of As toxicity, uptake, transport, redistribution, regulation, and detoxification in rice. It aims to provide novel insights and approaches for preventing and controlling As bioaccumulation in rice plants, especially reducing As accumulation in rice grains.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
9
|
Isik E, Balkan Ç, Karl V, Karakaya HÇ, Hua S, Rauch S, Tamás MJ, Koc A. Identification of novel arsenic resistance genes in yeast. Microbiologyopen 2022; 11:e1284. [PMID: 35765185 PMCID: PMC9055376 DOI: 10.1002/mbo3.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is a toxic metalloid that affects human health by causing numerous diseases and by being used in the treatment of acute promyelocytic leukemia. Saccharomyces cerevisiae (budding yeast) has been extensively utilized to elucidate the molecular mechanisms underlying arsenic toxicity and resistance in eukaryotes. In this study, we applied a genomic DNA overexpression strategy to identify yeast genes that provide arsenic resistance in wild-type and arsenic-sensitive S. cerevisiae cells. In addition to known arsenic-related genes, our genetic screen revealed novel genes, including PHO86, VBA3, UGP1, and TUL1, whose overexpression conferred resistance. To gain insights into possible resistance mechanisms, we addressed the contribution of these genes to cell growth, intracellular arsenic, and protein aggregation during arsenate exposure. Overexpression of PHO86 resulted in higher cellular arsenic levels but no additional effect on protein aggregation, indicating that these cells efficiently protect their intracellular environment. VBA3 overexpression caused resistance despite higher intracellular arsenic and protein aggregation levels. Overexpression of UGP1 led to lower intracellular arsenic and protein aggregation levels while TUL1 overexpression had no impact on intracellular arsenic or protein aggregation levels. Thus, the identified genes appear to confer arsenic resistance through distinct mechanisms but the molecular details remain to be elucidated.
Collapse
Affiliation(s)
- Esin Isik
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Çiğdem Balkan
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Vivien Karl
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | | | - Sansan Hua
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ahmet Koc
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
- Department of Genetics, School of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
10
|
Guzikowski AR, Harvey AT, Zhang J, Zhu S, Begovich K, Cohn MH, Wilhelm JE, Zid BM. Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast. RNA Biol 2022; 19:636-649. [PMID: 35491906 PMCID: PMC9067459 DOI: 10.1080/15476286.2022.2065784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein synthesis is energetically expensive and its rate is influenced by factors such as cell type and environment. Suppression of translation is a canonical response to stressful changes in the cellular environment. In particular, inhibition of the initiation step of translation has been highlighted as the key control step in stress-induced translational suppression as mechanisms that quickly suppress initiation are well-conserved. However, cells have evolved complex regulatory means to control translation apart from initiation. Here, we examine the role of the elongation step of translation in yeast subjected to acute glucose deprivation. The use of ribosome profiling and in vivo reporter assays demonstrated elongation rates slow progressively following glucose removal. We observed that ribosome distribution broadly shifts towards the downstream ends of transcripts after both acute and gradual glucose deprivation but not in response to other stressors. Additionally, on assessed mRNAs, a correlation existed between ribosome occupancy and protein production pre-stress but was lost after stress. These results indicate that stress-induced elongation regulation causes ribosomes to slow down and build up on a considerable proportion of the transcriptome in response to glucose withdrawal. Finally, we report ribosomes that built up along transcripts are competent to resume elongation and complete protein synthesis after readdition of glucose to starved cells. This suggests that yeast has evolved mechanisms to slow translation elongation in response to glucose starvation which do not preclude continuation of protein production from those ribosomes, thereby averting a need for new initiation events to take place to synthesize proteins. Abbreviations: AUG: start codon, bp: base pair(s), CDS: coding sequence, CHX: cycloheximide, eEF2: eukaryotic elongation factor 2, LTM: lactimidomycin, nt: nucleotide, PGK1: 3-phosphoglycerate kinase, ribosomal biogenesis: ribi, RO: ribosome occupancy, RPF: ribosome protected fragment, TE: translational efficiency
Collapse
Affiliation(s)
- Anna R. Guzikowski
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Alex T. Harvey
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Jingxiao Zhang
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Shihui Zhu
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Kyle Begovich
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Molly H. Cohn
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - James E. Wilhelm
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
11
|
Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 2022; 39:85-110. [PMID: 35362847 PMCID: PMC10042769 DOI: 10.1007/s10565-022-09710-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
Worldwide, more than 200 million people are estimated to be exposed to unsafe levels of arsenic. Chronic exposure to unsafe levels of groundwater arsenic is responsible for multiple human disorders, including dermal, cardiovascular, neurological, pulmonary, renal, and metabolic conditions. Consumption of rice and seafood (where high levels of arsenic are accumulated) is also responsible for human exposure to arsenic. The toxicity of arsenic compounds varies greatly and may depend on their chemical form, solubility, and concentration. Surprisingly, synthetic organoarsenicals are extremely toxic molecules which created interest in their development as chemical warfare agents (CWAs) during World War I (WWI). Among these CWAs, adamsite, Clark I, Clark II, and lewisite are of critical importance, as stockpiles of these agents still exist worldwide. In addition, unused WWII weaponized arsenicals discarded in water bodies or buried in many parts of the world continue to pose a serious threat to the environment and human health. Metabolic inhibition, oxidative stress, genotoxicity, and epigenetic alterations including micro-RNA-dependent regulation are some of the underlying mechanisms of arsenic toxicity. Mechanistic understanding of the toxicity of organoarsenicals is also critical for the development of effective therapeutic interventions. This review provides comprehensive details and a critical assessment of recently published data on various chemical forms of arsenic, their exposure, and implications on human and environmental health.
Collapse
Affiliation(s)
- Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Ritesh Srivastava
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, School of Optometry, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
12
|
Romero AM, Maciaszczyk-Dziubinska E, Mombeinipour M, Lorentzon E, Aspholm E, Wysocki R, Tamás MJ. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6551893. [PMID: 35323907 PMCID: PMC9041338 DOI: 10.1093/femsyr/foac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
In a high-throughput yeast two-hybrid screen of predicted coiled-coil motif interactions in the Saccharomyces cerevisiae proteome, the protein Etp1 was found to interact with the yeast AP-1-like transcription factors Yap8, Yap1 and Yap6. Yap8 plays a crucial role during arsenic stress since it regulates expression of the resistance genes ACR2 and ACR3. The function of Etp1 is not well understood but the protein has been implicated in transcription and protein turnover during ethanol stress, and the etp1∆ mutant is sensitive to ethanol. In this current study, we investigated whether Etp1 is implicated in Yap8-dependent functions. We show that Etp1 is required for optimal growth in the presence of trivalent arsenite and for optimal expression of the arsenite export protein encoded by ACR3. Since Yap8 is the only known transcription factor that regulates ACR3 expression, we investigated whether Etp1 regulates Yap8. Yap8 ubiquitination, stability, nuclear localization and ACR3 promoter association were unaffected in etp1∆ cells, indicating that Etp1 affects ACR3 expression independently of Yap8. Thus, Etp1 impacts gene expression under arsenic and other stress conditions but the mechanistic details remain to be elucidated.
Collapse
Affiliation(s)
| | | | - Mandana Mombeinipour
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Emma Lorentzon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Emelie Aspholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Robert Wysocki
- Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Markus J Tamás
- Corresponding author: Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, S-405 30 Göteborg, Sweden. Tel: +46-31-786-2548; E-mail:
| |
Collapse
|
13
|
Andersson S, Romero A, Rodrigues JI, Hua S, Hao X, Jacobson T, Karl V, Becker N, Ashouri A, Rauch S, Nyström T, Liu B, Tamás MJ. Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. J Cell Sci 2021; 134:jcs258338. [PMID: 34085697 PMCID: PMC8214759 DOI: 10.1242/jcs.258338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Antonia Romero
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Joana Isabel Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sansan Hua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Therese Jacobson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Vivien Karl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Nathalie Becker
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| |
Collapse
|
14
|
Galocha M, Costa IV, Teixeira MC. Carrier-Mediated Drug Uptake in Fungal Pathogens. Genes (Basel) 2020; 11:genes11111324. [PMID: 33182427 PMCID: PMC7697741 DOI: 10.3390/genes11111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022] Open
Abstract
Candida, Aspergillus, and Cryptococcus species are the most frequent cause of severe human fungal infections. Clinically relevant antifungal drugs are scarce, and their effectiveness are hampered by the ability of fungal cells to develop drug resistance mechanisms. Drug effectiveness and drug resistance in human pathogens is very often affected by their “transportome”. Many studies have covered a panoply of drug resistance mechanisms that depend on drug efflux pumps belonging to the ATP-Binding Cassette and Major Facilitator Superfamily. However, the study of drug uptake mechanisms has been, to some extent, overlooked in pathogenic fungi. This review focuses on discussing current knowledge on drug uptake systems in fungal pathogens, highlighting the need for further studies on this topic of great importance. The following subjects are covered: (i) drugs imported by known transporter(s) in pathogenic fungi; and (ii) drugs imported by known transporter(s) in the model yeast Saccharomyces cerevisiae or in human parasites, aimed at the identification of their homologs in pathogenic fungi. Besides its contribution to increase the understanding of drug-pathogen interactions, the practical implications of identifying drug importers in human pathogens are discussed, particularly focusing on drug development strategies.
Collapse
Affiliation(s)
- Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.G.); (I.V.C.)
- Biological Sciences Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Inês Vieira Costa
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.G.); (I.V.C.)
- Biological Sciences Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.G.); (I.V.C.)
- Biological Sciences Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: ; Tel.: +351-21-841-7772; Fax: +351-21-841-9199
| |
Collapse
|
15
|
Guerra-Moreno A, Prado MA, Ang J, Schnell HM, Micoogullari Y, Paulo JA, Finley D, Gygi SP, Hanna J. Thiol-based direct threat sensing by the stress-activated protein kinase Hog1. Sci Signal 2019; 12:12/609/eaaw4956. [PMID: 31772124 DOI: 10.1126/scisignal.aaw4956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The yeast stress-activated protein kinase Hog1 is best known for its role in mediating the response to osmotic stress, but it is also activated by various mechanistically distinct environmental stressors, including heat shock, endoplasmic reticulum stress, and arsenic. In the osmotic stress response, the signal is sensed upstream and relayed to Hog1 through a kinase cascade. Here, we identified a mode of Hog1 function whereby Hog1 senses arsenic through a direct physical interaction that requires three conserved cysteine residues located adjacent to the catalytic loop. These residues were essential for Hog1-mediated protection against arsenic, were dispensable for the response to osmotic stress, and promoted the nuclear localization of Hog1 upon exposure of cells to arsenic. Hog1 promoted arsenic detoxification by stimulating phosphorylation of the transcription factor Yap8, promoting Yap8 nuclear localization, and stimulating the transcription of the only known Yap8 targets, ARR2 and ARR3, both of which encode proteins that promote arsenic efflux. The related human kinases ERK1 and ERK2 also bound to arsenic in vitro, suggesting that this may be a conserved feature of some members of the mitogen-activated protein kinase (MAPK) family. These data provide a mechanistic basis for understanding how stress-activated kinases can sense distinct threats and perform highly specific adaptive responses.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jessie Ang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Helena M Schnell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yagmur Micoogullari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|