1
|
Rodrigues P, Bangali H, Ali E, Sharma MK, Abdullaev B, Alkhafaji AT, Deorari MM, Zabibah RS, Haslany A. Microproteins/micropeptides dysregulation contributes to cancer progression and development: A mechanistic review. Cell Biol Int 2024; 48:1395-1405. [PMID: 39010637 DOI: 10.1002/cbin.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Microproteins, known as micropeptides, are small protein molecules encoded by short open reading frames. These recently identified molecules have been proven to be an essential part of the human proteome that participates in multiple processes, such as DNA repair, mitochondrial respiration, and regulating different signaling pathways. A growing body of studies has evidenced that microproteins exhibit dysregulated expression levels in various malignancies and contribute to tumor progression. It has been reported that microproteins interact with many proteins, such as enzymes (e.g., adenosine triphosphate synthase) and signal transducers (e.g., c-Jun), and regulate malignant cell metabolism, proliferation, and metastasis. Moreover, microproteins have been found to play a significant role in multidrug resistance in vitro and in vivo by their activity in DNA repair pathways. Considering that, this review intended to summarize the roles of microproteins in different aspects of tumorigenesis with diagnostic and therapeutic perspectives.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - M K Sharma
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Bekhzod Abdullaev
- Department of Biotechnology, New Uzbekistan University, Tashkent, Uzbekistan
| | | | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rahman S Zabibah
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Haslany
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
2
|
Isaguliants M, Zhitkevich A, Petkov S, Gorodnicheva T, Mezale D, Fridrihsone I, Kuzmenko Y, Kostyushev D, Kostyusheva A, Gordeychuk I, Bayurova E. Enzymatic activity of HIV-1 protease defines migration of tumor cells in vitro and enhances their metastatic activity in vivo. Biochimie 2024:S0300-9084(24)00195-0. [PMID: 39128490 DOI: 10.1016/j.biochi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Overexpression of aspartic proteases, as cathepsin D, is an independent marker of poor prognosis in breast cancer, correlated with the incidence of clinical metastasis. We aimed to find if HIV-1 aspartic protease (PR) can play a similar role. Murine adenocarcinoma 4T1luc2 cells were transduced with lentivirus encoding inactivated drug-resistant PR, generating subclones PR20.1 and PR20.2. Subclones were assessed for production of reactive oxygen species (ROS), expression of epithelial-mesenchymal transition (EMT) factors, and in vitro migratory activity in the presence or absence of antioxidant N-acetyl cysteine and protease inhibitors. Tumorigenic activity was evaluated by implanting cells into BALB/c mice and following tumor growth by calipering and bioluminescence imaging in vivo, and metastases, by organ imaging ex vivo. Both subclones expressed PR mRNA, and PR20.2, also the protein detected by Western blotting. PR did not induce production of ROS, and had no direct effect on cell migration rate, however, treatment with inhibitors of drug-resistant PR suppressed the migratory activity of both subclones. Furthermore, expression of N-cadherin and Vimentin in PR20.2 cells and their migration were enhanced by antioxidant treatment. Sensitivity of in vitro migration to protease inhibitors and to antioxidant, known to restore PR activity, related the effects to the enzymatic activity of PR. In vivo, PR20.2 cells demonstrated higher tumorigenic and metastatic activity than PR20.1 or parental cells. Thus, HIV-1 protease expressed in breast cancer cells determines their migration in vitro and metastatic activity in vivo. This effect may aggravate clinical course of cancers in people living with HIV-1.
Collapse
Affiliation(s)
- M Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - A Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - T Gorodnicheva
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - D Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - I Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Y Kuzmenko
- Engelhardt Institute of Molecular Biology, Academy of Sciences of the Russian Federation, 119991, Moscow, Russia.
| | - D Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - A Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - I Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - E Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| |
Collapse
|
3
|
Yayan J, Franke KJ, Berger M, Windisch W, Rasche K. Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review. Mol Biol Rep 2024; 51:165. [PMID: 38252369 PMCID: PMC10803487 DOI: 10.1007/s11033-023-08920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
This comprehensive review delves into cancer's complexity, focusing on adhesion, metastasis, and inhibition. It explores the pivotal role of these factors in disease progression and therapeutic strategies. This review covers cancer cell migration, invasion, and colonization of distant organs, emphasizing the significance of cell adhesion and the intricate metastasis process. Inhibition approaches targeting adhesion molecules, such as integrins and cadherins, are discussed. Overall, this review contributes significantly to advancing cancer research and developing targeted therapies, holding promise for improving patient outcomes worldwide. Exploring different inhibition strategies revealed promising therapeutic targets to alleviate adhesion and metastasis of cancer cells. The effectiveness of integrin-blocking antibodies, small molecule inhibitors targeting Focal adhesion kinase (FAK) and the Transforming Growth Factor β (TGF-β) pathway, and combination therapies underscores their potential to disrupt focal adhesions and control epithelial-mesenchymal transition processes. The identification of as FAK, Src, β-catenin and SMAD4 offers valuable starting points for further research and the development of targeted therapies. The complex interrelationships between adhesion and metastatic signaling networks will be relevant to the development of new treatment approaches.
Collapse
Affiliation(s)
- Josef Yayan
- Department of Internal Medicine, Division of Pulmonary, Allergy, and Sleep Medicine, Witten/Herdecke University, HELIOS Clinic Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Germany.
| | - Karl-Josef Franke
- Department of Internal Medicine, Pulmonary Division, Internal Intensive Care Medicine, Infectiology, and Sleep Medicine, Märkische Clinics Health Holding Ltd, Clinic Lüdenscheid, Witten/Herdecke University, Lüdenscheid, Germany
| | - Melanie Berger
- Department of Pneumology, Cologne Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Wolfram Windisch
- Department of Pneumology, Cologne Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Kurt Rasche
- Department of Internal Medicine, Division of Pulmonary, Allergy, and Sleep Medicine, Witten/Herdecke University, HELIOS Clinic Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Germany
| |
Collapse
|
4
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Vergara-Gerónimo CA, León-Del-Rio A, Rodríguez-Dorantes M, Camacho-Carranza R, Ostrosky-Wegman P, Salazar AM. Arsenic reduces the GATA3 expression associated with an increase in proliferation and migration of mammary epithelial cell line MCF-10A. Toxicol Appl Pharmacol 2023; 472:116573. [PMID: 37269932 DOI: 10.1016/j.taap.2023.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Arsenic is associated with the development of breast cancer. However, the molecular mechanisms of arsenic induction of breast cancer are not fully defined. Interaction with zinc finger (ZnF) motifs in proteins is one of the proposed mechanisms of arsenic toxicity. GATA3 is a transcription factor that regulates the transcription of genes associated with cell proliferation, cell differentiation and the epithelial-mesenchymal transition (EMT) in mammary luminal cells. Given that GATA3 possesses two ZnF motifs essential for the function of this protein and that arsenic could alter the function of GATA3 through interaction with these structural motifs, we evaluated the effect of sodium arsenite (NaAsO2) on GATA3 function and its relevance in the development of arsenic-induced breast cancer. Breast cell lines derived from normal mammary epithelium (MCF-10A), hormone receptor-positive and hormone receptor negative breast cancer cells (T-47D and MDA-MB-453, respectively) were used. We observed a reduction on GATA3 protein levels at non-cytotoxic concentrations of NaAsO2 in MCF-10A and T-47D, but not in MDA-MB-453 cells. This reduction was associated with an increase in cell proliferation and cell migration in MCF-10A, but not in T-47D or MDA-MB-453 cells. The evaluation of cell proliferation and EMT markers indicate that the reduction on GATA3 protein levels by arsenic, disrupts the function of this transcription factor. Our data indicate that GATA3 is a tumor suppressor in the normal mammary epithelium and that arsenic could act as an initiator of breast cancer by disrupting the function of GATA3.
Collapse
Affiliation(s)
- Cristian A Vergara-Gerónimo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Alfonso León-Del-Rio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | | | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Isert L, Mehta A, Loiudice G, Oliva A, Roidl A, Merkel OM. An In Vitro Approach to Model EMT in Breast Cancer. Int J Mol Sci 2023; 24:ijms24097757. [PMID: 37175467 PMCID: PMC10177865 DOI: 10.3390/ijms24097757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
During the progression from ductal carcinoma in situ (DCIS) to invasive breast cancer (IBC), cells must overcome the physically restraining basement membrane (BM), which compartmentalizes the epithelium from the stroma. Since the extracellular matrix (ECM) of the epithelial and stromal compartments are biochemically and physically distinct from one another, the progression demands a certain degree of cellular plasticity for a primary tumor to become invasive. The epithelial-to-mesenchymal transition (EMT) depicts such a cell program, equipping cancer cells with features allowing for dissemination from the epithelial entity and stromal invasion at the single-cell level. Here, the reciprocal interference between an altering tumor microenvironment and the EMT phenotype was investigated in vitro. BM-typical collagen IV and stroma-typical collagen I coatings were applied as provisional 2D matrices. Pro-inflammatory growth factors were introduced to improve tissue mimicry. Whereas the growth on coated surfaces only slightly affected the EMT phenotype, the combinatorial action of collagen with growth factor TGF-β1 induced prominent phenotypic changes. However, EMT induction was independent of collagen type, and cellular accessibility for EMT-like changes was strongly cell-line dependent. Summarizing the entire body of data, an EMT-phenotyping model was used to determine cellular EMT status and estimate EMT-like changes. The miR200c-mediated reversion of mesenchymal MDA-MB-231 cells is reflected by our EMT-phenotype model, thus emphasizing its potential to predict the therapeutic efficacy of EMT-targeting drugs in the future.
Collapse
Affiliation(s)
- Lorenz Isert
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Aditi Mehta
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Gabriele Loiudice
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Altea Oliva
- Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia M Merkel
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
7
|
Yeh CF, Lee WY, Yu TH, Hsu YB, Lan MC, Lan MY. Antipsychotic drug trifluoperazine as a potential therapeutic agent against nasopharyngeal carcinoma. Head Neck 2023; 45:316-328. [PMID: 36349408 DOI: 10.1002/hed.27238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Trifluoperazine (TFP) is a typical antipsychotic primarily used to treat schizophrenia. In this study, we aimed to evaluate whether TFP can be used as a therapeutic agent against nasopharyngeal carcinoma (NPC) and identify its underlying molecular mechanisms. METHODS We used NPC-TW01, TW03, TW04, and BM to assess the anticancer effects of TFP by using cytotoxicity, wound healing, colony formation, and cell invasion assays. An in vivo animal study was conducted. RNA sequencing combined with Ingenuity Pathways Analysis was performed to identify the mechanism by which TFP influences NPC cells. RESULTS Our data revealed that TFP decreased NPC cell viability in a dose-dependent manner. The invasion and migration of NPC tumor cells were inhibited by TFP. An in vivo study also demonstrated the anticancer effects of TFP. RNA sequencing revealed several anticancer molecular mechanisms following TFP administration. CONCLUSIONS The antipsychotic drug TFP could be a potential therapeutic regimen for NPC treatment.
Collapse
Affiliation(s)
- Chien-Fu Yeh
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Ya Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Han Yu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Bin Hsu
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chin Lan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Ying Lan
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Xiao Y, Li Y, Shi D, Wang X, Dai S, Yang M, Kong L, Chen B, Huang X, Lin C, Liao W, Xu B, Chen X, Wang L, Chen X, Ouyang Y, Liu G, Li H, Song L. MEX3C-Mediated Decay of SOCS3 mRNA Promotes JAK2/STAT3 Signaling to Facilitate Metastasis in Hepatocellular Carcinoma. Cancer Res 2022; 82:4191-4205. [PMID: 36112698 DOI: 10.1158/0008-5472.can-22-1203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Tumor metastasis is one of the major causes of high mortality in patients with hepatocellular carcinoma (HCC). Sustained activation of STAT3 signaling plays a critical role in HCC metastasis. RNA binding protein (RBP)-mediated posttranscriptional regulation is involved in the precise control of signal transduction, including STAT3 signaling. In this study, we investigated whether RBPs are important regulators of HCC metastasis. The RBP MEX3C was found to be significantly upregulated in highly metastatic HCC and correlated with poor prognosis in HCC. Mechanistically, MEX3C increased JAK2/STAT3 pathway activity by downregulating SOCS3, a major negative regulator of JAK2/STAT3 signaling. MEX3C interacted with the 3'UTR of SOCS3 and recruited CNOT7 to ubiquitinate and accelerate decay of SOCS3 mRNA. Treatment with MEX3C-specific antisense oligonucleotide significantly inhibited JAK2/STAT3 pathway activation, suppressing HCC migration in vitro and metastasis in vivo. These findings highlight a novel mRNA decay-mediated mechanism for the disruption of SOCS3-driven negative regulation of JAK2/STAT3 signaling, suggesting MEX3C may be a potential prognostic biomarker and promising therapeutic target in HCC. SIGNIFICANCE This study reveals that RNA-binding protein MEX3C induces SOCS3 mRNA decay to promote JAK2/STAT3 activation and tumor metastasis in hepatocellular carcinoma, identifying MEX3C targeting as a potential approach for treating metastatic disease.
Collapse
Affiliation(s)
- Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Dai
- Department of Medicinal Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muwen Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingzhi Kong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Benke Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Jingzhou, China
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Lishuai Wang
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Donmez C, Konac E. Silencing effects of FOXD1 inhibit metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk. Gene 2022; 836:146680. [PMID: 35738443 DOI: 10.1016/j.gene.2022.146680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The elucidation of the mechanisms controlling the metastatic processes is important for the development of new treatment methods to prevent the progression of localized disease to metastasis. Forkhead box D1 (FOXD1) is a member of the FOX transcription factor family and has been reported to play an important role in the development and progression of various cancers. However, its role in prostate cancer (PCa) remains only partially understood. Therefore, we aimed to explore the effects on the associated regulatory signal pathway of FOXD1 in prostate cancer. To clarify the roles of FOXD1 in prostate cancer, we used siRNA to suppress its expression in 22Rv1 cells with relatively higher expression of FOXD1. The effects of FOXD1 silencing on cell proliferation, migration and invasion were determined. WST-1 assays were used to determine cell proliferation. Cell migration and invasion were evaluated through wound healing and transwell assays. The possible underlying mechanism of FOXD1 silencing on 22Rv1 was evaluated by determining the expression of proteins related to EMT and Wnt/β-catenin signaling pathway. Our results showed that FOXD1 was highly expressed in prostate cancer cell lines -PC-3, DU145, LNCaP and 22Rv1- compared to normal prostate epithelial cell line RWPE-1. Additionally, silencing of FOXD1 significantly reduced proliferation, migration and invasion of 22Rv1 cells. Furthermore, silencing of FOXD1 decreased the expression of β-catenin and cyclin D1, which are involved in the Wnt/β-catenin signaling pathway. However, it did not appear to affect the expression of EMT-related proteins other than N-cadherin. Our results suggest that silencing of FOXD1 suppresses metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk. Therefore, the expression status of FOXD1 may be a new prognostic factor as well as a potential therapeutic target in prostate cancer treatment.
Collapse
Affiliation(s)
- Cigdem Donmez
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500 Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Esenkoy, Kozlu, 67600 Zonguldak, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500 Ankara, Turkey.
| |
Collapse
|
11
|
Ko CC, Hsieh YY, Yang PM. Long Non-Coding RNA MIR31HG Promotes the Transforming Growth Factor β-Induced Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:6559. [PMID: 35743003 PMCID: PMC9223781 DOI: 10.3390/ijms23126559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) describes a biological process in which polarized epithelial cells are converted into highly motile mesenchymal cells. It promotes cancer cell dissemination, allowing them to form distal metastases, and also involves drug resistance in metastatic cancers. Transforming growth factor β (TGFβ) is a multifunctional cytokine that plays essential roles in development and carcinogenesis. It is a major inducer of the EMT. The MIR31 host gene (MIR31HG) is a newly identified long non-coding (lnc)RNA that exhibits ambiguous roles in cancer. In this study, a cancer genomics analysis predicted that MIR31HG overexpression was positively correlated with poorer disease-free survival of pancreatic ductal adenocarcinoma (PDAC) patients, which was associated with upregulation of genes related to TGFβ signaling and the EMT. In vitro evidence demonstrated that TGFβ induced MIR31HG expression in PDAC cells, and knockdown of MIR31HG expression reversed TGFβ-induced EMT phenotypes and cancer cell migration. Therefore, MIR31HG has an oncogenic role in PDAC by promoting the EMT.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 71004, Taiwan;
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- TMU and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Cook DP, Wrana JL. A specialist-generalist framework for epithelial-mesenchymal plasticity in cancer. Trends Cancer 2022; 8:358-368. [DOI: 10.1016/j.trecan.2022.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
|
13
|
Sahoo S, Ashraf B, Duddu AS, Biddle A, Jolly MK. Interconnected high-dimensional landscapes of epithelial-mesenchymal plasticity and stemness in cancer. Clin Exp Metastasis 2022; 39:279-290. [PMID: 34993766 DOI: 10.1007/s10585-021-10139-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
Establishing macrometastases at distant organs is a highly challenging process for cancer cells, with extremely high attrition rates. A very small percentage of disseminated cells have the ability to dynamically adapt to their changing micro-environments through reversibly switching to another phenotype, aiding metastasis. Such plasticity can be exhibited along one or more axes-epithelial-mesenchymal plasticity (EMP) and cancer stem cells (CSCs) being the two most studied, and often tacitly assumed to be synonymous. Here, we review the emerging concepts related to EMP and CSCs across multiple cancers. Both processes are multi-dimensional in nature; for instance, EMP can be defined on morphological, molecular and functional changes, which may or may not be synchronized. Similarly, self-renewal, multi-lineage potential, and resistance to anoikis and/or therapy may not all occur simultaneously in CSCs. Thus, understanding the complexity in defining EMP and CSCs is essential if we are to understand their contribution to cancer metastasis. This will require a more comprehensive understanding of the non-linearity of these processes. These processes are dynamic, reversible, and semi-independent in nature; cells traverse the inter-connected high-dimensional EMP and CSC landscapes in diverse paths, each of which may exhibit a distinct EMP-CSC coupling. Our proposed model offers a potential unifying framework for elucidating the coupled decision-making along these dimensions and highlights a key set of open questions to be answered.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.,UG Programme, Indian Institute of Science, Bangalore, 560012, India
| | - Bazella Ashraf
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
14
|
Clarke LE, Cook A, Mathavarajah S, Bera A, Salsman J, Habib E, Van Iderstine C, Bydoun M, Lewis SM, Dellaire G. Haploinsufficient tumor suppressor PRP4K is negatively regulated during epithelial-to-mesenchymal transition. FASEB J 2021; 35:e22001. [PMID: 34674320 PMCID: PMC9298446 DOI: 10.1096/fj.202001063r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 01/28/2023]
Abstract
The pre‐mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial‐to‐mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non‐transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple‐negative breast cancer cells (MDA‐MB‐231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA‐MB‐231 and MCF10A cells and without changes in E‐cadherin. Induction of EMT in MCF10A cells, by treatment with WNT‐5a and TGF‐β1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT‐5a/TGF‐β1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.
Collapse
Affiliation(s)
- Livia E Clarke
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson Cook
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Amit Bera
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elias Habib
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Moamen Bydoun
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.,Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Nersisyan S, Ahlers AK, Lange T, Wicklein D, Galatenko A, Bohnenberger H, Elakad O, Conradi LC, Genduso S, Maar H, Schiecke A, Maltseva D, Raygorodskaya M, Makarova J, Schumacher U, Tonevitsky A. Low expression of CD24 is associated with poor survival in colorectal cancer. Biochimie 2021; 192:91-101. [PMID: 34637894 DOI: 10.1016/j.biochi.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, β3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alexei Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
| | | | - Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Lena-Christin Conradi
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Sandra Genduso
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Schiecke
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Maria Raygorodskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia.
| |
Collapse
|
16
|
Allen SC, Widman JA, Datta A, Suggs LJ. Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr Biol (Camb) 2021; 12:161-174. [PMID: 32472133 DOI: 10.1093/intbio/zyaa012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/10/2019] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
Soft tissue tumors, including breast cancer, become stiffer throughout disease progression. This increase in stiffness has been shown to correlate to malignant phenotype and epithelial-to-mesenchymal transition (EMT) in vitro. Unlike current models, utilizing static increases in matrix stiffness, our group has previously created a system that allows for dynamic stiffening of an alginate-matrigel composite hydrogel to mirror the native dynamic process. Here, we utilize this system to evaluate the role of matrix stiffness on EMT and metastasis both in vitro and in vivo. Epithelial cells were seen to lose normal morphology and become protrusive and migratory after stiffening. This shift corresponded to a loss of epithelial markers and gain of mesenchymal markers in both the cell clusters and migrated cells. Furthermore, stiffening in a murine model reduced tumor burden and increased migratory behavior prior to tumor formation. Inhibition of FAK and PI3K in vitro abrogated the morphologic and migratory transformation of epithelial cell clusters. This work demonstrates the key role extracellular matrix stiffening has in tumor progression through integrin signaling and, in particular, its ability to drive EMT-related changes and metastasis.
Collapse
Affiliation(s)
- Shane C Allen
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Jessica A Widman
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Anisha Datta
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| |
Collapse
|
17
|
IR-Surviving NSCLC Cells Exhibit Different Patterns of Molecular and Cellular Reactions Relating to the Multifraction Irradiation Regimen and p53-Family Proteins Expression. Cancers (Basel) 2021; 13:cancers13112669. [PMID: 34071477 PMCID: PMC8198560 DOI: 10.3390/cancers13112669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary For the first time, we demonstrated that the significant decrease in p63/p73 expression together with the absence of functional p53 could underlie an increase in the fraction of polyploid cells, transformation rates, and the glycolytic NAD(P)H production in multifraction X-ray radiation exposure (MFR)-surviving cancer cells, providing conditions for radioresistance associated with epithelial–mesenchymal transition (EMT)-like process activation. During radiation therapy (RT), the treatment dose, fractionation, and dose limits for organs at risk (OARs) do not change between patients and are still prescribed mainly based on the Tumor, Node, Metastasis (TNM) stage, performance status, and comorbidities, taking no account of the tumor biology. Our data once again emphasize that non-small cell lung cancer (NSCLC) therapy approaches should become more personalized according to RT regimen, tumor histology, and molecular status of critical proteins. Abstract Radiotherapy is a primary treatment modality for patients with unresectable non-small cell lung cancer (NSCLC). Tumor heterogeneity still poses the central question of cancer radioresistance, whether the presence of a particular cell population inside a tumor undergoing a selective outgrowth during radio- and chemotherapy give rise to metastasis and tumor recurrence. In this study, we examined the impact of two different multifraction X-ray radiation exposure (MFR) regimens, fraction dose escalation (FDE) in the split course and the conventional hypofractionation (HF), on the phenotypic and molecular signatures of four MFR-surviving NSCLC cell sublines derived from parental A549 (p53 wild-type) and H1299 (p53-null) cells, namely A549FR/A549HR, H1299FR/H1299HR cells. We demonstrate that sublines surviving different MFR regimens in a total dose of 60 Gy significantly diverge in their molecular traits related to irradiation regimen and p53 status. The observed changes regarding radiosensitivity, transformation, proliferation, metabolic activity, partial epithelial-to-mesenchymal transition (EMT) program activation and 1D confined migratory behavior (wound healing). For the first time, we demonstrated that MFR exposure led to the significant decrease in the expression of p63 and p73, the p53-family members, in p53null cells, which correlated with the increase in cell polyploidy. We could not find significant differences in FRA1 expression between parental cells and their sublines that survived after any MFR regimen regardless of p53 status. In our study, the FDE regimen probably causes partial EMT program activation in MFR-survived NSCLC cells through either Vimentin upregulation in p53null or an aberrant N-cadherin upregulation in p53wt cells. The HF regimen likely less influences the EMT activation irrespectively of the p53 status of MFR-survived NSCLC cells. Our data highlight that both MFR regimens caused overall higher cell transformation of p53null H1299FR and H1299HR cells than their parental H1299 cells. Moreover, our results indicate that the FDE regimen raised the radioresistance and transformation of MFR-surviving NSCLC cells irrespectively of their p53 status, though the HF regimen demonstrated a similar effect on p53null NSCLC cells only. Our data once again emphasize that NSCLC therapy approaches should become more personalized according to radiation therapy (RT) regimen, tumor histology, and molecular status of critical proteins.
Collapse
|
18
|
Marchetti S, Mollerup S, Gutzkow KB, Rizzi C, Skuland T, Refsnes M, Colombo A, Øvrevik J, Mantecca P, Holme JA. Biological effects of combustion-derived particles from different biomass sources on human bronchial epithelial cells. Toxicol In Vitro 2021; 75:105190. [PMID: 33964422 DOI: 10.1016/j.tiv.2021.105190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 05/01/2021] [Indexed: 11/15/2022]
Abstract
Combustion-derived particles (CDPs), in particular from traffic, are regarded as a central contributor for adverse health effects linked to air pollution. Recently, also biomass burning has been recognized as an important source for CDPs. Here, the effects of CDPs (PM10) originating from burning of pellet, charcoal and wood on key processes associated to lung carcinogenesis were explored. Human bronchial epithelial cells (HBEC3-KT) were exposed to 2.5 μg/cm2 of CDPs for 24 h and biological effects were examined in terms of cytotoxicity, inflammation, epithelial to mesenchymal transition (EMT)-related effects, DNA damage and genotoxicity. Reduced cell migration, inflammation and modulation of various PM-associated genes were observed mainly after exposure to wood and pellet. In contrast, only particles from pellet burning induced alteration in cell proliferation and DNA damage, which resulted in cell cycle alterations. Charcoal instead, appeared in general less effective in inducing pro-carcinogenic effects. These results illustrate differences in the toxicological profile due to the CDPs source. The different chemical compounds adsorbed on CDPs seemed to be central for particle properties, leading to an activation of various cellular signaling pathways involved in early steps of cancer progression.
Collapse
Affiliation(s)
- Sara Marchetti
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,.
| | - Steen Mollerup
- Section of Occupational Toxicology, National Institute of Occupational Health, Oslo N-0033, Norway.
| | - Kristine Bjerve Gutzkow
- Section of Molecular Toxicology, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, Oslo N-0403, Norway.
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy.
| | - Tonje Skuland
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - Anita Colombo
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,.
| | - Johan Øvrevik
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,.
| | - Jørn Andreas Holme
- Section of Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
19
|
Histone deacetylase inhibitor resminostat in combination with sorafenib counteracts platelet-mediated pro-tumoral effects in hepatocellular carcinoma. Sci Rep 2021; 11:9587. [PMID: 33953226 PMCID: PMC8100298 DOI: 10.1038/s41598-021-88983-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
In hepatocellular carcinoma (HCC), blood platelets have been linked to tumor growth, epithelial-to-mesenchymal transition (EMT), extrahepatic metastasis and a limited therapeutic response to the multikinase inhibitor (MKi) sorafenib, the standard of care in advanced HCC for the last decade. Recent clinical data indicated an improved overall survival for sorafenib in combination with the HDAC inhibitor resminostat in a platelet count dependent manner. Here, the impact of platelets on the sorafenib and resminostat drug effects in HCC cells was explored. In contrast to sorafenib, resminostat triggered an anti-proliferative response in HCC cell lines independent of platelets. As previously described, platelets induced invasive capabilities of HCC cells, a prerequisite for extravasation and metastasis. Importantly, the resminostat/sorafenib drug combination, but not the individual drugs, effectively blocked platelet-induced HCC cell invasion. Exploration of the molecular mechanism revealed that the combined drug action led to a reduction of platelet-induced CD44 expression and to the deregulation of several other epithelial and mesenchymal genes, suggesting interference with cell invasion via EMT. In addition, the drug combination decreased phosphorylated ERK level, indicating inhibition of the mitogenic signaling pathway MEK/ERK. Taken together, the resminostat plus sorafenib combination counteracts platelet-mediated cancer promoting effects in HCC cells.
Collapse
|
20
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
21
|
Bizinelli D, Flores Navarro F, Lima Costa Faldoni F. Maca Root ( Lepidium meyenii) Extract Increases the Expression of MMP-1 and Stimulates Migration of Triple-Negative Breast Cancer Cells. Nutr Cancer 2021; 74:346-356. [PMID: 33560149 DOI: 10.1080/01635581.2021.1882511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Maca root (Lepidium meyenii) extract is a worldwide consumed food supplement for sexual dysfunctions, increasing sperm production and its motility, and alleviating menopausal symptoms. Once maca root has a role in cell proliferation and motility, and its consumption may increase along with age, mainly in menopausal women, we aimed to investigate the plant effects on triple-negative breast cancer (TNBC) cell lines. Standardized maca root powdered extract showed significant cytotoxic activity in both MDA-MB-231 and Hs578T cells, and the IC50s were 2000 μg/ml and 3000 μg/ml, respectively. Both cell lines showed an increase in migratory capacity. Using bioinformatics tools, we established genes involved in the metastatic process, CAV1, LAMA4, and MMP-1, and the mRNAs expression was assessed by qPCR. Comparing the treated cells to the negative control, CAV1 presented a decreased expression by 2-fold in MDA-MB-231. LAMA4 presented a decrease by 4-fold in Hs578T cells. MMP-1 showed substantially increase mRNA expression in MDA-MB-231 by 86-fold and in Hs578T by 5-fold. To the best of our knowledge, this is the first study indicating that the human consumption of maca may be dangerous due to the upregulation in MMP-1 expression and the increase in TNBC migrated cells.
Collapse
Affiliation(s)
- Daniela Bizinelli
- University Center of Hermínio Ometto Foundation - FHO, Araras, São Paulo, Brazil
| | | | - Flavia Lima Costa Faldoni
- University Center of Hermínio Ometto Foundation - FHO, Araras, São Paulo, Brazil.,Department of Gynecology and Obstetrics, Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
22
|
Noor SI, Hoffmann M, Rinis N, Bartels MF, Winterhalter PR, Hoelscher C, Hennig R, Himmelreich N, Thiel C, Ruppert T, Rapp E, Strahl S. Glycosyltransferase POMGNT1 deficiency strengthens N-cadherin-mediated cell-cell adhesion. J Biol Chem 2021; 296:100433. [PMID: 33610554 PMCID: PMC7994789 DOI: 10.1016/j.jbc.2021.100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Defects in protein O-mannosylation lead to severe congenital muscular dystrophies collectively known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which reduces cell adhesion to the extracellular matrix. Mutations in protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, have mainly been associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, specific molecular consequences of POMGNT1 deficiency on cell-cell adhesion are largely unknown. We used POMGNT1 knockout HEK293T cells and fibroblasts from an MEB patient to gain deeper insight into the molecular changes in POMGNT1 deficiency. Biochemical and molecular biological techniques combined with proteomics, glycoproteomics, and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. Moreover, in POMGNT1-deficient cells, ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable with the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general and suggests that the impact of changes in O-mannosylation on N-glycosylation has been underestimated.
Collapse
Affiliation(s)
- Sina Ibne Noor
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Natalie Rinis
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Markus F Bartels
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Patrick R Winterhalter
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Christina Hoelscher
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany; glyXera GmbH, Magdeburg, Germany
| | - Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany; glyXera GmbH, Magdeburg, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
23
|
Ang KP, Chan PF, Hamid RA. Antiproliferative activity exerted by tricyclohexylphosphanegold(I) n-mercaptobenzoate against MCF-7 and A2780 cell lines: the role of p53 signaling pathways. Biometals 2020; 34:141-160. [PMID: 33196940 DOI: 10.1007/s10534-020-00269-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/04/2020] [Indexed: 12/28/2022]
Abstract
Based on the recent studies depicting the potential of heterometallic gold complexes as potent antiproliferative agents, herein we first reported the preliminary mechanistic data on the in-vitro antiproliferative activity of tricyclohexylphosphanegold(I) n-mercaptobenzoate, Cy3PAu(n-MBA) where n = 2 (1), 3 (2) and 4 (3), and MBA = mercaptobenzoic acid, treated using MCF-7 breast cancer and A2780 ovarian cancer cells, respectively. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to assess the cytotoxicity of both cancer cells treated with 1-3, respectively. The IC50 of 1-3 were applied to the subsequent assays including cell invasion and thioredoxin reductase (TrxR) as well as ubiquitin activities specifically on Lys48 and Lys63-linked polyubiquitin chains via flowcytometric analysis. The mechanistic effect of 1-3 towards both cells were evaluated on human p53 signaling gene expressions via RT2 profiler Polymerase Chain Reductase (PCR) array. 1-3 were found to be highly cytotoxic towards both MCF-7 and A2780 cancer cell lines with the compounds were more sensitive towards the latter cells. 1-3 also suppressed TrxR and cell invasion activities by modulating p53 related genes related with proliferation, invasion and TrxR activities i.e. CCNB1, TP53, CDK4 etc. 1-3 also regulated Lys48 and Lys63-linked polyubiquitination by reactivation of p53, suggesting the ability of this gene in regulating inhibition of cytoskeletal reorganization via epithelial-mesenchymal transition (EMT), required for tumor progression. Taken together, the overall findings denoted that 1-3 exerted potent antiproliferative activity in MCF-7 and A2780 cells via activation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
24
|
Varankar SS, More M, Abraham A, Pansare K, Kumar B, Narayanan NJ, Jolly MK, Mali AM, Bapat SA. Functional balance between Tcf21-Slug defines cellular plasticity and migratory modalities in high grade serous ovarian cancer cell lines. Carcinogenesis 2020; 41:515-526. [PMID: 31241128 DOI: 10.1093/carcin/bgz119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cellular plasticity and transitional phenotypes add to complexities of cancer metastasis that can be initiated by single cell epithelial to mesenchymal transition (EMT) or cooperative cell migration (CCM). Our study identifies novel regulatory cross-talks between Tcf21 and Slug in mediating phenotypic and migration plasticity in high-grade serous ovarian adenocarcinoma (HGSC). Differential expression and subcellular localization associate Tcf21, Slug with epithelial, mesenchymal phenotypes, respectively; however, gene manipulation approaches identify their association with additional intermediate phenotypic states, implying the existence of a multistep epithelial-mesenchymal transition program. Live imaging further associated distinct migratory modalities with the Tcf21/Slug status of cell systems and discerned proliferative/passive CCM, active CCM and EMT modes of migration. Tcf21-Slug balance identified across a phenotypic spectrum in HGSC cell lines, associated with microenvironment-induced transitions and the emergence of an epithelial phenotype following drug exposure. Phenotypic transitions and associated functionalities following drug exposure were affirmed to ensue from occupancy of Slug promoter E-box sequences by Tcf21. Our study effectively provides a framework for understanding the relevance of ovarian cancer plasticity as a function of two transcription factors.
Collapse
Affiliation(s)
- Sagar S Varankar
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Madhuri More
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Ancy Abraham
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Kshama Pansare
- Institute for Plasma Research & Tata Memorial Centre, Kharghar, Navi-Mumbai, India
| | - Brijesh Kumar
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Nivedhitha J Narayanan
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Avinash M Mali
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| |
Collapse
|
25
|
Quaresma MC, Pankonien I, Clarke LA, Sousa LS, Silva IAL, Railean V, Doušová T, Fuxe J, Amaral MD. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis 2020; 11:920. [PMID: 33106471 PMCID: PMC7588414 DOI: 10.1038/s41419-020-03119-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial–mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
Collapse
Affiliation(s)
- Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luís S Sousa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Tereza Doušová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine (LABMED), Karolinska Institutet and Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
26
|
Gupta R, Kumar G, Jain BP, Chandra S, Goswami SK. Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT. Mol Cell Biochem 2020; 476:633-648. [PMID: 33083950 DOI: 10.1007/s11010-020-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/01/2022]
Abstract
SG2NA is a protein of the striatin family that organizes STRIPAK complexes. It has splice variants expressing differentially in tissues. Its 78 kDa isoform regulates cell cycle, maintains homeostasis in the endoplasmic reticulum, and prevents oxidative injuries. The 35 kDa variant is devoid of the signature WD-40 repeats in the carboxy terminal, and its function is unknown. We expressed it in NIH 3T3 cells that otherwise express 78 kDa variant only. These cells (35 EE) have altered morphology, faster rate of migration, and enhanced growth as measured by the MTT assay. Similar phenotypes were also seen in cells where the endogenous 78 kDa isoform was downregulated by siRNA (78 KD). Proteomic analyses showed that several cancer-associated proteins are modulated in both 35 EE and 78 KD cells. The 35 EE cells have diffused actin fibers, distinctive ultrastructure, reduced sialylation, and increased expression of MMP2 & 9. The 78 KD cells also had diffused actin fibers and an upregulated expression of MMP2. In both cells, markers epithelial to mesenchymal transition (EMT) viz, E- & N-cadherins, β-catenin, slug, vimentin, and ZO-1 were modulated partially in tune with the EMT process. Since NIH 3T3 cells are mesenchymal, we also expressed 35 kDa SG2NA in MCF-7 cells of epithelial origin. In these cells (MCF-7-35), the actin fibers were also diffused and the modulation of the markers was more in tune with the EMT process. However, unlike in 35 EE cells, in MCF-7-35 cells, membrane sialylation rather increased. We infer that ectopic expression of 35 kDa and downregulation of 78 kDa SG2NAs partially induce transformed phenotypes.
Collapse
Affiliation(s)
- Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110054, India
| | - Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Sunandini Chandra
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
27
|
NEDDylation negatively regulates ERRβ expression to promote breast cancer tumorigenesis and progression. Cell Death Dis 2020; 11:703. [PMID: 32839427 PMCID: PMC7445179 DOI: 10.1038/s41419-020-02838-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Estrogen-related receptor beta (ERRβ) is downregulated in breast cancer cells and its overexpression in breast cancer patients is positively correlated with an improved prognosis and prolonged relapse-free survival. Here, we unravelled a molecular mechanism for ERRβ downregulation in breast cancer. We found that ERRβ is a key substrate of the SCF complex and that NEDDylation can activate the Cullin subunits of the SCF complex to target ERRβ for degradation in breast cancer. Consistently, using in vitro and in vivo models, we demonstrated that MLN4924, a specific small molecule inhibitor of NEDDylation, can restore ERRβ expression and culminate in a reduction in cell proliferation and migration of breast cancer cells. We also showed that increased ERRβ expression promotes the upregulation of its target genes, including the tumour suppressors p21Cip1/Waf1 and E-cadherin, involved in cell proliferation and migration arrest at the gene promoter level. Interestingly, this tumour suppressive role of ERRβ does not depend on the expression of ERα in breast cancer. Moreover, our data revealed that the ERRβ recruits the transcription co-activator p300 to its targeted gene promoters to upregulate their expression. Collectively, our work revealed that restoration of ERRβ expression using the NEDDylation inhibitor MLN4924 can be a novel and effective strategy for breast cancer treatment.
Collapse
|
28
|
Alpha KM, Xu W, Turner CE. Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:1-52. [PMID: 32859368 PMCID: PMC7737098 DOI: 10.1016/bs.ircmb.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paxillin family of proteins, including paxillin, Hic-5, and leupaxin, are focal adhesion adaptor/scaffolding proteins which localize to cell-matrix adhesions and are important in cell adhesion and migration of both normal and cancer cells. Historically, the role of these proteins in regulating the actin cytoskeleton through focal adhesion-mediated signaling has been well documented. However, studies in recent years have revealed additional functions in modulating the microtubule and intermediate filament cytoskeletons to affect diverse processes including cell polarization, vesicle trafficking and mechanosignaling. Expression of paxillin family proteins in stromal cells is also important in regulating tumor cell migration and invasion through non-cell autonomous effects on the extracellular matrix. Both paxillin and Hic-5 can also influence gene expression through a variety of mechanisms, while their own expression is frequently dysregulated in various cancers. Accordingly, these proteins may serve as valuable targets for novel diagnostic and treatment approaches in cancer.
Collapse
Affiliation(s)
- Kyle M Alpha
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
29
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, Masarudin MJ, Abdullah R, Alitheen NB. Antitumor and Anti-Metastatic Effects of Citral-Loaded Nanostructured Lipid Carrier in 4T1-Induced Breast Cancer Mouse Model. Molecules 2020; 25:molecules25112670. [PMID: 32526880 PMCID: PMC7321383 DOI: 10.3390/molecules25112670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.); (H.S.R.); (N.R.Z.); (N.E.M.); (N.A.); (M.J.M.)
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Malaysia;
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.); (H.S.R.); (N.R.Z.); (N.E.M.); (N.A.); (M.J.M.)
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.); (H.S.R.); (N.R.Z.); (N.E.M.); (N.A.); (M.J.M.)
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.); (H.S.R.); (N.R.Z.); (N.E.M.); (N.A.); (M.J.M.)
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.); (H.S.R.); (N.R.Z.); (N.E.M.); (N.A.); (M.J.M.)
- UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras 56000, Kuala Lumpur, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.); (H.S.R.); (N.R.Z.); (N.E.M.); (N.A.); (M.J.M.)
| | - Rasedee Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.); (H.S.R.); (N.R.Z.); (N.E.M.); (N.A.); (M.J.M.)
- Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Correspondence: ; Tel.: +60-389467471
| |
Collapse
|
30
|
Dhawan U, Wang WL, Gautam B, Aerathupalathu Janardhanan J, Hsiao PC, Tu HL, Yu HH. Mechanotactic Activation of TGF-β by PEDOT Artificial Microenvironments Triggers Epithelial to Mesenchymal Transition. ACTA ACUST UNITED AC 2020; 4:e1900165. [PMID: 32293138 DOI: 10.1002/adbi.201900165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/13/2019] [Indexed: 11/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is integral for cells to acquire metastatic properties, and ample evidence links it to bioorganic framework of the tumor microenvironment (TME). Hydroxymethyl-functionalized 3,4-ethylenedioxythiophene polymer (PEDOT-OH) enables construction of diverse nanotopography size and morphologies and is therefore exploited to engineer organic artificial microenvironments bearing nanodots from 300 to 1000 nm in diameter to understand spatiotemporal EMT regulation by biophysical components of the TME. MCF-7 breast cancer cells are cultured on these artificial microenvironments, and temporal regulation of cellular morphology and EMT markers is investigated. The results show that upon physical stimulation, cells on 300 nm artificial microenvironments advance to EMT and display a decreased extracellular matrix (ECM) protein secretion. In contrast, cells on 500 nm artificial microenvironments are trapped in EMT-imbalance. Interestingly, cells on 1000 nm artificial microenvironments resemble those on control surfaces. Upon further investigation, it is found that EMT induction is triggered via transforming growth factor β (TGF-β) and ECM cleaving protein, matrix metalloproteinease-9. Immunostaining EMT proteins highlighted that EMT induction is achieved through attenuation of cell-cell and cell-microenvironment adhesions. The physical stimulation-induced TGF-β perturbation can have a profound impact on the understanding of tumor-promoting signaling cascades originated by cellular microenvironment.
Collapse
Affiliation(s)
- Udesh Dhawan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC
| | - Wei-Li Wang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC
| | - Bhaskarchand Gautam
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Taiwan International graduate Program (TIGP), Sustainable Chemical Science and technology (SCST), Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 1001 University Road, Hsinchu, Taiwan, 300, ROC
| | - Jayakrishnan Aerathupalathu Janardhanan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Taiwan International graduate Program (TIGP), Sustainable Chemical Science and technology (SCST), Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 1001 University Road, Hsinchu, Taiwan, 300, ROC
| | - Po-Chiang Hsiao
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Academia Road, Nankang, Taipei, 11529, Taiwan, ROC
| |
Collapse
|
31
|
Park HR, Elkin ER, Castillo-Castrejon M, Loch-Caruso R. Brominated diphenyl ether-47 differentially regulates cellular migration and invasion in a human first trimester trophoblast cell line. Reprod Toxicol 2020; 93:191-198. [PMID: 32142752 DOI: 10.1016/j.reprotox.2020.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardant compounds detected in human placenta and linked to adverse pregnancy outcomes. Impaired trophoblast migration and invasion during early pregnancy have been implicated as potential mechanisms of pregnancy disorders. The present study investigated the effect of BDE-47, a prevalent PBDE congener, on cell migration, invasion, and matrix metalloproteinase (MMP) expression in a human first trimester extravillous trophoblast cell line, HTR-8/SVneo. BDE-47 stimulated cell migration in HTR-SV/neo cells while decreasing invasion of cells into Matrigel. In addition, BDE-47 led to differential expression of MMP-1, -2, -3, and -9 at protein and mRNA levels. In summary, BDE-47 differentially regulated cellular migration and invasion with divergent changes in MMP expression in trophoblasts. Because proper regulation of trophoblast migration and invasion is critical for placental development and function, further research is warranted to determine if exposure to PBDEs disrupts trophoblast functions with increased risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA.
| | - Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| | - Marisol Castillo-Castrejon
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| |
Collapse
|
32
|
SMURF2 prevents detrimental changes to chromatin, protecting human dermal fibroblasts from chromosomal instability and tumorigenesis. Oncogene 2020; 39:3396-3410. [PMID: 32103168 DOI: 10.1038/s41388-020-1226-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
E3 ubiquitin ligases (E3s) play essential roles in the maintenance of tissue homeostasis under normal and stress conditions, as well as in disease states, particularly in cancer. However, the role of E3s in the initiation of human tumors is poorly understood. Previously, we reported that genetic ablation of the HECT-type E3 ubiquitin ligase Smurf2 induces carcinogenesis in mice; but whether and how these findings are pertinent to the inception of human cancer remain unknown. Here we show that SMURF2 is essential to protect human dermal fibroblasts (HDFs) from malignant transformation, and its depletion converts HDFs into tumorigenic entity. This phenomenon was associated with the radical changes in chromatin structural and epigenetic landscape, dysregulated gene expression and cell-cycle control, mesenchymal-to-epithelial transition and impaired DNA damage response. Furthermore, we show that SMURF2-mediated tumor suppression is interlinked with SMURF2's ability to regulate the expression of two central chromatin modifiers-an E3 ubiquitin ligase RNF20 and histone methyltransferase EZH2. Silencing these factors significantly reduced the growth and transformation capabilities of SMURF2-depleted cells. Finally, we demonstrate that SMURF2-compromised HDFs are highly tumorigenic in nude mice. These findings suggest the critical role that SMURF2 plays in preventing malignant alterations, chromosomal instability and cancer.
Collapse
|
33
|
Shin SC, Thomas D, Radhakrishnan P, Hollingsworth MA. Invasive phenotype induced by low extracellular pH requires mitochondria dependent metabolic flexibility. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30284-9. [PMID: 32081432 PMCID: PMC9894376 DOI: 10.1016/j.bbrc.2020.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/04/2023]
Abstract
Metabolic reprogramming is required for tumors to meet the bioenergetic and biosynthetic demands of malignant progression. Numerous studies have established a causal relationship between oncogenic drivers and altered metabolism, most prominently aerobic glycolysis, which supports rapid growth and affects the tumor microenvironment. Less is known about how the microenvironment modulates cancer metabolism. In the present study, we found that low extracellular pH, a common feature of solid tumors, provoked PDAC cells to decrease glycolysis and become resistant to glucose starvation. This was accompanied by increased dependency on mitochondrial metabolism, in which long-chain fatty acids became a primary fuel source. Consistent with previous reports, low pH enhanced tumor cell invasiveness. A novel finding was that limiting PDAC metabolic flexibility by either suppression of oxidative phosphorylation capacity or the pharmacological inhibition of fatty-acid oxidation prevented invasion induced by low extracellular pH. Altogether, our results suggest for the first time that targeting fatty-acid oxidation may be a viable adjunct strategy for preventing metastatic progression of pancreatic cancer mediated by the acidic tumor compartment.
Collapse
Affiliation(s)
- Simon C Shin
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Divya Thomas
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Prakash Radhakrishnan
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
34
|
Chemotherapeutic Stress Influences Epithelial-Mesenchymal Transition and Stemness in Cancer Stem Cells of Triple-Negative Breast Cancer. Int J Mol Sci 2020; 21:ijms21020404. [PMID: 31936348 PMCID: PMC7014166 DOI: 10.3390/ijms21020404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by the absence of estrogen and progesterone receptors (ER, PR) and lacking an overexpression of human epidermal growth factor receptor 2 (HER2). Apart from this lack of therapeutic targets, TNBC also shows an increased capacity for early metastasis and therapy resistance. Currently, many TNBC patients receive neoadjuvant chemotherapy (NACT) upon detection of the disease. With TNBC likely being driven at least in part by a cancer stem-like cell type, we wanted to evaluate the response of primary cancer stem cells (CSCs) to standard chemotherapeutics. Therefore, we set up a survival model using primary CSCs to mimic tumor cells in patients under chemotherapy. Breast cancer stem cells (BCSCs) were exposed to chemotherapeutics with a sublethal dose for six days. Surviving cells were allowed to recover in culture medium without chemotherapeutics. Surviving and recovered cells were examined in regard to proliferation, migratory capacity, sphere forming capacity, epithelial–mesenchymal transition (EMT) factor expression at the mRNA level, and cancer-related microRNA (miRNA) profile. Our results indicate that chemotherapeutic stress enhanced sphere forming capacity of BCSCs, and changed cell morphology and EMT-related gene expression at the mRNA level, whereas the migratory capacity was unaffected. Six miRNAs were identified as potential regulators in this process.
Collapse
|
35
|
The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Curr Top Dev Biol 2020; 136:141-165. [DOI: 10.1016/bs.ctdb.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Dubois F, Keller M, Hoflack J, Maille E, Antoine M, Westeel V, Bergot E, Quoix E, Lavolé A, Bigay-Game L, Pujol JL, Langlais A, Morin F, Zalcman G, Levallet G. Role of the YAP-1 Transcriptional Target cIAP2 in the Differential Susceptibility to Chemotherapy of Non-Small-Cell Lung Cancer (NSCLC) Patients with Tumor RASSF1A Gene Methylation from the Phase 3 IFCT-0002 Trial. Cancers (Basel) 2019; 11:cancers11121835. [PMID: 31766357 PMCID: PMC6966477 DOI: 10.3390/cancers11121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
RASSF1 gene methylation predicts longer disease-free survival (DFS) and overall survival (OS) in patients with early-stage non-small-cell lung cancer treated using paclitaxel-based neo-adjuvant chemotherapy compared to patients receiving a gemcitabine-based regimen, according to the randomized Phase 3 IFCT (Intergroupe Francophone de Cancérologie Thoracique)-0002 trial. To better understand these results, this study used four human bronchial epithelial cell (HBEC) models (HBEC-3, HBEC-3-RasV12, A549, and H1299) and modulated the expression of RASSF1A or YAP-1. Wound-healing, invasion, proliferation and apoptosis assays were then carried out and the expression of YAP-1 transcriptional targets was quantified using a quantitative polymerase chain reaction. This study reports herein that gemcitabine synergizes with RASSF1A, silencing to increase the IAP-2 expression, which in turn not only interferes with cell proliferation but also promotes cell migration. This contributes to the aggressive behavior of RASSF1A-depleted cells, as confirmed by a combined knockdown of IAP-2 and RASSF1A. Conversely, paclitaxel does not increase the IAP-2 expression but limits the invasiveness of RASSF1A-depleted cells, presumably by rescuing microtubule stabilization. Overall, these data provide a functional insight that supports the prognostic value of RASSF1 gene methylation on survival of early-stage lung cancer patients receiving perioperative paclitaxel-based treatment compared to gemcitabine-based treatment, identifying IAP-2 as a novel biomarker indicative of YAP-1-mediated modulation of chemo-sensitivity in lung cancer.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
| | - Maureen Keller
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Julien Hoflack
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Elodie Maille
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, INSERM UMR 1086 ANTICIPE, 14032 Caen, France
| | - Martine Antoine
- Department of Pathology, Hôpital Tenon, AP-HP, 75020 Paris, France;
| | - Virginie Westeel
- Department of Pneumology, University Hospital of Besançon, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Emmanuel Bergot
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, 14033 Caen, France
| | - Elisabeth Quoix
- Department of Pneumology, University Hospital, 67000 Strasbourg, France;
| | - Armelle Lavolé
- Sorbonne Université, GRC n 04, Theranoscan, AP-HP, Service de Pneumologie, Hôpital Tenon, 75020 Paris, France;
| | - Laurence Bigay-Game
- Pneumology Department, Toulouse-Purpan, University Hospital Toulouse, 31300 Toulouse, France;
| | - Jean-Louis Pujol
- Département d’Oncologie Thoracique, CHU Montpellier, Univ. Montpellier, 34595 Montpellier, France;
| | - Alexandra Langlais
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Gérard Zalcman
- U830 INSERM “Genetics and Biology of Cancers, A.R.T Group”, Curie Institute, 75005 Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, 75018 Paris, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| | - Guénaëlle Levallet
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| |
Collapse
|
37
|
Ljepoja B, Schreiber C, Gegenfurtner FA, García-Roman J, Köhler B, Zahler S, Rädler JO, Wagner E, Roidl A. Inducible microRNA-200c decreases motility of breast cancer cells and reduces filamin A. PLoS One 2019; 14:e0224314. [PMID: 31747409 PMCID: PMC6867627 DOI: 10.1371/journal.pone.0224314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer progression and metastases are frequently related to changes of cell motility. Amongst others, the microRNA-200c (miR-200c) was shown to maintain the epithelial state of cells and to hamper migration. Here, we describe two miR-200c inducible breast cancer cell lines, derived from miR-200c knock-out MCF7 cells as well as from the miR-200c-negative MDA-MB-231 cells and report on the emerging phenotypic effects after miR-200s induction. The induction of miR-200c expression seems to effect a rapid reduction of cell motility, as determined by 1D microlane migration assays. Sustained expression of miR200c leads to a changed morphology and reveals a novel mechanism by which miR-200c interferes with cytoskeletal components. We find that filamin A expression is attenuated by miRNA-200c induced downregulation of the transcription factors c-Jun and MRTF/SRF. This potentially novel pathway that is independent of the prominent ZEB axis could lead to a broader understanding of the role that miR200c plays in cancer metastasis.
Collapse
Affiliation(s)
- Bojan Ljepoja
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian A. Gegenfurtner
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan García-Roman
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bianca Köhler
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
38
|
Rynning I, Neca J, Vrbova K, Libalova H, Rossner P, Holme JA, Gützkow KB, Afanou AKJ, Arnoldussen YJ, Hruba E, Skare Ø, Haugen A, Topinka J, Machala M, Mollerup S. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses. Toxicol Sci 2019; 166:51-64. [PMID: 30010986 PMCID: PMC6204768 DOI: 10.1093/toxsci/kfy183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to diesel exhaust may cause lung cancer in humans. Mechanisms include DNA-damage and inflammatory responses. Here, the potential of NIST SRM2975 diesel exhaust particles (DEP) to transform human bronchial epithelial cells (HBEC3) in vitro was investigated. Long-term exposure of HBEC3 to DEP led to increased colony growth in soft agar. Several DEP-transformed cell lines were established and based on the expression of epithelial-to-mesenchymal-transition (EMT) marker genes, one of them (T2-HBEC3) was further characterized. T2-HBEC3 showed a mesenchymal/fibroblast-like morphology, reduced expression of CDH1, and induction of CDH2 and VIM. T2-HBEC3 had reduced migration potential compared with HBEC3 and little invasion capacity. Gene expression profiling showed baseline differences between HBEC3 and T2-HBEC3 linked to lung carcinogenesis. Next, to assess differences in sensitivity to DEP between parental HBEC3 and T2-HBEC3, gene expression profiling was carried out after DEP short-term exposure. Results revealed changes in genes involved in metabolism of xenobiotics and lipids, as well as inflammation. HBEC3 displayed a higher steady state of IL1B gene expression and release of IL-1β compared with T2-HBEC3. HBEC3 and T2-HBEC3 showed similar susceptibility towards DEP-induced genotoxic effects. Liquid-chromatography-tandem-mass-spectrometry was used to measure secretion of eicosanoids. Generally, major prostaglandin species were released in higher concentrations from T2-HBEC3 than from HBEC3 and several analytes were altered after DEP-exposure. In conclusion, long-term exposure to DEP-transformed human bronchial epithelial cells in vitro. Differences between HBEC3 and T2-HBEC3 regarding baseline levels and DEP-induced changes of particularly CYP1A1, IL-1β, PGE2, and PGF2α may have implications for acute inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Iselin Rynning
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Jiri Neca
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Helena Libalova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jørn A Holme
- Division of Infection Control, Environment and Health, Department of Air and Noise
| | - Kristine B Gützkow
- Division of Infection Control, Department of Molecular Biology, Norwegian Institute of Public Health, N-0304 Oslo, Norway
| | - Anani K Johnny Afanou
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Yke J Arnoldussen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Eva Hruba
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Steen Mollerup
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| |
Collapse
|
39
|
Yoon SY, Dieterich LC, Tacconi C, Sesartic M, He Y, Brunner L, Kwon O, Detmar M. An important role of podoplanin in hair follicle growth. PLoS One 2019; 14:e0219938. [PMID: 31335913 PMCID: PMC6650137 DOI: 10.1371/journal.pone.0219938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Podoplanin (PDPN) is a glycoprotein that is expressed by various cell types, including keratinocytes, fibroblasts, and lymphatic endothelial cells. We found that PDPN is expressed in the hair follicle (HF) keratinocyte region and HF stem cell area during the late anagen phase but not during the telogen phase in mice. Importantly, keratinocyte-specific PDPN deletion in mice (K5-Cre;PDPNflox/flox) promoted anagen HF growth after depilation-induced HF regeneration as compared to control mice. RNA sequencing, followed by gene ontology analysis, showed down-regulation of focal adhesion and extracellular matrix interaction pathways in HF stem cells isolated from K5-Cre;PDPNflox/flox mice as compared to control mice. Furthermore, HF keratinocytes isolated from K5-Cre;PDPNflox/flox mice exhibited a decreased ability to interact with collagen type I in cell adhesion assays. Taken together, these results show that PDPN deletion promotes HF cycling, possibly via reduced focal adhesion and concomitantly enhanced migration of HF stem cells towards the bulb region. They also indicate potential new therapeutic strategies for the treatment of conditions associated with hair loss.
Collapse
Affiliation(s)
- Sun-Young Yoon
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Marko Sesartic
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Lorenz Brunner
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Di Donato M, Cernera G, Migliaccio A, Castoria G. Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel) 2019; 11:E784. [PMID: 31174415 PMCID: PMC6627659 DOI: 10.3390/cancers11060784] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Resistance to hormone therapy and disease progression is the major challenge in clinical management of prostate cancer (PC). Drugs currently used in PC therapy initially show a potent antitumor effects, but PC gradually develops resistance, relapses and spreads. Most patients who fail primary therapy and have recurrences eventually develop castration-resistant prostate cancer (CRPC), which is almost incurable. The nerve growth factor (NGF) acts on a variety of non-neuronal cells by activating the NGF tyrosine-kinase receptor, tropomyosin receptor kinase A (TrkA). NGF signaling is deregulated in PC. In androgen-dependent PC cells, TrkA mediates the proliferative action of NGF through its crosstalk with the androgen receptor (AR). Epithelial PC cells, however, acquire the ability to express NGF and TrkA, as the disease progresses, indicating a role for NGF/TrkA axis in PC progression and androgen-resistance. We here report that once activated by NGF, TrkA mediates proliferation, invasiveness and epithelial-mesenchymal transition (EMT) in various CRPC cells. NGF promotes organoid growth in 3D models of CRPC cells, and specific inhibition of TrkA impairs all these responses. Thus TrkA represents a new biomarker to target in CRPC.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gustavo Cernera
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| |
Collapse
|
41
|
Xanthium strumarium Fruit Extract Inhibits ATG4B and Diminishes the Proliferation and Metastatic Characteristics of Colorectal Cancer Cells. Toxins (Basel) 2019; 11:toxins11060313. [PMID: 31159487 PMCID: PMC6628400 DOI: 10.3390/toxins11060313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved pathway to degrade damaged proteins and organelles for subsequent recycling in cells during times of nutrient deprivation. This process plays an important role in tumor development and progression, allowing cancer cells to survive in nutrient-poor environments. The plant kingdom provides a powerful source for new drug development to treat cancer. Several plant extracts induce autophagy in cancer cells. However, little is known about the role of plant extracts in autophagy inhibition, particularly autophagy-related (ATG) proteins. In this study, we employed S-tagged gamma-aminobutyric acid receptor associated protein like 2 (GABARAPL2) as a reporter to screen 48 plant extracts for their effects on the activity of autophagy protease ATG4B. Xanthium strumarium and Tribulus terrestris fruit extracts were validated as potential ATG4B inhibitors by another reporter substrate MAP1LC3B-PLA2. The inhibitory effects of the extracts on cellular ATG4B and autophagic flux were further confirmed. Moreover, the plant extracts significantly reduced colorectal cancer cell viability and sensitized cancer cells to starvation conditions. The fruit extract of X. strumarium consistently diminished cancer cell migration and invasion. Taken together, the results showed that the fruit of X. strumarium may have an active ingredient to inhibit ATG4B and suppress the proliferation and metastatic characteristics of colorectal cancer cells.
Collapse
|
42
|
Rossi V, Di Zazzo E, Galasso G, De Rosa C, Abbondanza C, Sinisi AA, Altucci L, Migliaccio A, Castoria G. Estrogens Modulate Somatostatin Receptors Expression and Synergize With the Somatostatin Analog Pasireotide in Prostate Cells. Front Pharmacol 2019; 10:28. [PMID: 30828298 PMCID: PMC6384260 DOI: 10.3389/fphar.2019.00028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PC) is one of the most frequently diagnosed cancers and a leading cause of cancer-related deaths in Western society. Current PC therapies prevalently target the functions of androgen receptor (AR) and may only be effective within short time periods, beyond which the majority of PC patients progress to castration-resistant PC (CRPC) and metastatic disease. The role of estradiol/estradiol receptor (ER) axis in prostate transformation and PC progression is well established. Further, considerable efforts have been made to investigate the mechanism by which somatostatin (SST) and somatostatin receptors (SSTRs) influence PC growth and progression. A number of therapeutic strategies, such as the combination of SST analogs with other drugs, show, indeed, strong promise. However, the effect of the combined treatment of SST analogs and estradiol on proliferation, epithelial mesenchyme transition (EMT) and migration of normal- and cancer-derived prostate cells has not been investigated so far. We now report that estradiol plays anti-proliferative and pro-apoptotic effect in non-transformed EPN prostate cells, which express both ERα and ERβ. A weak apoptotic effect is observed in transformed CPEC cells that only express low levels of ERβ. Estradiol increases, mainly through ERα activation, the expression of SSTRs in EPN, but not CPEC cells. As such, the hormone enhances the anti-proliferative effect of the SST analog, pasireotide in EPN, but not CPEC cells. Estradiol does not induce EMT and the motility of EPN cells, while it promotes EMT and migration of CPEC cells. Addition of pasireotide does not significantly modify these responses. Altogether, our results suggest that pasireotide may be used, alone or in combination with other drugs, to limit the growth of prostate proliferative diseases, provided that both ER isoforms (α and β) are present. Further investigations are needed to better define the cross talk between estrogens and SSTRs as well as its role in PC.
Collapse
Affiliation(s)
- Valentina Rossi
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Erika Di Zazzo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina De Rosa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ciro Abbondanza
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio A Sinisi
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
43
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
44
|
Zhang Z, Tan X, Luo J, Cui B, Lei S, Si Z, Shen L, Yao H. GNA13 promotes tumor growth and angiogenesis by upregulating CXC chemokines via the NF-κB signaling pathway in colorectal cancer cells. Cancer Med 2018; 7:5611-5620. [PMID: 30267476 PMCID: PMC6246959 DOI: 10.1002/cam4.1783] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/15/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
GNA13 has been found overexpressed in various types of cancer, which is related to tumor metastasis and progression. However, the biological functions of GNA13 in colorectal cancer (CRC) progression remain unclear. This study aimed to explore the role of GNA13 in CRC and investigate the mechanism of how GNA13 promotes tumor growth. Interestingly, our findings showed that GNA13 is commonly upregulated in CRC, where these events are associated with a worse histologic grade and poor survival. Increased expression levels of GNA13 promoted cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas GNA13 silencing abrogated these malignant phenotypes. In addition, overexpressing GNA13 in cancer cells increased the levels of the chemokines CXCL1, CXCL2, and CXCL4, which contributed to CRC proliferation and colony formation. Moreover, our mechanistic investigations suggest that the NF-κB/p65 signaling pathway was activated by the increase in GNA13 levels. Inhibiting the NF-κB/p65 pathway with an inhibitor decreased GNA13-induced migration, invasion and CXCL chemokine level increases, indicating the critical role of NF-κB/p65 signaling in mediating the effects of GNA13 in CRC. Together, these results demonstrate a key role of GNA13 overexpression in CRC that contributes to malignant behavior in cancer cells, at least in part through stimulating angiogenesis and increasing the levels of the NF-κB-dependent chemokines CXCL1, CXCL2, and CXCL4.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiao Tan
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jing Luo
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Beibei Cui
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sanlin Lei
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhongzhou Si
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liangfang Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hongliang Yao
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
45
|
Mierke CT, Sauer F, Grosser S, Puder S, Fischer T, Käs JA. The two faces of enhanced stroma: Stroma acts as a tumor promoter and a steric obstacle. NMR IN BIOMEDICINE 2018; 31:e3831. [PMID: 29215759 DOI: 10.1002/nbm.3831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
In addition to genetic, morphological and biochemical alterations in cells, a key feature of the malignant progression of cancer is the stroma, including cancer cell motility as well as the emergence of metastases. Our current knowledge with regard to the biophysically driven experimental approaches of cancer progression indicates that mechanical aberrations are major contributors to the malignant progression of cancer. In particular, the mechanical probing of the stroma is of great interest. However, the impact of the tumor stroma on cellular motility, and hence the metastatic cascade leading to the malignant progression of cancer, is controversial as there are two different and opposing effects within the stroma. On the one hand, the stroma can promote and enhance the proliferation, survival and migration of cancer cells through mechanotransduction processes evoked by fiber alignment as a result of increased stroma rigidity. This enables all types of cancer to overcome restrictive biological capabilities. On the other hand, as a result of its structural constraints, the stroma acts as a steric obstacle for cancer cell motility in dense three-dimensional extracellular matrices, when the pore size is smaller than the cell's nucleus. The mechanical properties of the stroma, such as the tissue matrix stiffness and the entire architectural network of the stroma, are the major players in providing the optimal environment for cancer cell migration. Thus, biophysical methods determining the mechanical properties of the stroma, such as magnetic resonance elastography, are critical for the diagnosis and prediction of early cancer stages. Fibrogenesis and cancer are tightly connected, as there is an elevated risk of cancer on cystic fibrosis or, subsequently, cirrhosis. This also applies to the subsequent metastatic process.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Frank Sauer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Josef Alfons Käs
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
46
|
TMEM165, a Golgi transmembrane protein, is a novel marker for hepatocellular carcinoma and its depletion impairs invasion activity. Oncol Rep 2018; 40:1297-1306. [PMID: 30015898 PMCID: PMC6072395 DOI: 10.3892/or.2018.6565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/26/2018] [Indexed: 01/13/2023] Open
Abstract
Transmembrane protein 165 (TMEM165), a Golgi protein, functions in ion homeostasis and vesicular trafficking in the Golgi apparatus. While mutations in TMEM165 are known to cause human 'congenital disorders of glycosylation', a recessive autosomal metabolic disease, the potential association of this protein with human cancer development has not been explored to date. In the present study, we revealed that TMEM165 is overexpressed in HCC and its depletion weakens the invasive activity of cancer cells through suppression of matrix metalloproteinase‑2 (MMP‑2) expression. Levels of TMEM165 mRNA and protein were clearly increased in HCC patient tissues and cell cultures. Quantitative real‑time RT‑PCR analysis of fresh HCC tissues (n=88) revealed association of TMEM165 overexpression with more frequent macroscopic vascular invasion, microscopic serosal invasion and higher α‑fetoprotein levels. Notably, depletion of TMEM165 led to a marked decrease in the invasive activity of two different HCC cell types, Huh7 and SNU475, accompanied by downregulation of MMP‑2. Our collective findings clearly indicated that TMEM165 contributed to the progression of HCC by promoting invasive activity, supporting its utility as a novel biomarker and therapeutic target for cancer.
Collapse
|
47
|
The role of SerpinB2 in human bronchial epithelial cells responses to particulate matter exposure. Arch Toxicol 2018; 92:2923-2933. [DOI: 10.1007/s00204-018-2259-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
|
48
|
Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): The 'fittest' for metastasis? Biochim Biophys Acta Rev Cancer 2018; 1870:151-157. [PMID: 29997040 DOI: 10.1016/j.bbcan.2018.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Metastasis is the leading cause of mortality among cancer patients. Dissemination enabled by an epithelial-to-mesenchymal transition (EMT) of carcinoma cells has long been considered to be the predominant mechanism for carcinoma metastasis, based on overexpression studies of many EMT-inducing transcription factors. Individual CTCs - and a binary framework of EMT - have been long considered to be sufficient and necessary condition for metastasis. However, recent studies have shown that collective migration and invasion through tumor buds and clusters of Circulating Tumor Cells (CTCs) as possibly being the prevalent mode of metastasis, although individual CTCs may still contribute to metastasis. These strands and clusters have been proposed to often exhibit a hybrid epithelial/mesenchymal (E/M) phenotype where cells retain epithelial traits of cell-cell adhesion and simultaneously gain mesenchymal characteristics of migration and invasion. To highlight the crucial questions regarding metastasis, we define EMT in a non-binary and context-specific manner, suggest that it can be viewed as a trans-differentiation process, and illustrate the implications of hybrid E/M phenotype(s) and cluster-based dissemination in metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
49
|
The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochem Cell Biol 2018; 150:133-147. [DOI: 10.1007/s00418-018-1680-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
|
50
|
Abdulkareem AA, Shelton RM, Landini G, Cooper PR, Milward MR. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res 2018; 53:565-574. [PMID: 29704258 DOI: 10.1111/jre.12546] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells acquire a mesenchymal-like phenotype and this may be induced by exposure to gram-negative bacteria. It has been proposed that EMT is responsible for compromising epithelial barrier function in the pathogenesis of several diseases. However, the possible role of EMT in the pathogenesis of periodontitis has not previously been investigated. The aim of this study therefore was to investigate whether gram-negative, anaerobic periodontal pathogens could trigger EMT in primary oral keratinocytes in vitro. MATERIAL AND METHODS Primary oral keratinocytes were harvested from labial mandibular mucosa of Wistar Han rats. Cells were exposed to heat-killed Fusobacterium nucleatum and Porphyromonas gingivalis (100 bacteria/epithelial cell) and to 20 μg/mL of Escherichia coli lipopolysaccharide over an 8-day period. Exposure to bacteria did not significantly change epithelial cell number or vitality in comparison with unstimulated controls at the majority of time-points examined. Expression of EMT marker genes was determined by semiquantitative RT-PCR at 1, 5, and 8 days following stimulation. The expression of EMT markers was also assessed by immunofluorescence (E-cadherin and vimentin) and using immunocytochemistry to determine Snail activation. The loss of epithelial monolayer coherence, in response to bacterial challenge, was determined by measuring trans-epithelial electrical resistance. The induction of a migratory phenotype was investigated using scratch-wound and transwell migration assays. RESULTS Exposure of primary epithelial cell cultures to periodontal pathogens was associated with a significant decrease in transcription (~3-fold) of E-cadherin and the upregulation of N-cadherin, vimentin, Snail, matrix metalloproteinase-2 (~3-5 fold) and toll-like receptor 4. Bacterial stimulation (for 8 days) also resulted in an increased percentage of vimentin-positive cells (an increase of 20% after stimulation with P. gingivalis and an increase of 30% after stimulation with F. nucleatum, compared with controls). Furthermore, periodontal pathogens significantly increased the activation of Snail (60%) and cultures exhibited a decrease in electrical impedance (P < .001) in comparison with unexposed controls. The migratory ability of the cells increased significantly in response to bacterial stimulation, as shown by both the number of migrated cells and scratch-wound closure rates. CONCLUSION Prolonged exposure of primary rat oral keratinocyte cultures to periodontal pathogens generated EMT-like features, which introduces the possibility that this process may be involved in loss of epithelial integrity during periodontitis.
Collapse
Affiliation(s)
- A A Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - R M Shelton
- Biomaterials, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - G Landini
- Oral Pathology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - P R Cooper
- Oral Biology & Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - M R Milward
- Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| |
Collapse
|