1
|
Yarinich LA, Ogienko AA, Pindyurin AV, Omelina ES. Analysis of the transcriptional activity of model piggyBac transgenes stably integrated into different loci of the genome of CHO cells in the absence of selection pressure. Vavilovskii Zhurnal Genet Selektsii 2023; 27:906-915. [PMID: 38213697 PMCID: PMC10777298 DOI: 10.18699/vjgb-23-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 01/13/2024] Open
Abstract
CHO cells are most commonly used for the synthesis of recombinant proteins in biopharmaceutical production. When stable producer cell lines are obtained, the locus of transgene integration into the genome has a great influence on the level of its expression. Therefore, the identification of genomic loci ensuring a high level of protein production is very important. Here, we used the TRIP assay to study the influence of the local chromatin environment on the activity of transgenes in CHO cells. For this purpose, reporter constructs encoding eGFP under the control of four promoters were stably integrated into the genome of CHO cells using the piggyBac transposon. Each individual transgene contained a unique tag, a DNA barcode, and the resulting polyclonal cell population was cultured for almost a month without any selection. Next, using the high-throughput sequencing, genomic localizations of barcodes, as well as their abundances in the population and transcriptional activities were identified. In total, ~640 transgenes more or less evenly distributed across all chromosomes of CHO cells were characterized. More than half of the transgenes were completely silent. The most active transgenes were identified to be inserted in gene promoters and 5' UTRs. Transgenes carrying Chinese hamster full-length promoter of the EF-1α gene showed the highest activity. Transgenes with a truncated version of the same promoter and with the mouse PGK gene promoter were on average 10 and 19 times less active, respectively. In total, combinations of genomic loci of CHO cells and transgene promoters that together provide different levels of transcriptional activity of the model reporter construct were described.
Collapse
Affiliation(s)
- L A Yarinich
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Ogienko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Pindyurin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E S Omelina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Hua WK, Hsu JC, Chen YC, Chang PS, Wen KLK, Wang PN, Yang WC, Shen CN, Yu YS, Chen YC, Cheng IC, Wu SCY. Quantum pBac: An effective, high-capacity piggyBac-based gene integration vector system for unlocking gene therapy potential. FASEB J 2023; 37:e23108. [PMID: 37534940 DOI: 10.1096/fj.202201654r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/02/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Recent advances in gene therapy have brought novel treatment options for cancer. However, the full potential of this approach has yet to be unlocked due to the limited payload capacity of commonly utilized viral vectors. Virus-free DNA transposons, including piggyBac, have the potential to obviate these shortcomings. In this study, we improved a previously modified piggyBac system with superior transposition efficiency. We demonstrated that the internal domain sequences (IDS) within the 3' terminal repeat domain of hyperactive piggyBac (hyPB) donor vector contain dominant enhancer elements. Plasmid-free donor vector devoid of IDS was used in conjunction with a helper plasmid expressing Quantum PBase™ v2 to generate an optimal piggyBac system, Quantum pBac™ (qPB), for use in T cells. qPB outperformed hyPB in CD20/CD19 CAR-T production in terms of performance as well as yield of the CAR-T cells produced. Furthermore, qPB also produced CAR-T cells with lower donor-associated variabilities compared to lentiviral vector. Importantly, qPB yielded mainly CD8+ CAR-TSCM cells, and the qPB-produced CAR-T cells effectively eliminated CD20/CD19-expressing tumor cells both in vitro and in vivo. Our findings confirm qPB as a promising virus-free vector system with an enhanced payload capacity to incorporate multiple genes. This highly efficient and potentially safe system will be expected to further advance gene therapy applications.
Collapse
Affiliation(s)
- Wei-Kai Hua
- GenomeFrontier Therapeutics, Inc, New Taipei City, Taiwan ROC
| | - Jeff C Hsu
- GenomeFrontier Therapeutics, Inc, New Taipei City, Taiwan ROC
| | - Yi-Chun Chen
- GenomeFrontier Therapeutics, Inc, New Taipei City, Taiwan ROC
| | - Peter S Chang
- GenomeFrontier Therapeutics, Inc, New Taipei City, Taiwan ROC
| | | | - Po-Nan Wang
- Division of Hematology, Chang Gung Medical Foundation, Taipei City, Taiwan ROC
| | - Wei-Cheng Yang
- Biomedical Translation Research Center, Academia Sinica, Taipei City, Taiwan ROC
| | - Chia-Ning Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei City, Taiwan ROC
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan ROC
| | - Yi-Shan Yu
- GenomeFrontier Therapeutics, Inc, New Taipei City, Taiwan ROC
| | - Ying-Chun Chen
- GenomeFrontier Therapeutics, Inc, New Taipei City, Taiwan ROC
| | - I-Cheng Cheng
- GenomeFrontier Therapeutics, Inc, New Taipei City, Taiwan ROC
| | | |
Collapse
|
3
|
Mikkelsen NS, Bak RO. Enrichment strategies to enhance genome editing. J Biomed Sci 2023; 30:51. [PMID: 37393268 PMCID: PMC10315055 DOI: 10.1186/s12929-023-00943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Genome editing technologies hold great promise for numerous applications including the understanding of cellular and disease mechanisms and the development of gene and cellular therapies. Achieving high editing frequencies is critical to these research areas and to achieve the overall goal of being able to manipulate any target with any desired genetic outcome. However, gene editing technologies sometimes suffer from low editing efficiencies due to several challenges. This is often the case for emerging gene editing technologies, which require assistance for translation into broader applications. Enrichment strategies can support this goal by selecting gene edited cells from non-edited cells. In this review, we elucidate the different enrichment strategies, their many applications in non-clinical and clinical settings, and the remaining need for novel strategies to further improve genome research and gene and cellular therapy studies.
Collapse
Affiliation(s)
- Nanna S Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark.
| |
Collapse
|
4
|
Fischer A, Lersch R, de Andrade Krätzig N, Strong A, Friedrich MJ, Weber J, Engleitner T, Öllinger R, Yen HY, Kohlhofer U, Gonzalez-Menendez I, Sailer D, Kogan L, Lahnalampi M, Laukkanen S, Kaltenbacher T, Klement C, Rezaei M, Ammon T, Montero JJ, Schneider G, Mayerle J, Heikenwälder M, Schmidt-Supprian M, Quintanilla-Martinez L, Steiger K, Liu P, Cadiñanos J, Vassiliou GS, Saur D, Lohi O, Heinäniemi M, Conte N, Bradley A, Rad L, Rad R. In vivo interrogation of regulatory genomes reveals extensive quasi-insufficiency in cancer evolution. CELL GENOMICS 2023; 3:100276. [PMID: 36950387 PMCID: PMC10025556 DOI: 10.1016/j.xgen.2023.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/05/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023]
Abstract
In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Mathias J. Friedrich
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Hsi-Yu Yen
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - David Sailer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Liz Kogan
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Majdaddin Rezaei
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Juan J. Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Julia Mayerle
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| | - Mathias Heikenwälder
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - George S. Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0PT, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Conte
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lena Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
5
|
Bushman FD. DNA transposon mechanisms and pathways of genotoxicity. Mol Ther 2023; 31:613-615. [PMID: 36754054 PMCID: PMC10014265 DOI: 10.1016/j.ymthe.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Bredthauer C, Fischer A, Ahari AJ, Cao X, Weber J, Rad L, Rad R, Wachutka L, Gagneur J. Transmicron: accurate prediction of insertion probabilities improves detection of cancer driver genes from transposon mutagenesis screens. Nucleic Acids Res 2023; 51:e21. [PMID: 36617985 PMCID: PMC9976929 DOI: 10.1093/nar/gkac1215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/06/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Transposon screens are powerful in vivo assays used to identify loci driving carcinogenesis. These loci are identified as Common Insertion Sites (CISs), i.e. regions with more transposon insertions than expected by chance. However, the identification of CISs is affected by biases in the insertion behaviour of transposon systems. Here, we introduce Transmicron, a novel method that differs from previous methods by (i) modelling neutral insertion rates based on chromatin accessibility, transcriptional activity and sequence context and (ii) estimating oncogenic selection for each genomic region using Poisson regression to model insertion counts while controlling for neutral insertion rates. To assess the benefits of our approach, we generated a dataset applying two different transposon systems under comparable conditions. Benchmarking for enrichment of known cancer genes showed improved performance of Transmicron against state-of-the-art methods. Modelling neutral insertion rates allowed for better control of false positives and stronger agreement of the results between transposon systems. Moreover, using Poisson regression to consider intra-sample and inter-sample information proved beneficial in small and moderately-sized datasets. Transmicron is open-source and freely available. Overall, this study contributes to the understanding of transposon biology and introduces a novel approach to use this knowledge for discovering cancer driver genes.
Collapse
Affiliation(s)
- Carl Bredthauer
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Computational Health Center, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ata Jadid Ahari
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany
| | - Xueqi Cao
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany.,Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Lena Rad
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Institute for Experimental Cancer Therapy, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Department of Medicine II, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leonhard Wachutka
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany
| | - Julien Gagneur
- TUM School of Computation, Information and Technology, Technical University of Munich, 81675 Munich, Germany.,Computational Health Center, Helmholtz Zentrum Munich, Neuherberg, Germany.,Institute of Human Genetics, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
7
|
Yu C, Caothien R, Pham A, Tam L, Alcantar T, Bacarro N, Reyes J, Jackson M, Nakao B, Roose-Girma M. ASIS-Seq: Transgene Insertion Site Mapping by Nanopore Adaptive Sampling. Methods Mol Biol 2023; 2631:135-153. [PMID: 36995666 DOI: 10.1007/978-1-0716-2990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Generation of transgenic mice by direct microinjection of foreign DNA into fertilized ova has become a routine technique in biomedical research. It remains an essential tool for studying gene expression, developmental biology, genetic disease models, and their therapies. However, the random integration of foreign DNA into the host genome that is inherent to this technology can lead to confounding effects associated with insertional mutagenesis and transgene silencing. Locations of most transgenic lines remain unknown because the methods are often burdensome (Nicholls et al., G3: Genes Genomes Genetics 9:1481-1486, 2019) or have limitations (Goodwin et al., Genome Research 29:494-505, 2019). Here, we present a method that we call Adaptive Sampling Insertion Site Sequencing (ASIS-Seq) to locate transgene integration sites using targeted sequencing on Oxford Nanopore Technologies' (ONT) sequencers. ASIS-Seq requires only about 3 ug of genomic DNA, 3 hours of hands-on sample preparation time, and 3 days of sequencing time to locate transgenes in a host genome.
Collapse
Affiliation(s)
- Charles Yu
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Roger Caothien
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Anna Pham
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Lucinda Tam
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Tuija Alcantar
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Natasha Bacarro
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Juan Reyes
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Marques Jackson
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Brian Nakao
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA.
| |
Collapse
|
8
|
Horii T, Morita S, Kimura M, Hatada I. Efficient generation of epigenetic disease model mice by epigenome editing using the piggyBac transposon system. Epigenetics Chromatin 2022; 15:40. [PMID: 36522780 PMCID: PMC9756621 DOI: 10.1186/s13072-022-00474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Epigenome-edited animal models enable direct demonstration of disease causing epigenetic mutations. Transgenic (TG) mice stably expressing epigenome-editing factors exhibit dramatic and stable changes in target epigenome modifications. Successful germline transmission of a transgene from founder mice to offspring will yield a sufficient number of epigenome-edited mice for phenotypic analysis; however, if the epigenetic mutation has a detrimental phenotypic effect, it can become difficult to obtain the next generation of animals. In this case, the phenotype of founder mice must be analyzed directly. Unfortunately, current TG mouse production efficiency (TG founders per pups born) is relatively low, and improvements would increase the versatility of this technology. RESULTS In the current study, we describe an approach to generate epigenome-edited TG mice using a combination of both the dCas9-SunTag and piggyBac (PB) transposon systems. Using this system, we successfully generated mice with demethylation of the differential methylated region of the H19 gene (H19-DMR), as a model for Silver-Russell syndrome (SRS). SRS is a disorder leading to growth retardation, resulting from low insulin-like growth factor 2 (IGF2) gene expression, often caused by epimutations at the H19-IGF2 locus. Under optimized conditions, the efficiency of TG mice production using the PB system was approximately threefold higher than that using the conventional method. TG mice generated by this system showed demethylation of the targeted DNA region and associated changes in gene expression. In addition, these mice exhibited some features of SRS, including intrauterine and postnatal growth retardation, due to demethylation of H19-DMR. CONCLUSIONS The dCas9-SunTag and PB systems serve as a simple and reliable platform for conducting direct experiments using epigenome-edited founder mice.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8512, Japan.
| | - Sumiyo Morita
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512 Japan
| | - Mika Kimura
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512 Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8512, Japan. .,Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
9
|
Wachtl G, Schád É, Huszár K, Palazzo A, Ivics Z, Tantos Á, Orbán TI. Functional Characterization of the N-Terminal Disordered Region of the piggyBac Transposase. Int J Mol Sci 2022; 23:10317. [PMID: 36142241 PMCID: PMC9499001 DOI: 10.3390/ijms231810317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023] Open
Abstract
The piggyBac DNA transposon is an active element initially isolated from the cabbage looper moth, but members of this superfamily are also present in most eukaryotic evolutionary lineages. The functionally important regions of the transposase are well described. There is an RNase H-like fold containing the DDD motif responsible for the catalytic DNA cleavage and joining reactions and a C-terminal cysteine-rich domain important for interaction with the transposon DNA. However, the protein also contains a ~100 amino acid long N-terminal disordered region (NTDR) whose function is currently unknown. Here we show that deletion of the NTDR significantly impairs piggyBac transposition, although the extent of decrease is strongly cell-type specific. Moreover, replacing the NTDR with scrambled but similarly disordered sequences did not rescue transposase activity, indicating the importance of sequence conservation. Cell-based transposon excision and integration assays reveal that the excision step is more severely affected by NTDR deletion. Finally, bioinformatic analyses indicated that the NTDR is specific for the piggyBac superfamily and is also present in domesticated, transposase-derived proteins incapable of catalyzing transposition. Our results indicate an essential role of the NTDR in the "fine-tuning" of transposition and its significance in the functions of piggyBac-originated co-opted genes.
Collapse
Affiliation(s)
- Gerda Wachtl
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Krisztina Huszár
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Antonio Palazzo
- Department of Biology, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Tamás I. Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
10
|
Cas-CLOVER is a novel high-fidelity nuclease for safe and robust generation of TSCM-enriched allogeneic CAR-T cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:979-995. [PMID: 36189080 PMCID: PMC9481872 DOI: 10.1016/j.omtn.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/08/2022] [Indexed: 12/26/2022]
Abstract
The use of T cells from healthy donors for allogeneic chimeric antigen receptor T (CAR-T) cell cancer therapy is attractive because healthy donor T cells can produce versatile off-the-shelf CAR-T treatments. To maximize safety and durability of allogeneic products, the endogenous T cell receptor and major histocompatibility complex class I molecules are often removed via knockout of T cell receptor beta constant (TRBC) (or T cell receptor alpha constant [TRAC]) and B2M, respectively. However, gene editing tools (e.g., CRISPR-Cas9) can display poor fidelity, which may result in dangerous off-target mutations. Additionally, many gene editing technologies require T cell activation, resulting in a low percentage of desirable stem cell memory T cells (TSCM). We characterize an RNA-guided endonuclease, called Cas-CLOVER, consisting of the Clo051 nuclease domain fused with catalytically dead Cas9. In primary T cells from multiple donors, we find that Cas-CLOVER is a high-fidelity site-specific nuclease, with low off-target activity. Notably, Cas-CLOVER yields efficient multiplexed gene editing in resting T cells. In conjunction with the piggyBac transposon for delivery of a CAR transgene against the B cell maturation antigen (BCMA), we produce allogeneic CAR-T cells composed of high percentages of TSCM cells and possessing potent in vivo anti-tumor cytotoxicity.
Collapse
|
11
|
The Annotation of Zebrafish Enhancer Trap Lines Generated with PB Transposon. Curr Issues Mol Biol 2022; 44:2614-2621. [PMID: 35735619 PMCID: PMC9221761 DOI: 10.3390/cimb44060178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
An enhancer trap (ET) mediated by a transposon is an effective method for functional gene research. Here, an ET system based on a PB transposon that carries a mini Krt4 promoter (the keratin4 minimal promoter from zebrafish) and the green fluorescent protein gene (GFP) has been used to produce zebrafish ET lines. One enhancer trap line with eye-specific expression GFP named EYE was used to identify the trapped enhancers and genes. Firstly, GFP showed a temporal and spatial expression pattern with whole-embryo expression at 6, 12, and 24 hpf stages and eye-specific expression from 2 to 7 dpf. Then, the genome insertion sites were detected by splinkerette PCR (spPCR). The Krt4-GFP was inserted into the fourth intron of the gene itgav (integrin, alpha V) in chromosome 9 of the zebrafish genome, with the GFP direction the same as that of the itgav gene. By the alignment of homologous gene sequences in different species, three predicted endogenous enhancers were obtained. The trapped endogenous gene itgav, whose overexpression is related to hepatocellular carcinoma, showed a similar expression pattern as GFP detected by in situ hybridization, which suggested that GFP and itgav were possibly regulated by the same enhancers. In short, the zebrafish enhancer trap lines generated by the PB transposon-mediated enhancer trap technology in this study were valuable resources as visual markers to study the regulators and genes. This work provides an efficient method to identify and isolate tissue-specific enhancer sequences.
Collapse
|
12
|
Zuin J, Roth G, Zhan Y, Cramard J, Redolfi J, Piskadlo E, Mach P, Kryzhanovska M, Tihanyi G, Kohler H, Eder M, Leemans C, van Steensel B, Meister P, Smallwood S, Giorgetti L. Nonlinear control of transcription through enhancer-promoter interactions. Nature 2022; 604:571-577. [PMID: 35418676 PMCID: PMC9021019 DOI: 10.1038/s41586-022-04570-y] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.
Collapse
Affiliation(s)
- Jessica Zuin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Julie Cramard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Josef Redolfi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pia Mach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Gergely Tihanyi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathias Eder
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christ Leemans
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
13
|
Transposase-CRISPR mediated targeted integration (TransCRISTI) in the human genome. Sci Rep 2022; 12:3390. [PMID: 35232993 PMCID: PMC8888626 DOI: 10.1038/s41598-022-07158-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Various methods have been used in targeted gene knock-in applications. CRISPR-based knock-in strategies based on homology-independent repair pathways such as CRISPR HITI have been shown to possess the best efficiency for gene knock-in in mammalian cells. However, these methods suffer from the probability of plasmid backbone insertion at the target site. On the other hand, studies trying to combine the targeting ability of the Cas9 molecule and the excision/integration capacity of the PB transposase have shown random integrations. In this study, we introduce a new homology-independent knock-in strategy, Transposase-CRISPR mediated Targeted Integration (TransCRISTI), that exploits a fusion of Cas9 nuclease and a double mutant piggyBac transposase. In isogenic mammalian cell lines, we show that the TransCRISTI method demonstrates higher efficiency (72%) for site-specific insertions than the CRISPR HITI (44%) strategy. Application of the TransCRISTI method resulted in site-directed integration in 4.13% and 3.69% of the initially transfected population in the human AAVS1and PML loci, respectively, while the CRISPR HITI strategy resulted in site-directed integration in the PML locus in only 0.6% of cells. We also observed lower off-target and random insertions in the TransCRISTI group than the CRISPR HITI group. The TransCRISTI technology represents a great potential for the accurate and high-efficiency knock-in of the desired transposable elements into the predetermined genomic locations.
Collapse
|
14
|
Find and cut-and-transfer (FiCAT) mammalian genome engineering. Nat Commun 2021; 12:7071. [PMID: 34862378 PMCID: PMC8642419 DOI: 10.1038/s41467-021-27183-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
While multiple technologies for small allele genome editing exist, robust technologies for targeted integration of large DNA fragments in mammalian genomes are still missing. Here we develop a gene delivery tool (FiCAT) combining the precision of a CRISPR-Cas9 (find module), and the payload transfer efficiency of an engineered piggyBac transposase (cut-and-transfer module). FiCAT combines the functionality of Cas9 DNA scanning and targeting DNA, with piggyBac donor DNA processing and transfer capacity. PiggyBac functional domains are engineered providing increased on-target integration while reducing off-target events. We demonstrate efficient delivery and programmable insertion of small and large payloads in cellulo (human (Hek293T, K-562) and mouse (C2C12)) and in vivo in mouse liver. Finally, we evolve more efficient versions of FiCAT by generating a targeted diversity of 394,000 variants and undergoing 4 rounds of evolution. In this work, we develop a precise and efficient targeted insertion of multi kilobase DNA fragments in mammalian genomes. Mammalian genome engineering has advanced tremendously over the last decade, however there is still a need for robust gene writing with size scaling capacity. Here the authors present Find Cut-and-Transfer (FiCAT) technology to delivery large targeted payload insertion in cell lines and in vivo in mouse models.
Collapse
|
15
|
Vierl F, Kaur M, Götz M. Non-codon Optimized PiggyBac Transposase Induces Developmental Brain Aberrations: A Call for in vivo Analysis. Front Cell Dev Biol 2021; 9:698002. [PMID: 34414186 PMCID: PMC8369470 DOI: 10.3389/fcell.2021.698002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
In this perspective article, we briefly review tools for stable gain-of-function expression to explore key fate determinants in embryonic brain development. As the piggyBac transposon system has the highest insert size, a seamless integration of the transposed sequence into the host genome, and can be delivered by transfection avoiding viral vectors causing an immune response, we explored its use in the murine developing forebrain. The original piggyBac transposase PBase or the mouse codon-optimized version mPB and the construct to insert, contained in the piggyBac transposon, were introduced by in utero electroporation at embryonic day 13 into radial glia, the neural stem cells, in the developing dorsal telencephalon, and analyzed 3 or 5 days later. When using PBase, we observed an increase in basal progenitor cells, often accompanied by folding aberrations. These effects were considerably ameliorated when using the piggyBac plasmid together with mPB. While size and strength of the electroporated region was not correlated to the aberrations, integration was essential and the positive correlation to the insert size implicates the frequency of transposition as a possible mechanism. We discuss this in light of the increase in transposing endogenous viral vectors during mammalian phylogeny and their role in neurogenesis and radial glial cells. Most importantly, we aim to alert the users of this system to the phenotypes caused by non-codon optimized PBase application in vivo.
Collapse
Affiliation(s)
- Franziska Vierl
- Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Manpreet Kaur
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany.,SyNergy, Munich Cluster for Systems Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
16
|
Ustyantsev K, Wudarski J, Sukhikh I, Reinoite F, Mouton S, Berezikov E. Proof of principle for piggyBac-mediated transgenesis in the flatworm Macrostomum lignano. Genetics 2021; 218:6276877. [PMID: 33999134 PMCID: PMC8717057 DOI: 10.1093/genetics/iyab076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. The free-living flatworm Macrostomum lignano is currently the only flatworm where stable transgenesis is available, and as such it offers a powerful experimental platform to address questions that were previously difficult to answer. The published transgenesis approach relies on random integration of DNA constructs into the genome. Despite its efficiency, there is room and need for further improvement and diversification of transgenesis methods in M. lignano. Transposon-mediated transgenesis is an alternative approach, enabling easy mapping of the integration sites and the possibility of insertional mutagenesis studies. Here, we report for the first time that transposon-mediated transgenesis using piggyBac can be performed in M. lignano to create stable transgenic lines with single-copy transgene insertions.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Jakub Wudarski
- Laboratory of Biological Diversity, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| | - Igor Sukhikh
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Filipa Reinoite
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9700AD, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9700AD, The Netherlands
| | - Eugene Berezikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9700AD, The Netherlands
| |
Collapse
|
17
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
18
|
Schrevens S, Sanglard D. Hijacking Transposable Elements for Saturation Mutagenesis in Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:633876. [PMID: 37744130 PMCID: PMC10512250 DOI: 10.3389/ffunb.2021.633876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 09/26/2023]
Abstract
Transposable elements are present in almost all known genomes, these endogenous transposons have recently been referred to as the mobilome. They are now increasingly used in research in order to make extensive mutant libraries in different organisms. Fungi are an essential part of our lives on earth, they influence the availability of our food and they live inside our own bodies both as commensals and pathogenic organisms. Only few fungal species have been studied extensively, mainly due to the lack of appropriate molecular genetic tools. The use of transposon insertion libraries can however help to rapidly advance our knowledge of (conditional) essential genes, compensatory mutations and drug target identification in fungi. Here we give an overview of some recent developments in the use of different transposons for saturation mutagenesis in different fungi.
Collapse
Affiliation(s)
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
19
|
Helou L, Beauclair L, Dardente H, Piégu B, Tsakou-Ngouafo L, Lecomte T, Kentsis A, Pontarotti P, Bigot Y. The piggyBac-derived protein 5 (PGBD5) transposes both the closely and the distantly related piggyBac-like elements Tcr-pble and Ifp2. J Mol Biol 2021; 433:166839. [PMID: 33539889 PMCID: PMC8404143 DOI: 10.1016/j.jmb.2021.166839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The vertebrate piggyBac derived transposase 5 (PGBD5) encodes a domesticated transposase, which is active and able to transpose its distantly related piggyBac-like element (pble), Ifp2. This raised the question whether PGBD5 would be more effective at mobilizing a phylogenetically closely related pble element. We aimed to identify the pble most closely related to the pgbd5 gene. We updated the landscape of vertebrate pgbd genes to develop efficient filters and identify the most closely related pble to each of these genes. We found that Tcr-pble is phylogenetically the closest pble to the pgbd5 gene. Furthermore, we evaluated the capacity of two murine and human PGBD5 isoforms, Mm523 and Hs524, to transpose both Tcr-pble and Ifp2 elements. We found that both pbles could be transposed by Mm523 with similar efficiency. However, integrations of both pbles occurred through both proper transposition and improper PGBD5-dependent recombination. This suggested that the ability of PGBD5 to bind both pbles may not be based on the primary sequence of element ends, but may involve recognition of inner DNA motifs, possibly related to palindromic repeats. In agreement with this hypothesis, we identified internal palindromic repeats near the end of 24 pble sequences, which display distinct sequences.
Collapse
Affiliation(s)
- Laura Helou
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Hugues Dardente
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Benoît Piégu
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Louis Tsakou-Ngouafo
- UMR MEPHI D-258, I, IRD, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; CNRS SNC 5039, 13005 Marseille, France
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Pontarotti
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France; CNRS SNC 5039, 13005 Marseille, France
| | - Yves Bigot
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
20
|
Thomas HF, Kotova E, Jayaram S, Pilz A, Romeike M, Lackner A, Penz T, Bock C, Leeb M, Halbritter F, Wysocka J, Buecker C. Temporal dissection of an enhancer cluster reveals distinct temporal and functional contributions of individual elements. Mol Cell 2021; 81:969-982.e13. [PMID: 33482114 DOI: 10.1016/j.molcel.2020.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Many genes are regulated by multiple enhancers that often simultaneously activate their target gene. However, how individual enhancers collaborate to activate transcription is not well understood. Here, we dissect the functions and interdependencies of five enhancer elements that together activate Fgf5 expression during exit from naive murine pluripotency. Four intergenic elements form a super-enhancer, and most of the elements contribute to Fgf5 induction at distinct time points. A fifth, poised enhancer located in the first intron contributes to Fgf5 expression at every time point by amplifying overall Fgf5 expression levels. Despite low individual enhancer activity, together these elements strongly induce Fgf5 expression in a super-additive fashion that involves strong accumulation of RNA polymerase II at the intronic enhancer. Finally, we observe a strong anti-correlation between RNA polymerase II levels at enhancers and their distance to the closest promoter, and we identify candidate elements with properties similar to the intronic enhancer.
Collapse
Affiliation(s)
- Henry F Thomas
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Elena Kotova
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Swathi Jayaram
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Axel Pilz
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Merrit Romeike
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | | | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christa Buecker
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
21
|
Goshayeshi L, Yousefi Taemeh S, Dehdilani N, Nasiri M, Ghahramani Seno MM, Dehghani H. CRISPR/dCas9-mediated transposition with specificity and efficiency of site-directed genomic insertions. FASEB J 2021; 35:e21359. [PMID: 33496003 DOI: 10.1096/fj.202001830rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
The ability and efficiency of targeted nucleases to perform sequence replacements or insertions into the genome are limited. This limited efficiency for sequence replacements or insertions can be explained by the dependency on DNA repair pathways, the possibility of cellular toxicity, and unwanted activation of proto-oncogenes. The piggyBac (PB) transposase uses a very efficient enzymatic mechanism to integrate DNA fragments into the genome in a random manner. In this study, we fused an RNA-guided catalytically inactive Cas9 (dCas9) to the PB transposase and used dual sgRNAs to localize this molecule to specific genomic targets. We designed and used a promoter/reporter complementation assay to register and recover cells harboring-specific integrations, where only by complementation upon correct genomic integration, the reporter can be activated. Using an RNA-guided piggyBac transposase and dual sgRNAs, we were able to achieve site-directed integrations in the human ROSA26 safe harbor region in 0.32% of cells. These findings show that the methodology used in this study can be used for targeting genomic regions. An application for this finding could be in cancer cells to insert sequences into specific target regions that are intended to be destroyed, or to place promoter cargos behind the tumor suppressor genes to activate them.
Collapse
Affiliation(s)
- Lena Goshayeshi
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nima Dehdilani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammadreza Nasiri
- Recombinant Proteins Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad M Ghahramani Seno
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Helou L, Beauclair L, Dardente H, Arensburger P, Buisine N, Jaszczyszyn Y, Guillou F, Lecomte T, Kentsis A, Bigot Y. The C-terminal Domain of piggyBac Transposase Is Not Required for DNA Transposition. J Mol Biol 2021; 433:166805. [PMID: 33450253 DOI: 10.1016/j.jmb.2020.166805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
PiggyBac(PB)-like elements (pble) are members of a eukaryotic DNA transposon family. This family is of interest to evolutionary genomics because pble transposases have been domesticated at least 9 times in vertebrates. The amino acid sequence of pble transposases can be split into three regions: an acidic N-terminal domain (~100 aa), a central domain (~400 aa) containing a DD[D/E] catalytic triad, and a cysteine-rich domain (CRD; ~90 aa). Two recent reports suggested that a functional CRD is required for pble transposase activity. Here we found that two CRD-deficient pble transposases, a PB variant and an isoform encoded by the domesticated PB-derived vertebrate transposase gene 5 (pgbd5) trigger transposition of the Ifp2 pble. When overexpressed in HeLa cells, these CRD-deficient transposases can insert Ifp2 elements with proper and improper transposon ends, associated with deleterious effects on cells. Finally, we found that mouse CRD-deficient transposase Pgbd5, as well as PB, do not insert pbles at random into chromosomes. Transposition events occurred more often in genic regions, in the neighbourhood of the transcription start sites and were often found in genes predominantly expressed in the human central nervous system.
Collapse
Affiliation(s)
- Laura Helou
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Hugues Dardente
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Nicolas Buisine
- UMR CNRS 7221, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Florian Guillou
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
23
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
24
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
25
|
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12:527-544. [PMID: 32843912 PMCID: PMC7415244 DOI: 10.4252/wjsc.v12.i7.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
| |
Collapse
|
26
|
Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat Commun 2020; 11:3446. [PMID: 32651359 PMCID: PMC7351741 DOI: 10.1038/s41467-020-17128-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
The piggyBac DNA transposon is used widely in genome engineering applications. Unlike other transposons, its excision site can be precisely repaired without leaving footprints and it integrates specifically at TTAA tetranucleotides. We present cryo-EM structures of piggyBac transpososomes: a synaptic complex with hairpin DNA intermediates and a strand transfer complex capturing the integration step. The results show that the excised TTAA hairpin intermediate and the TTAA target adopt essentially identical conformations, providing a mechanistic link connecting the two unique properties of piggyBac. The transposase forms an asymmetric dimer in which the two central domains synapse the ends while two C-terminal domains form a separate dimer that contacts only one transposon end. In the strand transfer structure, target DNA is severely bent and the TTAA target is unpaired. In-cell data suggest that asymmetry promotes synaptic complex formation, and modifying ends with additional transposase binding sites stimulates activity.
Collapse
|
27
|
Itoh M, Kawagoe S, Tamai K, Nakagawa H, Asahina A, Okano HJ. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. J Dermatol Sci 2020; 98:163-172. [PMID: 32376152 DOI: 10.1016/j.jdermsci.2020.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a monogenic skin blistering disorder caused by mutations in the type VII collagen gene. A combination of biological technologies, including induced pluripotent stem cells (iPSCs) and several gene-editing tools, allows us to develop gene and cell therapies for such inherited diseases. However, the methodologies for gene and cell therapies must be continuously innovated for safe clinical use. OBJECTIVE In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to correct the pathogenic mutation in RDEB-specific iPSCs, and the piggyBac transposon system so that no residual gene fragments remained in the genome of iPSCs after correcting the mutation. METHODS For homologous recombination (HR)-based gene editing using CRISPR/Cas9, we designed guide RNA and template DNA including homologous sequences with drug-mediated selection cassette flanked by inverted repeat sequences of the transposon. HR reaction using CRISPR/Cas9 was induced in RDEB-specific iPSCs, and mutation-corrected iPSCs (MC-iPSCs) was obtained. Consequently, the selection cassette in the genome of MC-iPSCs was removed by transposase expression. RESULTS After CRISPR/Cas9-induced gene editing, we confirmed that the pathogenic mutation in RDEB-specific iPSCs was properly corrected. In addition, MC-iPSCs had no genetic footprint after removing the selection cassette by transposon system, and maintained their "stemness". When differentiating MC-iPSCs into keratinocytes, the expression of type VII collagen was restored. CONCLUSIONS Our study demonstrated one of the safer approaches to establish gene and cell therapies for skin hereditary disorders for future clinical use.
Collapse
Affiliation(s)
- Munenari Itoh
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shiho Kawagoe
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Asahina
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Siew SM, Cunningham SC, Zhu E, Tay SS, Venuti E, Bolitho C, Alexander IE. Prevention of Cholestatic Liver Disease and Reduced Tumorigenicity in a Murine Model of PFIC Type 3 Using Hybrid AAV-piggyBac Gene Therapy. Hepatology 2019; 70:2047-2061. [PMID: 31099022 DOI: 10.1002/hep.30773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are highly promising vehicles for liver-targeted gene transfer, with therapeutic efficacy demonstrated in preclinical models and clinical trials. Progressive familial intrahepatic cholestasis type 3 (PFIC3), an inherited juvenile-onset, cholestatic liver disease caused by homozygous mutation of the ABCB4 gene, may be a promising candidate for rAAV-mediated liver-targeted gene therapy. The Abcb4-/- mice model of PFIC3, with juvenile mice developing progressive cholestatic liver injury due to impaired biliary phosphatidylcholine excretion, resulted in cirrhosis and liver malignancy. Using a conventional rAAV strategy, we observed markedly blunted rAAV transduction in adult Abcb4-/- mice with established liver disease, but not in disease-free, wild-type adults or in homozygous juveniles prior to liver disease onset. However, delivery of predominantly nonintegrating rAAV vectors to juvenile mice results in loss of persistent transgene expression due to hepatocyte proliferation in the growing liver. Conclusion: A hybrid vector system, combining the high transduction efficiency of rAAV with piggyBac transposase-mediated somatic integration, was developed to facilitate stable human ABCB4 expression in vivo and to correct juvenile-onset chronic liver disease in a murine model of PFIC3. A single dose of hybrid vector at birth led to life-long restoration of bile composition, prevention of biliary cirrhosis, and a substantial reduction in tumorigenesis. This powerful hybrid rAAV-piggyBac transposon vector strategy has the capacity to mediate lifelong phenotype correction and reduce the tumorigenicity of progressive familial intrahepatic cholestasis type 3 and, with further refinement, the potential for human clinical translation.
Collapse
Affiliation(s)
- Susan M Siew
- Department of Gastroenterology and James Fairfax Institute of Pediatric Nutrition, Sydney Children's Hospitals Network, Westmead, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Szun S Tay
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Elena Venuti
- Department of Gastroenterology and James Fairfax Institute of Pediatric Nutrition, Sydney Children's Hospitals Network, Westmead, Australia
| | - Christine Bolitho
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| |
Collapse
|
29
|
In Vivo Piggybac-Based Gene Delivery towards Murine Pancreatic Parenchyma Confers Sustained Expression of Gene of Interest. Int J Mol Sci 2019; 20:ijms20133116. [PMID: 31247905 PMCID: PMC6651600 DOI: 10.3390/ijms20133116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
The pancreas is a glandular organ that functions in the digestive system and endocrine system of vertebrates. The most common disorders involving the pancreas are diabetes, pancreatitis, and pancreatic cancer. In vivo gene delivery targeting the pancreas is important for preventing or curing such diseases and for exploring the biological function of genes involved in the pathogenesis of these diseases. Our previous experiments demonstrated that adult murine pancreatic cells can be efficiently transfected by exogenous plasmid DNA following intraparenchymal injection and subsequent in vivo electroporation using tweezer-type electrodes. Unfortunately, the induced gene expression was transient. Transposon-based gene delivery, such as that facilitated by piggyBac (PB), is known to confer stable integration of a gene of interest (GOI) into host chromosomes, resulting in sustained expression of the GOI. In this study, we investigated the use of the PB transposon system to achieve stable gene expression when transferred into murine pancreatic cells using the above-mentioned technique. Expression of the GOI (coding for fluorescent protein) continued for at least 1.5 months post-gene delivery. Splinkerette-PCR-based analysis revealed the presence of the consensus sequence TTAA at the junctional portion between host chromosomes and the transgenes; however, this was not observed in all samples. This plasmid-based PB transposon system enables constitutive expression of the GOI in pancreas for potential therapeutic and biological applications.
Collapse
|
30
|
Menzel M, Koch P, Glasenhardt S, Gogol-Döring A. Enhort: a platform for deep analysis of genomic positions. PeerJ Comput Sci 2019; 5:e198. [PMID: 33816851 PMCID: PMC7924414 DOI: 10.7717/peerj-cs.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/12/2019] [Indexed: 06/12/2023]
Abstract
The rise of high-throughput methods in genomic research greatly expanded our knowledge about the functionality of the genome. At the same time, the amount of available genomic position data increased massively, e.g., through genome-wide profiling of protein binding, virus integration or DNA methylation. However, there is no specialized software to investigate integration site profiles of virus integration or transcription factor binding sites by correlating the sites with the diversity of available genomic annotations. Here we present Enhort, a user-friendly software tool for relating large sets of genomic positions to a variety of annotations. It functions as a statistics based genome browser, not focused on a single locus but analyzing many genomic positions simultaneously. Enhort provides comprehensive yet easy-to-use methods for statistical analysis, visualization, and the adjustment of background models according to experimental conditions and scientific questions. Enhort is publicly available online at enhort.mni.thm.de and published under GNU General Public License.
Collapse
Affiliation(s)
- Michael Menzel
- MNI, Technische Hochschule Mittelhessen—University of Applied Sciences, Giessen, Hessen, Germany
| | - Peter Koch
- MNI, Technische Hochschule Mittelhessen—University of Applied Sciences, Giessen, Hessen, Germany
| | - Stefan Glasenhardt
- MNI, Technische Hochschule Mittelhessen—University of Applied Sciences, Giessen, Hessen, Germany
| | - Andreas Gogol-Döring
- MNI, Technische Hochschule Mittelhessen—University of Applied Sciences, Giessen, Hessen, Germany
| |
Collapse
|
31
|
Schumann GG, Fuchs NV, Tristán-Ramos P, Sebe A, Ivics Z, Heras SR. The impact of transposable element activity on therapeutically relevant human stem cells. Mob DNA 2019; 10:9. [PMID: 30899334 PMCID: PMC6408843 DOI: 10.1186/s13100-019-0151-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapies.
Collapse
Affiliation(s)
- Gerald G Schumann
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Nina V Fuchs
- 2Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Pablo Tristán-Ramos
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Attila Sebe
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Zoltán Ivics
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Sara R Heras
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| |
Collapse
|
32
|
Abstract
While sequencing and array-based studies are creating catalogues of genetic alterations in cancer, discriminating cancer drivers among the large sets of epigenetically, transcriptionally or posttranslationally dysregulated genes remains a challenge. Transposon-based genetic screening in mice has proven to be a powerful approach to address this challenge. Insertional mutagenesis directly flags biologically relevant genes and, combined with the transposon's unique molecular fingerprint, facilitates the recovery of insertion sites. We have generated transgenic mouse lines harboring different versions of PiggyBac-based oncogenic transposons, which in conjunction with PiggyBac transposase mice can be used for whole-body or tissue-specific insertional mutagenesis screens. We have also developed QiSeq, a method for (semi-)quantitative transposon insertion site sequencing, which overcomes biasing limitations of previous library preparation methods. QiSeq can be used in multiplexed high-throughput formats for candidate cancer gene discovery and gives insights into the clonal distribution of insertions for the study of genetic tumor evolution.
Collapse
|
33
|
Enhancer Trapping and Annotation in Zebrafish Mediated with Sleeping Beauty, piggyBac and Tol2 Transposons. Genes (Basel) 2018; 9:genes9120630. [PMID: 30551672 PMCID: PMC6316676 DOI: 10.3390/genes9120630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Although transposon-mediated enhancer trapping (ET) is successfully applied in diverse models, the efficiency of various transposon systems varies significantly, and little information is available regarding efficiency of enhancer trapping by various transposons in zebrafish. Most potential enhancers (Ens) still lack evidence of actual En activity. Here, we compared the differences in ET efficiency between sleeping beauty (SB), piggyBac (PB) and Tol2 transposons. Tol2 represented the highest germline transfer efficiencies at 55.56% (NF0 = 165), followed by SB (38.36%, NF0 = 151) and PB (32.65%, NF0 = 149). ET lines generated by the Tol2 transposon tended to produce offspring with a single expression pattern per line, while PB and SB tended to generate embryos with multiple expression patterns. In our tests, 10 putative Ens (En1–10) were identified by splinkerette PCR and comparative genomic analysis. Combining the GFP expression profiles and mRNA expression patterns revealed that En1 and En2 may be involved in regulation of the expression of dlx1a and dlx2a, while En6 may be involved in regulation of the expression of line TK4 transgene and rps26, and En7 may be involved in the regulation of the expression of wnt1 and wnt10b. Most identified Ens were found to be transcribed in zebrafish embryos, and their regulatory function may involve eRNAs.
Collapse
|
34
|
Patterson K, Yu J, Landberg J, Chang I, Shavarebi F, Bilanchone V, Sandmeyer S. Functional genomics for the oleaginous yeast Yarrowia lipolytica. Metab Eng 2018; 48:184-196. [PMID: 29792930 DOI: 10.1016/j.ymben.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
Abstract
Oleaginous yeasts are valuable systems for biosustainable production of hydrocarbon-based chemicals. Yarrowia lipolytica is one of the best characterized of these yeast with respect to genome annotation and flux analysis of metabolic processes. Nonetheless, progress is hampered by a dearth of genome-wide tools enabling functional genomics. In order to remedy this deficiency, we developed a library of Y. lipolytica insertion mutants via transposon mutagenesis. The Hermes DNA transposon was expressed to achieve saturation mutagenesis of the genome. Over 534,000 independent insertions were identified by next-generation sequencing. Poisson analysis of insertion density classified ~ 22% of genes as essential. As expected, most essential genes have homologs in Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the majority of those are also essential. As an obligate aerobe, Y. lipolytica has significantly more respiration - related genes that are classified as essential than do S. cerevisiae and S. pombe. Contributions of non-essential genes to growth in glucose and glycerol carbon sources were assessed and used to evaluate two recent genome-scale models of Y. lipolytica metabolism. Fluorescence-activated cell sorting identified mutants in which lipid accumulation is increased. Our findings provide insights into biosynthetic pathways, compartmentalization of enzymes, and distinct functions of paralogs. This functional genomic analysis of the oleaginous yeast Y. lipolytica provides an important resource for modeling, bioengineering, and design of synthetic minimalized strains of respiratory yeasts.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - James Yu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Jenny Landberg
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Ivan Chang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Farbod Shavarebi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Suzanne Sandmeyer
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA 92697-1700, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697-1700, USA.
| |
Collapse
|
35
|
Wagner JM, Williams EV, Alper HS. Developing a piggyBac Transposon System and Compatible Selection Markers for Insertional Mutagenesis and Genome Engineering in Yarrowia lipolytica. Biotechnol J 2018; 13:e1800022. [PMID: 29493878 DOI: 10.1002/biot.201800022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/17/2018] [Indexed: 12/30/2022]
Abstract
Yarrowia lipolytica is a non-conventional yeast of interest to the biotechnology industry. However, the physiology, metabolism, and genetic regulation of Y. lipolytica diverge significantly from more well-studied and characterized yeasts such as Saccharomyces cerevisiae. To develop additional genetic tools for this industrially relevant host, the piggyBac transposon system to enable efficient generation of genome-wide insertional mutagenesis libraries and introduction of scarless, footprint-free genomic modifications in Y. lipolytica. Specifically, we demonstrate piggyBac transposition in Y. lipolytica, and then use the approach to screen transposon insertion libraries for rapid isolation of mutations that confer altered canavanine resistance, pigment formation, and neutral lipid accumulation. We also develop a variety of piggyBac compatible selection markers for footprint-free genome engineering, including a novel dominant marker cassette (Escherichia coli guaB) for effective Y. lipolytica selection using mycophenolic acid. We utilize these marker cassettes to construct a piggyBac vector set that allows for auxotrophic selection (uracil or tryptophan biosynthesis) or dominant selection (hygromycin, nourseothricin, chlorimuron ethyl, or mycophenolic acid resistance) and subsequent marker excision. These new genetic tools and techniques will help to facilitate and accelerate the engineering of Y. lipolytica strains for efficient and sustainable production of a wide variety of small molecules and proteins.
Collapse
Affiliation(s)
- James M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Eden V Williams
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
36
|
O'Donnell KA. Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology. Curr Opin Genet Dev 2018; 49:85-94. [PMID: 29587177 PMCID: PMC6312197 DOI: 10.1016/j.gde.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
Large-scale genome sequencing studies have identified a wealth of mutations in human tumors and have dramatically advanced the field of cancer genetics. However, the functional consequences of an altered gene in tumor progression cannot always be inferred from mutation status alone. This underscores the critical need for complementary methods to assign functional significance to mutated genes in cancer. Transposons are mobile genetic elements that serve as powerful tools for insertional mutagenesis. Over the last decade, investigators have employed mouse models with ondemand transposon-mediated mutagenesis to perform unbiased genetic screens to identify clinically relevant genes that participate in the pathogenesis of human cancer. Two distinct DNA transposon mutagenesis systems, Sleeping Beauty (SB) and PiggyBac (PB), have been applied extensively in vivo and more recently, in ex vivo settings. These studies have informed our understanding of the genes and pathways that drive cancer initiation, progression, and metastasis. This review highlights the latest progress on cancer gene identification for specific cancer subtypes, as well as new technological advances and incorporation of the CRISPR/Cas9 toolbox into transposon-mediated functional genetic studies.
Collapse
Affiliation(s)
- Kathryn A O'Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States.
| |
Collapse
|
37
|
Chu FC, Klobasa W, Grubbs N, Lorenzen MD. Development and use of a piggyBac-based jumpstarter system in Drosophila suzukii. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97. [PMID: 29194761 DOI: 10.1002/arch.21439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spotted wing drosophila, Drosophila suzukii, is an invasive pest that primarily attacks fresh, soft-skinned fruit. Although others have reported successful integration of marked piggyBac elements into the D. suzukii genome, with a very respectable transgenesis rate of ∼16%, here we take this work a step further by creating D. suzukii jumpstarter strains. These were generated through integration of a fluorescent-marked Minos element carrying a heat shock protein 70-driven piggyBac transposase gene. We demonstrate that there is a dramatic increase in transformation rates when germline transformation is performed in a transposase-expressing background. For example, we achieved transformation rates as high as 80% when microinjecting piggyBac-based plasmids into embryos derived from one of these D. suzukii jumpstarter strains. We also investigate the effect of insert size on transformation efficiency by testing the ability of the most efficient jumpstarter strain to catalyze integration of differently-sized piggyBac elements. Finally, we demonstrate the ability of a jumpstarter strain to remobilize an already-integrated piggyBac element to a new location, demonstrating that our jumpstarter strains could be used in conjunction with a piggyBac-based donor strain for genome-wide mutagenesis of D. suzukii.
Collapse
Affiliation(s)
- Fu-Chyun Chu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - William Klobasa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nathaniel Grubbs
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Marcé D Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
38
|
Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep 2017; 37:BSR20160614. [PMID: 29089466 PMCID: PMC5715130 DOI: 10.1042/bsr20160614] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
Transposons derived from Sleeping Beauty (SB), piggyBac (PB), or Tol2 typically require cotransfection of transposon DNA with a transposase either as an expression plasmid or mRNA. Consequently, this results in genomic integration of the potentially therapeutic gene into chromosomes of the desired target cells, and thus conferring stable expression. Non-viral transfection methods are typically preferred to deliver the transposon components into the target cells. However, these methods do not match the efficacy typically attained with viral vectors and are sometimes associated with cellular toxicity evoked by the DNA itself. In recent years, the overall transposition efficacy has gradually increased by codon optimization of the transposase, generation of hyperactive transposases, and/or introduction of specific mutations in the transposon terminal repeats. Their versatility enabled the stable genetic engineering in many different primary cell types, including stem/progenitor cells and differentiated cell types. This prompted numerous preclinical proof-of-concept studies in disease models that demonstrated the potential of DNA transposons for ex vivo and in vivo gene therapy. One of the merits of transposon systems relates to their ability to deliver relatively large therapeutic transgenes that cannot readily be accommodated in viral vectors such as full-length dystrophin cDNA. These emerging insights paved the way toward the first transposon-based phase I/II clinical trials to treat hematologic cancer and other diseases. Though encouraging results were obtained, controlled pivotal clinical trials are needed to corroborate the efficacy and safety of transposon-based therapies.
Collapse
|
39
|
Sharma N, Huynh DL, Kim SW, Ghosh M, Sodhi SS, Singh AK, Kim NE, Lee SJ, Hussain K, Oh SJ, Jeong DK. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget 2017; 8:104272-104285. [PMID: 29262639 PMCID: PMC5732805 DOI: 10.18632/oncotarget.22210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
The antibacterial and anti-inflammatory properties of lactoferricin have been ascribed to its ability to sequester essential iron. The objective of the study was to clone bovine lactoferricin (LFcinB) gene into PiggyBac Transposon vector, expression study in the bovine mammary epithelial stem cells (bMESCs) and also to determine the antimicrobial property of recombinant LFcinB against bovine mastitis-causing organisms. The PiggyBac-LFcinB was transfected into bMESCs by electroporation and a three fold of LFcinB secretion was observed in the transfected bMESCs medium by ELISA assay. Furthermore, the assessment of antimicrobial activity against mastitis causing pathogens Staphylococcus aureus and Escherichia coli demonstrated convincing evidence to prove strong antibacterial activity of LFcinB with 14.0±1.0 mm and 18.0±1.5 mm zone of inhibition against both organisms, respectively. The present study provides the convincing evidence to suggest the potential of PiggyBac transposon system to transfer antibacterial peptide into bMESCs or cow mammary gland and also pave the way to use bovine mammary gland as the bioreactors. Simultaneously, it also suggest toward commercial utilization of LFcinB bioreactor system in pharmaceutical industry.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Do Luong Huynh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Amit Kumar Singh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Nam Eun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Kafil Hussain
- Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Sung Jong Oh
- National Institute of Animal Science, Wanju-gun, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
40
|
Arias-Fuenzalida J, Jarazo J, Qing X, Walter J, Gomez-Giro G, Nickels SL, Zaehres H, Schöler HR, Schwamborn JC. FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling. Stem Cell Reports 2017; 9:1423-1431. [PMID: 28988985 PMCID: PMC5830965 DOI: 10.1016/j.stemcr.2017.08.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/16/2023] Open
Abstract
Genome editing and human induced pluripotent stem cells hold great promise for the development of isogenic disease models and the correction of disease-associated mutations for isogenic tissue therapy. CRISPR-Cas9 has emerged as a versatile and simple tool for engineering human cells for such purposes. However, the current protocols to derive genome-edited lines require the screening of a great number of clones to obtain one free of random integration or on-locus non-homologous end joining (NHEJ)-containing alleles. Here, we describe an efficient method to derive biallelic genome-edited populations by the use of fluorescent markers. We call this technique FACS-assisted CRISPR-Cas9 editing (FACE). FACE allows the derivation of correctly edited polyclones carrying a positive selection fluorescent module and the exclusion of non-edited, random integrations and on-target allele NHEJ-containing cells. We derived a set of isogenic lines containing Parkinson's-disease-associated mutations in α-synuclein and present their comparative phenotypes. Fluorescent protein-SNP pairs enable deterministic genotypes for genome editing Repetitive elements modulate off-targeting random integration Parkinson's disease NESCs present impaired mitochondrial energy performance
Collapse
Affiliation(s)
- Jonathan Arias-Fuenzalida
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Luxembourg City 4362, Luxembourg; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Luxembourg City 4362, Luxembourg
| | - Xiaobing Qing
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Luxembourg City 4362, Luxembourg
| | - Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Luxembourg City 4362, Luxembourg
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Luxembourg City 4362, Luxembourg; Max Planck Institute for Molecular Biomedicine, Laboratory of Cell and Developmental Biology, Roentgenstrasse 20, Muenster, Germany
| | - Sarah Louise Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Luxembourg City 4362, Luxembourg; Life Science Research Unit (LSRU), Systems Biology, University of Luxembourg, 6 Avenue du Swing, Luxembourg City 4367, Luxembourg
| | - Holm Zaehres
- Max Planck Institute for Molecular Biomedicine, Laboratory of Cell and Developmental Biology, Roentgenstrasse 20, Muenster, Germany; Ruhr-University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany
| | - Hans Robert Schöler
- Max Planck Institute for Molecular Biomedicine, Laboratory of Cell and Developmental Biology, Roentgenstrasse 20, Muenster, Germany; Medical Faculty, Westphalian Wilhelms University Muenster, 48149 Muenster, Germany
| | - Jens Christian Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, Luxembourg City 4362, Luxembourg.
| |
Collapse
|
41
|
Kawakami K, Largaespada DA, Ivics Z. Transposons As Tools for Functional Genomics in Vertebrate Models. Trends Genet 2017; 33:784-801. [PMID: 28888423 DOI: 10.1016/j.tig.2017.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan; These authors contributed equally to this work
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN, USA; These authors contributed equally to this work
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany; These authors contributed equally to this work..
| |
Collapse
|
42
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
43
|
One-Step piggyBac Transposon-Based CRISPR/Cas9 Activation of Multiple Genes. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:64-76. [PMID: 28918057 PMCID: PMC5485764 DOI: 10.1016/j.omtn.2017.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/26/2022]
Abstract
Neural cell fate is determined by a tightly controlled transcription regulatory network during development. The ability to manipulate the expression of multiple transcription factors simultaneously is required to delineate the complex picture of neural cell development. Because of the limited carrying capacity of the commonly used viral vectors, such as lentiviral or retroviral vectors, it is often challenging to perform perturbation experiments on multiple transcription factors. Here we have developed a piggyBac (PB) transposon-based CRISPR activation (CRISPRa) all-in-one system, which allows for simultaneous and stable endogenous transactivation of multiple transcription factors and long non-coding RNAs. As a proof of principle, we showed that the PB-CRISPRa system could accelerate the differentiation of human induced pluripotent stem cells into neurons and astrocytes by triggering endogenous expression of different sets of transcription factors. The PB-CRISPRa system has the potential to become a convenient and robust tool in neuroscience, which can meet the needs of a variety of in vitro and in vivo gain-of-function applications.
Collapse
|
44
|
Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep 2017; 7:43613. [PMID: 28252665 PMCID: PMC5333637 DOI: 10.1038/srep43613] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter-enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications.
Collapse
Affiliation(s)
- Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keiko Akagi
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | - Ryo Misawa
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
45
|
Friedrich MJ, Rad L, Bronner IF, Strong A, Wang W, Weber J, Mayho M, Ponstingl H, Engleitner T, Grove C, Pfaus A, Saur D, Cadiñanos J, Quail MA, Vassiliou GS, Liu P, Bradley A, Rad R. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat Protoc 2017; 12:289-309. [PMID: 28079877 DOI: 10.1038/nprot.2016.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposon-mediated forward genetics screening in mice has emerged as a powerful tool for cancer gene discovery. It pinpoints cancer drivers that are difficult to find with other approaches, thus complementing the sequencing-based census of human cancer genes. We describe here a large series of mouse lines for insertional mutagenesis that are compatible with two transposon systems, PiggyBac and Sleeping Beauty, and give guidance on the use of different engineered transposon variants for constitutive or tissue-specific cancer gene discovery screening. We also describe a method for semiquantitative transposon insertion site sequencing (QiSeq). The QiSeq library preparation protocol exploits acoustic DNA fragmentation to reduce bias inherent to widely used restriction-digestion-based approaches for ligation-mediated insertion site amplification. Extensive multiplexing in combination with next-generation sequencing allows affordable ultra-deep transposon insertion site recovery in high-throughput formats within 1 week. Finally, we describe principles of data analysis and interpretation for obtaining insights into cancer gene function and genetic tumor evolution.
Collapse
Affiliation(s)
| | - Lena Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Iraad F Bronner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Wei Wang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Julia Weber
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Matthew Mayho
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Thomas Engleitner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carolyn Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Anja Pfaus
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juan Cadiñanos
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
46
|
Vargas JE, Chicaybam L, Stein RT, Tanuri A, Delgado-Cañedo A, Bonamino MH. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J Transl Med 2016; 14:288. [PMID: 27729044 PMCID: PMC5059932 DOI: 10.1186/s12967-016-1047-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
Gene therapy protocols require robust and long-term gene expression. For two decades, retrovirus family vectors have offered several attractive properties as stable gene-delivery vehicles. These vectors represent a technology with widespread use in basic biology and translational studies that require persistent gene expression for treatment of several monogenic diseases. Immunogenicity and insertional mutagenesis represent the main obstacles to a wider clinical use of these vectors. Efficient and safe non-viral vectors are emerging as a promising alternative and facilitate clinical gene therapy studies. Here, we present an updated review for beginners and expert readers on retro and lentiviruses and the latest generation of transposon vectors (sleeping beauty and piggyBac) used in stable gene transfer and gene therapy clinical trials. We discuss the potential advantages and disadvantages of these systems such as cellular responses (immunogenicity or genome modification of the target cell) following exogenous DNA integration. Additionally, we discuss potential implications of these genome modification tools in gene therapy and other basic and applied science contexts.
Collapse
Affiliation(s)
- José Eduardo Vargas
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Leonardo Chicaybam
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil.,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renato Tetelbom Stein
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Amilcar Tanuri
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Martin H Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil. .,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Shima Y, Sugino K, Hempel CM, Shima M, Taneja P, Bullis JB, Mehta S, Lois C, Nelson SB. A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types. eLife 2016; 5:e13503. [PMID: 26999799 PMCID: PMC4846381 DOI: 10.7554/elife.13503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022] Open
Abstract
There is a continuing need for driver strains to enable cell-type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However, since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu). DOI:http://dx.doi.org/10.7554/eLife.13503.001 Scientists can track and even alter the activity of different kinds of neurons, as well as the connections between neurons, by manipulating their genes. However, most genes are active in many different kinds of cells in many different places in the brain, making it difficult to track or target only a particular neuron or brain area. Enhancers are sections of DNA that can regulate the activity of nearby genes so that they are only active in very specific cell types, and an “enhancer trap” is a genetic approach that essentially hijacks enhancers to express artificial genes in those same cell types. The technique relies on inserting a genetic marker, which can be easily tracked, into random locations in the genome. If this marker then interacts with an enhancer, it is activated and the effect of the enhancer on gene expression can be assessed. This method has been used in fruit flies and fish to identify enhancers that specifically restrict gene expression to a small subset of cells. Now, Shima et al. show that enhancer traps can be used successfully in mammals too. The experiments produced over 200 different strains of mice, many with the fluorescent marker only in specific brain areas or in specific kinds of brain cells. Some of the types of brain cells uncovered by these experiments are new, and the labelling of specific brain cells and brain areas in different strains makes these mice a useful resource for future work. Furthermore, it will be relatively straightforward to produce many more strains of these mice, because it would simply involve crossbreeding mice. It is likely that some of these to-be-discovered strains will be useful tools for research as well. DOI:http://dx.doi.org/10.7554/eLife.13503.002
Collapse
Affiliation(s)
- Yasuyuki Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Chris Martin Hempel
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Masami Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Praveen Taneja
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - James B Bullis
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Sonam Mehta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Sacha B Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
48
|
Abstract
The piggyBac transposon was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and dissimilarity to the other DNA transposon families, the piggyBac transposon was not recognized as a member of a large transposon superfamily for a long time. Initially, the piggyBac transposon was thought to be a rare transposon. This view, however, has now been completely revised as a number of fully sequenced genomes have revealed the presence of piggyBac-like repetitive elements. The isolation of active copies of the piggyBac-like elements from several distinct species further supported this revision. This includes the first isolation of an active mammalian DNA transposon identified in the bat genome. To date, the piggyBac transposon has been deeply characterized and it represents a number of unique characteristics. In general, all members of the piggyBac superfamily use TTAA as their integration target sites. In addition, the piggyBac transposon shows precise excision, i.e., restoring the sequence to its preintegration state, and can transpose in a variety of organisms such as yeasts, malaria parasites, insects, mammals, and even in plants. Biochemical analysis of the chemical steps of transposition revealed that piggyBac does not require DNA synthesis during the actual transposition event. The broad host range has attracted researchers from many different fields, and the piggyBac transposon is currently the most widely used transposon system for genetic manipulations.
Collapse
|
49
|
Abstract
Sleeping Beauty (SB) is a synthetic transposon that was constructed based on sequences of transpositionally inactive elements isolated from fish genomes. SB is a Tc1/mariner superfamily transposon following a cut-and-paste transpositional reaction, during which the element-encoded transposase interacts with its binding sites in the terminal inverted repeats of the transposon, promotes the assembly of a synaptic complex, catalyzes excision of the element out of its donor site, and integrates the excised transposon into a new location in target DNA. SB transposition is dependent on cellular host factors. Transcriptional control of transposase expression is regulated by the HMG2L1 transcription factor. Synaptic complex assembly is promoted by the HMGB1 protein and regulated by chromatin structure. SB transposition is highly dependent on the nonhomologous end joining (NHEJ) pathway of double-strand DNA break repair that generates a transposon footprint at the excision site. Through its association with the Miz-1 transcription factor, the SB transposase downregulates cyclin D1 expression that results in a slowdown of the cell-cycle in the G1 phase, where NHEJ is preferentially active. Transposon integration occurs at TA dinucleotides in the target DNA, which are duplicated at the flanks of the integrated transposon. SB shows a random genome-wide insertion profile in mammalian cells when launched from episomal vectors and "local hopping" when launched from chromosomal donor sites. Some of the excised transposons undergo a self-destructive autointegration reaction, which can partially explain why longer elements transpose less efficiently. SB became an important molecular tool for transgenesis, insertional mutagenesis, and gene therapy.
Collapse
|
50
|
Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4(+) T Cells. Mol Ther 2016; 24:592-606. [PMID: 26755332 PMCID: PMC4786924 DOI: 10.1038/mt.2016.11] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
The inherent risks associated with vector insertion in gene therapy need to be carefully assessed. We analyzed the genome-wide distributions of Sleeping Beauty (SB) and piggyBac (PB) transposon insertions as well as MLV retrovirus and HIV lentivirus insertions in human CD4+ T cells with respect to a panel of 40 chromatin states. The distribution of SB transposon insertions displayed the least deviation from random, while the PB transposon and the MLV retrovirus showed unexpected parallels across all chromatin states. Both MLV and PB insertions are enriched at transcriptional start sites (TSSs) and co-localize with BRD4-associated sites. We demonstrate physical interaction between the PB transposase and bromodomain and extraterminal domain proteins (including BRD4), suggesting convergent evolution of a tethering mechanism that directs integrating genetic elements into TSSs. We detect unequal biases across the four systems with respect to targeting genes whose deregulation has been previously linked to serious adverse events in gene therapy clinical trials. The SB transposon has the highest theoretical chance of targeting a safe harbor locus in the human genome. The data underscore the significance of vector choice to reduce the mutagenic load on cells in clinical applications.
Collapse
|