1
|
Grasberger H, Dumitrescu AM, Liao XH, Swanson EG, Weiss RE, Srichomkwun P, Pappa T, Chen J, Yoshimura T, Hoffmann P, França MM, Tagett R, Onigata K, Costagliola S, Ranchalis J, Vollger MR, Stergachis AB, Chong JX, Bamshad MJ, Smits G, Vassart G, Refetoff S. STR mutations on chromosome 15q cause thyrotropin resistance by activating a primate-specific enhancer of MIR7-2/MIR1179. Nat Genet 2024; 56:877-888. [PMID: 38714869 PMCID: PMC11472772 DOI: 10.1038/s41588-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Elliott G Swanson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roy E Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Theodora Pappa
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Phillip Hoffmann
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Rebecca Tagett
- Michigan Medicine BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X Chong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Center of Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, and Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Committee on Genetics, The University of Chicago, Chicago, IL, USA.
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Arora S, Yang J, Akiyama T, James DQ, Morrissey A, Blanda TR, Badjatia N, Lai WK, Ko MS, Pugh BF, Mahony S. Joint sequence & chromatin neural networks characterize the differential abilities of Forkhead transcription factors to engage inaccessible chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561228. [PMID: 37873361 PMCID: PMC10592618 DOI: 10.1101/2023.10.06.561228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The DNA-binding activities of transcription factors (TFs) are influenced by both intrinsic sequence preferences and extrinsic interactions with cell-specific chromatin landscapes and other regulatory proteins. Disentangling the roles of these binding determinants remains challenging. For example, the FoxA subfamily of Forkhead domain (Fox) TFs are known pioneer factors that can bind to relatively inaccessible sites during development. Yet FoxA TF binding also varies across cell types, pointing to a combination of intrinsic and extrinsic forces guiding their binding. While other Forkhead domain TFs are often assumed to have pioneering abilities, how sequence and chromatin features influence the binding of related Fox TFs has not been systematically characterized. Here, we present a principled approach to compare the relative contributions of intrinsic DNA sequence preference and cell-specific chromatin environments to a TF's DNA-binding activities. We apply our approach to investigate how a selection of Fox TFs (FoxA1, FoxC1, FoxG1, FoxL2, and FoxP3) vary in their binding specificity. We over-express the selected Fox TFs in mouse embryonic stem cells, which offer a platform to contrast each TF's binding activity within the same preexisting chromatin background. By applying a convolutional neural network to interpret the Fox TF binding patterns, we evaluate how sequence and preexisting chromatin features jointly contribute to induced TF binding. We demonstrate that Fox TFs bind different DNA targets, and drive differential gene expression patterns, even when induced in identical chromatin settings. Despite the association between Forkhead domains and pioneering activities, the selected Fox TFs display a wide range of affinities for preexiting chromatin states. Using sequence and chromatin feature attribution techniques to interpret the neural network predictions, we show that differential sequence preferences combined with differential abilities to engage relatively inaccessible chromatin together explain Fox TF binding patterns at individual sites and genome-wide.
Collapse
Affiliation(s)
- Sonny Arora
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Jianyu Yang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
- Current address: School of Medicine, Yokohama City University, Japan
| | - Daniela Q. James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Thomas R. Blanda
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - William K.M. Lai
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Minoru S.H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - B. Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| |
Collapse
|
3
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Mutation of foxl1 Results in Reduced Cartilage Markers in a Zebrafish Model of Otosclerosis. Genes (Basel) 2022; 13:genes13071107. [PMID: 35885890 PMCID: PMC9319681 DOI: 10.3390/genes13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
Bone diseases such as otosclerosis (conductive hearing loss) and osteoporosis (low bone mineral density) can result from the abnormal expression of genes that regulate cartilage and bone development. The forkhead box transcription factor FOXL1 has been identified as the causative gene in a family with autosomal dominant otosclerosis and has been reported as a candidate gene in GWAS meta-analyses for osteoporosis. This potentially indicates a novel role for foxl1 in chondrogenesis, osteogenesis, and bone remodelling. We created a foxl1 mutant zebrafish strain as a model for otosclerosis and osteoporosis and examined jaw bones that are homologous to the mammalian middle ear bones, and mineralization of the axial skeleton. We demonstrate that foxl1 regulates the expression of collagen genes such as collagen type 1 alpha 1a and collagen type 11 alpha 2, and results in a delay in jawbone mineralization, while the axial skeleton remains unchanged. foxl1 may also act with other forkhead genes such as foxc1a, as loss of foxl1 in a foxc1a mutant background increases the severity of jaw calcification phenotypes when compared to each mutant alone. Our zebrafish model demonstrates atypical cartilage formation and mineralization in the zebrafish craniofacial skeleton in foxl1 mutants and demonstrates that aberrant collagen expression may underlie the development of otosclerosis.
Collapse
|
5
|
LncRNA TCONS_00041002 improves neurological outcomes in neonatal rats with hypoxic-ischemic encephalopathy by inhibiting apoptosis and promoting neuron survival. Exp Neurol 2021; 346:113835. [PMID: 34390705 DOI: 10.1016/j.expneurol.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
It has been reported that Neonatal hypoxic-ischemic encephalopathy (HIE) could induce apoptosis in neonates and result in cognitive and sensory impairments, which are associated with poor developmental outcomes. Despite the improvement in neonatology, there is still no clinically effective treatment for HIE presently. Long non-coding RNAs (lncRNAs) play important roles in cellular homeostasis. Nevertheless, their effects in developing rat brains with HI is little known. Here, we established HIE model in neonate rats and explored the expression and function of lncRNAs in HI, and found the expression of 19 lncRNAs was remarkably changed in the brains of HI rats, compared to the sham group. Among them, three lncRNAs (TCONS_00041002, TCONS_00070547, TCONS_00045572) were enriched in the apoptotic process via gene ontology (GO) and pathway analysis, which were selected for the further qRT-PCR verification. Through lentivirus-mediated overexpression of these three lncRNAs, we found that overexpression of TCONS_00041002 attenuated the cell apoptosis, and increased the vitality of neurons after oxygen-glucose deprivation (OGD), therefore reduced the brain infarction and further promoted the neuron survival as well as improved the neurological disorders in the rats subjected to HIE. What's more, ceRNA network prediction and co-expression verification showed that the expression of TCONS_00041002 was positively associated with Foxe1, Pawr and Nfkbiz. Altogether, this study has exhibited that lncRNA TCONS_00041002 participates in the cell apoptosis and neuronal survival of HIE and represents a potential new target for the treatment of HIE.
Collapse
|
6
|
Forkhead Transcription Factors in Health and Disease. Trends Genet 2021; 37:460-475. [DOI: 10.1016/j.tig.2020.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
|
7
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
8
|
Saqcena M, Leandro-Garcia LJ, Maag JLV, Tchekmedyian V, Krishnamoorthy GP, Tamarapu PP, Tiedje V, Reuter V, Knauf JA, de Stanchina E, Xu B, Liao XH, Refetoff S, Ghossein R, Chi P, Ho AL, Koche RP, Fagin JA. SWI/SNF Complex Mutations Promote Thyroid Tumor Progression and Insensitivity to Redifferentiation Therapies. Cancer Discov 2020; 11:1158-1175. [PMID: 33318036 DOI: 10.1158/2159-8290.cd-20-0735] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022]
Abstract
Mutations of subunits of the SWI/SNF chromatin remodeling complexes occur commonly in cancers of different lineages, including advanced thyroid cancers. Here we show that thyroid-specific loss of Arid1a, Arid2, or Smarcb1 in mouse BRAFV600E-mutant tumors promotes disease progression and decreased survival, associated with lesion-specific effects on chromatin accessibility and differentiation. As compared with normal thyrocytes, BRAFV600E-mutant mouse papillary thyroid cancers have decreased lineage transcription factor expression and accessibility to their target DNA binding sites, leading to impairment of thyroid-differentiated gene expression and radioiodine incorporation, which is rescued by MAPK inhibition. Loss of individual SWI/SNF subunits in BRAF tumors leads to a repressive chromatin state that cannot be reversed by MAPK pathway blockade, rendering them insensitive to its redifferentiation effects. Our results show that SWI/SNF complexes are central to the maintenance of differentiated function in thyroid cancers, and their loss confers radioiodine refractoriness and resistance to MAPK inhibitor-based redifferentiation therapies. SIGNIFICANCE: Reprogramming cancer differentiation confers therapeutic benefit in various disease contexts. Oncogenic BRAF silences genes required for radioiodine responsiveness in thyroid cancer. Mutations in SWI/SNF genes result in loss of chromatin accessibility at thyroid lineage specification genes in BRAF-mutant thyroid tumors, rendering them insensitive to the redifferentiation effects of MAPK blockade.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jesper L V Maag
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vatche Tchekmedyian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasanna P Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vera Tiedje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vincent Reuter
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Samuel Refetoff
- Departments of Medicine and Pediatrics and the Committee on Genetics, The University of Chicago, Chicago, Illinois
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Mehrazin A, Safarpour H, Davoudi ST, Parsamanesh N, Saeedi F, Miri-Moghaddam E. Network-Based Analysis Reveals Association of FOXE1 Gene Polymorphisms in Thyroid Cancer Patients; A Case-Control Study in Southeast of Iran. Asian Pac J Cancer Prev 2020; 21:2771-2776. [PMID: 32986379 PMCID: PMC7779442 DOI: 10.31557/apjcp.2020.21.9.2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer (TC) is the mainly frequent endocrine cancer by different incidence rate in worldwide. However, early prediction of this cancer is still challenging due to the unclear pathogenicity. In this study with the aid of systems biology approach, performed a holistic study on GSE65144 dataset containing anaplastic thyroid carcinoma tissues. Co-expression network analysis by WGCNA suggested that highly preserved turquoise module with 1,480 genes was significantly correlated to TC. Most of the top 54 hub-genes of this module are functionality correlated to thyroid hormone generation (GO:0006590). Of these 54 hub-genes, FOXE1 has been reported previously to contain mutation asosiated to TC and chosen for experimental validation step. To this end, we conducted a case-control study including 81 TC patients and 165 controls individuals to evaluate the effects of FOXE1 functional polymorphisms (rs1867277) on the development of TC in Sistan and Balouchestan province of Iran. The polymorphisms of FOXE1 gene (rs1867277) assessed by tetra-ARMS PCR technique. Homozygous (GG) and (AA) variant of rs1867277 polymorphism were detected in 26 (32.1%) and 15 (18.5 %) of TC patients, and 66 (40.0%), and 15 (9.1%) in controls, respectively (p-value= 0.03, OR= 2.53). The A allele frequency was 70 (43.2%) in TC patients and 114 (34.5%) in controls (p-value= 0.06, OR= 1.44). Overall, our results suggested that FOXE1 gene could be used as a prognostic marker in TC and also provides information related to FOXE1 functional polymorphisms (rs1867277) in Sistan and Balouchestan province of Iran. .
Collapse
Affiliation(s)
- Ahmad Mehrazin
- Clinical Immunology Research Center, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences (BUMS), Birjand, Iran.
| | | | - Negin Parsamanesh
- Student Research Committee and Dep. of Molecular Medicine, School of Medicine, (BUMS), Birjand, Iran.
| | - Farhad Saeedi
- Student Research Committee, School of Medicine, (BUMS), Birjand, Iran.
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Diseases Research Center and Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Xiao WL, Jia KN, Yu G, Zhao N. Association between forkhead box E1 polymorphisms and risk of non-syndromic cleft lip with or without cleft palate: A meta-analysis. Orthod Craniofac Res 2020; 23:151-159. [PMID: 31944555 DOI: 10.1111/ocr.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of the present work was to investigate the association between forkhead box E1 (FOXE1) and the risk of non-syndromic cleft lip with or without cleft palate (NSCL/P). MATERIALS AND METHODS Relevant studies were searched in several professional databases up to 31 July 2019. The pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using a fixed-effect model or a random-effect model to analyse the relationship between FOXE1 polymorphisms and NSCL/P. RESULTS A total of four single nucleotide polymorphisms (SNPs), including rs3758249, rs4460498, rs1443434 and rs10217225, were analysed. The overall findings showed that FOXE1 rs4460498 was statistically associated with NSCL/P (including cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO)). Genotypes CC and CT of rs4460498 were significantly more closely correlated with NSCL/P (including CL/P and CPO) than genotype TT (NSCL/P: TT vs CC, OR = 0.630, P = .000; TT vs TC + CC, OR = 0.775, P = .020; CL/P: TT vs CC, OR = 0.664, P = .000; TT vs TC + CC, OR = 0.738, P = .006. CPO: TT vs CC, OR = 0.761, P = .027; TT vs TC + CC, OR = 0.792, P = .045). For rs10217225, only the TT genotype might have contributed to the elevated risk of CL/P (TT vs CC OR = 2.236, P = .000). The other FOXE1 polymorphisms were not associated with NSCLP, CL/P or CPO. CONCLUSION The meta-analysis provided confirmation that the polymorphism of FOXE1 rs10217225 was correlated with an increased risk of CL/P, and the polymorphism of FOXE1 rs4460498 was a protective factor for NSCL/P, including CLP and CPO.
Collapse
Affiliation(s)
- Wen-Lin Xiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai-Ning Jia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo Yu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Zhao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet 2020; 52:418-427. [PMID: 32203463 PMCID: PMC7901023 DOI: 10.1038/s41588-020-0591-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. But a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short alpha-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
Collapse
|
12
|
Morillo-Bernal J, Fernández LP, Santisteban P. FOXE1 regulates migration and invasion in thyroid cancer cells and targets ZEB1. Endocr Relat Cancer 2020; 27:137-151. [PMID: 31846430 PMCID: PMC6993207 DOI: 10.1530/erc-19-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
FOXE1 is a thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differentiated state. Interestingly, a strong association has been recently described between FOXE1 expression and susceptibility to thyroid cancer, but little is known about the mechanisms underlying FOXE1-induced thyroid tumorigenesis. Here, we used a panel of human thyroid cancer-derived cell lines covering the spectrum of thyroid cancer phenotypes to examine FOXE1 expression and to test for correlations between FOXE1 expression, the allele frequency of two SNPs and a length polymorphism in or near the FOXE1 locus associated with cancer susceptibility, and the migration ability of thyroid cancer cell lines. Results showed that FOXE1 expression correlated with differentiation status according to histological sub-type, but not with SNP genotype or cell migration ability. However, loss-and-gain-of-function experiments revealed that FOXE1 modulates cell migration, suggesting a role in epithelial-to-mesenchymal transition (EMT). Our previous genome-wide expression analysis identified Zeb1, a major EMT inducer, as a putative Foxe1 target gene. Indeed, gene silencing of FOXE1 decreased ZEB1 expression, whereas its overexpression increased ZEB1 transcriptional activity. FOXE1 was found to directly interact with the ZEB1 promoter. Lastly, ZEB1 silencing decreased the ability of thyroid tumoral cells to migrate and invade, pointing to its importance in thyroid tumor mestastases. In conclusion, we have identified ZEB1 as a bona fide target of FOXE1 in thyroid cancer cells, which provides new insights into the role of FOXE1 in regulating cell migration and invasion in thyroid cancer.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lara P Fernández
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Correspondence should be addressed to P Santisteban:
| |
Collapse
|
13
|
Lugena AB, Zhang Y, Menet JS, Merlin C. Genome-wide discovery of the daily transcriptome, DNA regulatory elements and transcription factor occupancy in the monarch butterfly brain. PLoS Genet 2019; 15:e1008265. [PMID: 31335862 PMCID: PMC6677324 DOI: 10.1371/journal.pgen.1008265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/02/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
The Eastern North American monarch butterfly, Danaus plexippus, is famous for its spectacular seasonal long-distance migration. In recent years, it has also emerged as a novel system to study how animal circadian clocks keep track of time and regulate ecologically relevant daily rhythmic activities and seasonal behavioral outputs. However, unlike in Drosophila and the mouse, little work has been undertaken in the monarch to identify rhythmic genes at the genome-wide level and elucidate the regulation of their diurnal expression. Here, we used RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC)-sequencing to profile the diurnal transcriptome, open chromatin regions, and transcription factor (TF) footprints in the brain of wild-type monarchs and of monarchs with impaired clock function, including Cryptochrome 2 (Cry2), Clock (Clk), and Cycle-like loss-of-function mutants. We identified 217 rhythmically expressed genes in the monarch brain; many of them were involved in the regulation of biological processes key to brain function, such as glucose metabolism and neurotransmission. Surprisingly, we found no significant time-of-day and genotype-dependent changes in chromatin accessibility in the brain. Instead, we found the existence of a temporal regulation of TF occupancy within open chromatin regions in the vicinity of rhythmic genes in the brains of wild-type monarchs, which is disrupted in clock deficient mutants. Together, this work identifies for the first time the rhythmic genes and modes of regulation by which diurnal transcription rhythms are regulated in the monarch brain. It also illustrates the power of ATAC-sequencing to profile genome-wide regulatory elements and TF binding in a non-model organism for which TF-specific antibodies are not yet available. With a rich biology that includes a clock-regulated migratory behavior and a circadian clock possessing mammalian clock orthologues, the monarch butterfly is an unconventional system with broad appeal to study circadian and seasonal rhythms. While clockwork mechanisms and rhythmic behavioral outputs have been studied in this species, the rhythmic genes that regulate rhythmic daily and seasonal activities remain largely unknown. Likewise, the mechanisms regulating rhythmic gene expression have not been explored in the monarch. Here, we applied genome-wide sequencing approaches to identify genes with rhythmic diurnal expression in the monarch brain, revealing the coordination of key pathways for brain function. We also identified the monarch brain open chromatin regions and provide evidence that regulation of rhythmic gene expression does not occur through temporal regulation of chromatin opening but rather by the time-of-day dependent binding of transcription factors in cis-regulatory elements. Together, our data extend our knowledge of the molecular rhythmic pathways, which may prove important in understanding the mechanisms underlying the daily and seasonal biology of the migratory monarch butterflies.
Collapse
Affiliation(s)
- Aldrin B. Lugena
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Ying Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Jerome S. Menet
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
López-Márquez A, Fernández-Méndez C, Recacha P, Santisteban P. Regulation of Foxe1 by Thyrotropin and Transforming Growth Factor Beta Depends on the Interplay Between Thyroid-Specific, CREB and SMAD Transcription Factors. Thyroid 2019; 29:714-725. [PMID: 30652527 DOI: 10.1089/thy.2018.0136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Thyroid follicular cells are characterized by the expression of a specific set of genes necessary for the synthesis and secretion of thyroid hormones, which are in turn regulated by the transcription factors Nkx2-1, Pax8, and Foxe1. Thyroid differentiation is finely tuned by the balance between positive regulatory signals, including thyrotropin (TSH), and by negative regulatory signals, such as transforming growth factor beta (TGF-β), which counteracts the action of TSH. A role for Foxe1 as a mediator of hormonal and growth-factor control of thyroid differentiation has been previously suggested. Therefore, the aim of this work was to study the mechanisms governing Foxe1 expression to define the ligands and signals that regulate one of the important factors in thyroid differentiation. Methods: Expression of Foxe1 was evaluated in rat PCCl3 thyroid follicular cells under different treatments. The mouse Foxe1 promoter was cloned, and site-directed mutagenesis was undertaken to study its transcriptional regulation and to identify response elements. Protein/DNA binding assays were performed to evaluate the binding of different transcription factors, and gene-silencing approaches were used to elucidate their functional roles. Results:In silico analysis of the Foxe1 promoter identified binding sites for Nkx2-1, Pax8, Foxe1, and Smad proteins, as well as cAMP-response element (CRE) sites. It was found that both CRE-binding protein and CRE modulator were necessary for the TSH-mediated induction of Foxe1 expression via the cAMP/PKA signaling pathway. Moreover, transcription of Foxe1 was regulated by Nkx2-1 and Pax8 and by itself, suggesting an autoregulatory mechanism of activation and an important role for thyroid transcription factors. Finally, TGF-β, through Smad proteins, inhibited the TSH-induced Foxe1 expression. Conclusions: This study shows that Foxe1 is the final target of TSH/cAMP and TGF-β regulation that mediates expression of thyroid differentiation genes, and provides evidence of an interplay between CRE-binding proteins, thyroid transcription factors, and Smad proteins in its regulation. Thus, Foxe1 plays an important role in the complex transcriptional network that regulates thyroid follicular cell differentiation.
Collapse
Affiliation(s)
- Arístides López-Márquez
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Celia Fernández-Méndez
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pablo Recacha
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- 2 CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Dobersch S, Rubio K, Barreto G. Pioneer Factors and Architectural Proteins Mediating Embryonic Expression Signatures in Cancer. Trends Mol Med 2019; 25:287-302. [PMID: 30795971 DOI: 10.1016/j.molmed.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of mutations causing aberrant changes in the genome promotes cancer. However, mutations do not occur in every cancer subtype, suggesting additional events that trigger cancer. Chromatin rearrangements initiated by pioneer factors and architectural proteins are key events occurring before cancer-related genes are expressed. Both protein groups are also master regulators of important processes during embryogenesis. Several publications demonstrated that embryonic gene expression signatures are reactivated during cancer. This review article highlights current knowledge on pioneer factors and architectural proteins mediating chromatin rearrangements, which are the backbone of embryonic expression signatures promoting malignant transformation. Understanding chromatin rearrangements inducing embryonic expression signatures in adult cells might be the key to novel therapeutic approaches against cancers subtypes that arise without genomic mutations.
Collapse
Affiliation(s)
- Stephanie Dobersch
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), CNRS ERL 9215, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Member of the Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), 35932 Giessen, Germany; Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL).
| |
Collapse
|
16
|
Gilding LN, Somervaille TCP. The Diverse Consequences of FOXC1 Deregulation in Cancer. Cancers (Basel) 2019; 11:E184. [PMID: 30764547 PMCID: PMC6406774 DOI: 10.3390/cancers11020184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box C1 (FOXC1) is a transcription factor with essential roles in mesenchymal lineage specification and organ development during normal embryogenesis. In keeping with these developmental properties, mutations that impair the activity of FOXC1 result in the heritable Axenfeld-Rieger Syndrome and other congenital disorders. Crucially, gain of FOXC1 function is emerging as a recurrent feature of malignancy; FOXC1 overexpression is now documented in more than 16 cancer types, often in association with an unfavorable prognosis. This review explores current evidence for FOXC1 deregulation in cancer and the putative mechanisms by which FOXC1 confers its oncogenic effects.
Collapse
Affiliation(s)
- L Niall Gilding
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| |
Collapse
|
17
|
Banerjee S, Zhu H, Tang M, Feng WC, Wu X, Xie H. Identifying Transcriptional Regulatory Modules Among Different Chromatin States in Mouse Neural Stem Cells. Front Genet 2019; 9:731. [PMID: 30697231 PMCID: PMC6341026 DOI: 10.3389/fgene.2018.00731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/22/2018] [Indexed: 12/19/2022] Open
Abstract
Gene expression regulation is a complex process involving the interplay between transcription factors and chromatin states. Significant progress has been made toward understanding the impact of chromatin states on gene expression. Nevertheless, the mechanism of transcription factors binding combinatorially in different chromatin states to enable selective regulation of gene expression remains an interesting research area. We introduce a nonparametric Bayesian clustering method for inhomogeneous Poisson processes to detect heterogeneous binding patterns of multiple proteins including transcription factors to form regulatory modules in different chromatin states. We applied this approach on ChIP-seq data for mouse neural stem cells containing 21 proteins and observed different groups or modules of proteins clustered within different chromatin states. These chromatin-state-specific regulatory modules were found to have significant influence on gene expression. We also observed different motif preferences for certain TFs between different chromatin states. Our results reveal a degree of interdependency between chromatin states and combinatorial binding of proteins in the complex transcriptional regulatory process. The software package is available on Github at - https://github.com/BSharmi/DPM-LGCP.
Collapse
Affiliation(s)
- Sharmi Banerjee
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Hongxiao Zhu
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Man Tang
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Wu-Chun Feng
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Xiaowei Wu
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
18
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
19
|
Schill D, Nord J, Cirillo LA. FoxO1 and FoxA1/2 form a complex on DNA and cooperate to open chromatin at insulin-regulated genes. Biochem Cell Biol 2018; 97:118-129. [PMID: 30142277 DOI: 10.1139/bcb-2018-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that cooperative, interdependent binding by the pioneer factors FoxO1 and FoxA1/2 is required for recruitment of RNA polymerase II and H3K27 acetylation to the promoters of insulin-regulated genes. However, the underlying mechanisms are unknown. In this study, we demonstrate that, in HepG2 cells, FoxO1 and FoxA2 form a complex on DNA that is disrupted by insulin treatment. Insulin-mediated phosphorylation of FoxO1 and FoxA2 does not impair their cooperative binding to mononucleosome particles assembled from the IGFBP1 promoter, indicating that direct disruption of complex formation by phosphorylation is not responsible for the loss of interdependent FoxO1:FoxA1/2 binding following insulin treatment. Since FoxO1 and FoxA1/2 binding is required for the establishment and maintenance of transcriptionally active chromatin at insulin-regulated genes, we hypothesized that cooperative FoxO1 and FoxA1/2 binding dictates the chromatin remodeling events required for the initial activation of these genes. In support of this idea, we demonstrate that FoxO1 and FoxA2 cooperatively open linker histone compacted chromatin templates containing the IGFBP1 promoter. Taken together, these results provide a mechanism for how interdependent FoxO1:FoxA1/2 binding is negatively impacted by insulin and provide a developmental context for cooperative gene activation by these factors.
Collapse
Affiliation(s)
- Daniel Schill
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Joshua Nord
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa Ann Cirillo
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
20
|
Xie L, Deng Y, Yuan Y, Tan X, Liu L, Li N, Deng C, Liu H, Dai L. Association of SNP rs1867277 in FOXE1 Gene and Cleft Lip with or without Cleft Palate in a Han Chinese Population. Fetal Pediatr Pathol 2018; 37:89-94. [PMID: 29509083 DOI: 10.1080/15513815.2018.1424278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The genetic factors causing cleft lip with or without cleft palate (CL ± P) are still unclear. The SNPs in FOXE1 gene were associated with CL ± P. However, the results have been inconsistent. OBJECTIVE We explored the associations of four SNPs in FOXE1 gene and CL ± P by a family based study. MATERIALS AND METHODS 128 children with CL ± P and their parents were recruited. rs3758249 and rs1867277 were genotyped by high-resolution melting curve (HRM) method, whereas rs1443434 and rs907577 were genotyped by Sequenom MassARRAY® method. The software PLINK, FBAT and FAMHAP were used for analyzing data. RESULTS rs1867277 was associated with CL ± P (Pm = 0.0395). The patients were divided into two subgroups, individuals with cleft lip only and persons with cleft lip and palate. There were no associations in subgroup analyses. CONCLUSION We confirmed the association of FOXE1 gene and CL ± P by a family based study. For the first time, rs1867277 was significantly associated with CL ± P.
Collapse
Affiliation(s)
- Liang Xie
- a Department of Pediatric Respiration , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,b The Vascular Remodeling and Developmental Defects Research Unit , West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,c Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Ying Deng
- c Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,d National Center for Birth Defect Monitoring , West China Second University Hospital, Sichuan University , Chengdu , China.,e Laboratory of Molecular Epidemiology for Birth Defect , West China Institute of Women and Children's Health, Sichuan University , Chengdu , China
| | - Yumei Yuan
- f Hengyang Maternity and Child Healthcare Hospital , Hengyang , Hunan , China
| | - Xiong Tan
- f Hengyang Maternity and Child Healthcare Hospital , Hengyang , Hunan , China
| | - Lijun Liu
- b The Vascular Remodeling and Developmental Defects Research Unit , West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,c Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Nana Li
- c Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,d National Center for Birth Defect Monitoring , West China Second University Hospital, Sichuan University , Chengdu , China.,e Laboratory of Molecular Epidemiology for Birth Defect , West China Institute of Women and Children's Health, Sichuan University , Chengdu , China
| | - Changfei Deng
- c Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,d National Center for Birth Defect Monitoring , West China Second University Hospital, Sichuan University , Chengdu , China
| | - Hanmin Liu
- a Department of Pediatric Respiration , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,b The Vascular Remodeling and Developmental Defects Research Unit , West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,c Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Li Dai
- b The Vascular Remodeling and Developmental Defects Research Unit , West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,c Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education , West China Second University Hospital, Sichuan University , Chengdu , Sichuan , China.,d National Center for Birth Defect Monitoring , West China Second University Hospital, Sichuan University , Chengdu , China.,e Laboratory of Molecular Epidemiology for Birth Defect , West China Institute of Women and Children's Health, Sichuan University , Chengdu , China
| |
Collapse
|
21
|
Bullock M, Lim G, Li C, Choi IH, Kochhar S, Liddle C, Zhang L, Clifton-Bligh RJ. Thyroid transcription factor FOXE1 interacts with ETS factor ELK1 to co-regulate TERT. Oncotarget 2018; 7:85948-85962. [PMID: 27852061 PMCID: PMC5349888 DOI: 10.18632/oncotarget.13288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although FOXE1 was initially recognized for its role in thyroid organogenesis, more recently a strong association has been identified between the FOXE1 locus and thyroid cancer. The role of FOXE1 in adult thyroid, and in particular regarding cancer risk, has not been well established. We hypothesised that discovering key FOXE1 transcriptional partners would in turn identify regulatory pathways relevant to its role in oncogenesis. RESULTS In a transcription factor-binding array, ELK1 was identified to bind FOXE1. We confirmed this physical association in heterologously transfected cells by IP and mammalian two-hybrid assays. In thyroid tissue, endogenous FOXE1 was shown to bind ELK1, and using ChIP assays these factors bound thyroid-relevant gene promoters TPO and TERT in close proximity to each other. Using a combination of electromobility shift assays, TERT promoter assays and siRNA-silencing, we found that FOXE1 positively regulated TERT expression in a manner dependent upon its association with ELK1. Treating heterologously transfected thyroid cells with MEK inhibitor U0126 inhibited FOXE1-ELK1 interaction, and reduced TERT and TPO promoter activity. METHODOLOGY We investigated FOXE1 interactions within in vitro thyroid cell models and human thyroid tissue using a combination of immunoprecipitation (IP), chromatin IP (ChIP) and gene reporter assays. CONCLUSIONS FOXE1 interacts with ELK1 on thyroid relevant gene promoters, establishing a new regulatory pathway for its role in adult thyroid function. Co-regulation of TERT suggests a mechanism by which allelic variants in/near FOXE1 are associated with thyroid cancer risk.
Collapse
Affiliation(s)
- Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Grace Lim
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Cheng Li
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - In Ho Choi
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - Shivansh Kochhar
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - Chris Liddle
- University of Sydney, Sydney, Australia.,Storr Liver Centre, Westmead Millennium Institute for Medical Research, Westmead Hospital, Sydney, Australia
| | - Lei Zhang
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia.,Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
22
|
Abstract
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Henrik Fagman
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| |
Collapse
|
23
|
Abstract
Developmental anomalies of the thyroid gland, defined as thyroid dysgenesis, underlie the majority of cases of congenital hypothyroidism. Thyroid dysgenesis is predominantly a sporadic disorder although a reported familial enrichment, variation of incidence by ethnicity and the monogenic defects associated mainly with athyreosis or orthotopic thyroid hypoplasia, suggest a genetic contribution. Of note, the most common developmental anomaly, thyroid ectopy, remains unexplained. Ectopy may result from multiple genetic or epigenetic variants in the germline and/or at the somatic level. This review provides a brief overview of the monogenic defects in candidate genes that have been identified so far and of the syndromes which are known to be associated with thyroid dysgenesis.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Endocrinology Service and Research Center, Sainte-Justine Hospital and Department of Pediatrics, University of Montreal, Montreal, H3T 1C5, Quebec, Canada; Chemistry Department, Biochemistry Division, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Stéphanie Larrivée-Vanier
- Endocrinology Service and Research Center, Sainte-Justine Hospital and Department of Pediatrics, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.
| | - Jonathan D Wasserman
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.
| | - Johnny Deladoëy
- Endocrinology Service and Research Center, Sainte-Justine Hospital and Department of Pediatrics, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.
| |
Collapse
|
24
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|
25
|
Grossman SR, Zhang X, Wang L, Engreitz J, Melnikov A, Rogov P, Tewhey R, Isakova A, Deplancke B, Bernstein BE, Mikkelsen TS, Lander ES. Systematic dissection of genomic features determining transcription factor binding and enhancer function. Proc Natl Acad Sci U S A 2017; 114:E1291-E1300. [PMID: 28137873 PMCID: PMC5321001 DOI: 10.1073/pnas.1621150114] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function-including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation.
Collapse
Affiliation(s)
- Sharon R Grossman
- Broad Institute, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Health Sciences and Technology, Harvard Medical School, Boston, MA 02215
| | | | - Li Wang
- Broad Institute, Cambridge, MA 02142
| | - Jesse Engreitz
- Broad Institute, Cambridge, MA 02142
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Ryan Tewhey
- Broad Institute, Cambridge, MA 02142
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Alina Isakova
- Institute of Bioengineering, CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bradley E Bernstein
- Broad Institute, Cambridge, MA 02142
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Tarjei S Mikkelsen
- Broad Institute, Cambridge, MA 02142
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Eric S Lander
- Broad Institute, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Systems Biology, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
26
|
Defining Transcriptional Regulatory Mechanisms for Primary let-7 miRNAs. PLoS One 2017; 12:e0169237. [PMID: 28052101 PMCID: PMC5215532 DOI: 10.1371/journal.pone.0169237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022] Open
Abstract
The let-7 family of miRNAs have been shown to control developmental timing in organisms from C. elegans to humans; their function in several essential cell processes throughout development is also well conserved. Numerous studies have defined several steps of post-transcriptional regulation of let-7 production; from pri-miRNA through pre-miRNA, to the mature miRNA that targets endogenous mRNAs for degradation or translational inhibition. Less-well defined are modes of transcriptional regulation of the pri-miRNAs for let-7. let-7 pri-miRNAs are expressed in polycistronic fashion, in long transcripts newly annotated based on chromatin-associated RNA-sequencing. Upon differentiation, we found that some let-7 pri-miRNAs are regulated at the transcriptional level, while others appear to be constitutively transcribed. Using the Epigenetic Roadmap database, we further annotated regulatory elements of each polycistron identified putative promoters and enhancers. Probing these regulatory elements for transcription factor binding sites identified factors that regulate transcription of let-7 in both promoter and enhancer regions, and identified novel regulatory mechanisms for this important class of miRNAs.
Collapse
|
27
|
Abstract
Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Vernimmen D, Bickmore WA. The Hierarchy of Transcriptional Activation: From Enhancer to Promoter. Trends Genet 2016; 31:696-708. [PMID: 26599498 DOI: 10.1016/j.tig.2015.10.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Regulatory elements (enhancers) that are remote from promoters play a critical role in the spatial, temporal, and physiological control of gene expression. Studies on specific loci, together with genome-wide approaches, suggest that there may be many common mechanisms involved in enhancer-promoter communication. Here, we discuss the multiprotein complexes that are recruited to enhancers and the hierarchy of events taking place between regulatory elements and promoters.
Collapse
Affiliation(s)
- Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
29
|
Nikitski A, Saenko V, Shimamura M, Nakashima M, Matsuse M, Suzuki K, Rogounovitch T, Bogdanova T, Shibusawa N, Yamada M, Nagayama Y, Yamashita S, Mitsutake N. Targeted Foxe1 Overexpression in Mouse Thyroid Causes the Development of Multinodular Goiter But Does Not Promote Carcinogenesis. Endocrinology 2016; 157:2182-95. [PMID: 26982637 DOI: 10.1210/en.2015-2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent genome-wide association studies have identified several single nucleotide polymorphisms in the forkhead box E1 gene (FOXE1) locus, which are strongly associated with the risk for thyroid cancer. In addition, our recent work has demonstrated FOXE1 overexpression in papillary thyroid carcinomas. To assess possible contribution of Foxe1 to thyroid carcinogenesis, transgenic mice overexpressing Foxe1 in their thyroids under thyroglobulin promoter (Tg-Foxe1) were generated. Additionally, Tg-Foxe1 mice were exposed to x-rays at the age of 5 weeks or crossed with Pten(+/-) mice to examine the combined effect of Foxe1 overexpression with radiation or activated phosphatidylinositol-3-kinase/Akt pathway, respectively. In 5- to 8-week-old Tg-Foxe1 mice, severe hypothyroidism was observed, and mouse thyroids exhibited hypoplasia of the parenchyma. Adult 48-week-old mice were almost recovered from hypothyroidism, their thyroids were enlarged, and featured colloid microcysts and multiple benign nodules of macrofollicular-papilloid growth pattern, but no malignancy was found. Exposure of transgenic mice to 1 or 8 Gy of x-rays and Pten haploinsufficiency promoted hyperplastic nodule formation also without carcinogenic effect. These results indicate that Foxe1 overexpression is not directly involved in the development of thyroid cancer and that proper Foxe1 dosage is essential for achieving normal structure and function of the thyroid.
Collapse
Affiliation(s)
- Alyaksandr Nikitski
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Vladimir Saenko
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Mika Shimamura
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Masahiro Nakashima
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Michiko Matsuse
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Keiji Suzuki
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tatiana Rogounovitch
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tetiana Bogdanova
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Nobuyuki Shibusawa
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Masanobu Yamada
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yuji Nagayama
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Shunichi Yamashita
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Norisato Mitsutake
- Departments of Radiation Medical Sciences (A.N., M.M., K.S., S.Y., N.M.), Radiation Molecular Epidemiology (V.S., S.Y.), Molecular Medicine (M.S., Y.N.), Global Health, Medicine and Welfare (T.R.), and Department of Tumor and Diagnostic Pathology (M.N.), Atomic Bomb Disease Institute, Nagasaki University; Nagasaki University Graduate School of Biomedical Sciences (A.N.); and Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (N.M.), Nagasaki 852-8523, Japan; Laboratory of Morphology of Endocrine System (T.B.), State Institution V.P. Komisarenko Institute of Endocrinology and Metabolism of Academy of Medical Sciences of Ukraine, Kyiv 254114, Ukraine; and Department of Medicine and Molecular Science (N.S., M.Y.), Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
30
|
Yalley A, Schill D, Hatta M, Johnson N, Cirillo LA. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes. J Biol Chem 2016; 291:8848-61. [PMID: 26929406 DOI: 10.1074/jbc.m115.677583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/04/2023] Open
Abstract
FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.
Collapse
Affiliation(s)
- Akua Yalley
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Daniel Schill
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mitsutoki Hatta
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Nicole Johnson
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Lisa Ann Cirillo
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
31
|
Montesinos MDM, Nicola JP, Nazar M, Peyret V, Lucero AM, Pellizas CG, Masini-Repiso AM. Nitric oxide-repressed Forkhead factor FoxE1 expression is involved in the inhibition of TSH-induced thyroid peroxidase levels. Mol Cell Endocrinol 2016; 420:105-15. [PMID: 26610751 DOI: 10.1016/j.mce.2015.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023]
Abstract
Thyroid peroxidase (TPO) is essential for thyroid hormone synthesis mediating the covalent incorporation of iodine into tyrosine residues of thyroglobulin process known as organification. Thyroid-stimulating hormone (TSH) via cAMP signaling is the main hormonal regulator of TPO gene expression. In thyroid cells, TSH-stimulated nitric oxide (NO) production inhibits TSH-induced thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Indeed, NO donors downregulate TSH-induced iodide accumulation and organification in thyroid cells. Here, using FRTL-5 thyroid cells as model, we obtained insights into the molecular mechanism underlying the inhibitory effects of NO on iodide organification. We demonstrated that NO donors inhibited TSH-stimulated TPO expression by inducing a cyclic guanosine monophosphate-dependent protein kinase-mediated transcriptional repression of the TPO gene. Moreover, we characterized the FoxE1 binding site Z as mediator of the NO-inhibited TPO expression. Mechanistically, we demonstrated that NO decreases TSH-induced FoxE1 expression, thus repressing the transcripcional activation of TPO gene. Taken together, we provide novel evidence reinforcing the inhibitory role of NO on thyroid cell function, an observation of potential pathophysiological relevance associated with human thyroid pathologies that come along with changes in the NO production.
Collapse
Affiliation(s)
- María del Mar Montesinos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Magalí Nazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Peyret
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ariel Maximiliano Lucero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Gabriela Pellizas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana María Masini-Repiso
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
32
|
Geng P, Ou J, Li J, Liao Y, Wang N, Xie G, Sa R, Liu C, Xiang L, Liang H. TITF1 and TITF2 loci variants indicate significant associations with thyroid cancer. Endocrine 2015. [PMID: 26206751 DOI: 10.1007/s12020-015-0664-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of studies have investigated the influence of TITF1 and TITF2 genetic variants on thyroid carcinogenesis, but their associations remain unclear due to the controversial results. The objective of this study was to test the hypothesis that TITF1 and TITF2 variants modulate thyroid cancer susceptibility. Eligible studies were identified through online searches supplemented by manual search. Either the DerSimonian and Laird method or the Mantel-Haenszel method was used to estimate the risk of thyroid cancer (ORs and 95 % CIs). The pooled ORs were calculated assuming the allele model. We identified a total of 10 publications concerning the topic of interest. Overall, meta-analysis of rs944289 showed 1.11-fold increased risk of thyroid cancer related to the risk T allele (T vs. C: OR 1.11, 95 % CI 1.05-1.17). For rs965513, individuals carrying the risk A allele, compared to individuals with the G allele, had 31 % higher risk of thyroid cancer (A vs. G: OR 1.31, 95 % CI 1.17-1.46). Analyses in total samples for rs1867277, rs1443434, and rs907580 yielded similar associations (A vs. G: OR 1.22, 95 % CI 1.06-1.39; G vs. T: OR 1.26, 95 % CI 1.09-1.45; T vs. C: OR 1.42, 95 % CI 1.21-1.66, respectively). The significant association persisted among Caucasians in subgroup analyses for rs944289 and rs965513. The genetic susceptibility of thyroid cancer seems likely to be associated with the risk allele at rs944289 in the TITF1 gene and at rs1867277, rs965513, rs1443434, and rs907580 in the TITF2 gene.
Collapse
Affiliation(s)
- Peiliang Geng
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Yunmei Liao
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Ning Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Rina Sa
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Chen Liu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Lisha Xiang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
33
|
Kuzmich AI, Tyulkina DV, Vinogradova TV, Sverdlov ED. Pioneer transcription factors in normal development and carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:636-43. [DOI: 10.1134/s1068162015060084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Somuncu E, Karatas A, Ferahman S, Saygili N, Yilmaz E, Ozturk O, Kapan M. The investigation of foxe1 variations in papillary thyroid carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13458-13464. [PMID: 26722557 PMCID: PMC4680502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Recent reports indicated that incidence of thyroid carcinoma is increasing throughout the worldwide. The aim of our study was to determine a possible relationship between Forkhead box E1 (FOXE1) gene variants and histopathological features of papillary thyroid carcinoma. METHODS FOXE1 gene variations; rs894673, rs1867277 and rs3758249 were analyzed in 57 Papillary thyroid carcinoma patients and 51 age matched healthy control subjects. Restriction fragment length polymorphism (RFLP) technique was used to specifically detect the variations. RESULTS There was a significant difference in the distribution of rs894673 genotypes in Papillary thyroid carcinoma cases (P=0.01). AA genotype presence of rs1867277 was more significantly associated with several histopathological parameters such as focal and diffuse capsular invasion, lymphatic invasion, P3 with P4 tumor grade and surgical margins. AA genotype presence in rs1867277 variation was significantly associated with the classical variant which is subtype of papillary thyroid carcinoma. Furthermore, the presence of the allel A was found to be related with lymph node invasion risk by 2.46 fold, capsular invasion risk by 2.97 fold, and pT3 with pT4 pathological stage risk by 4.13 fold and the presence of allele A in rs1867277 was significantly associated with classic variants. The presence of allele A in rs1867277 was more significantly associated with several histopathological parameters in classic variant in papillary thyroid carcinoma cases such as, the presence of the A allele was found relationship with lymph node invasion risk by 2.0 fold, capsular invasion risk by 2.39 fold , and pT3 with pT4 pathological stage risk by 3.57 fold. In addition, AATT, AAAA and GATT haplotypes (rs1867277 and rs894673) were evaluated for association with papillary thyroid carcinoma cases. Our results indicate that the significant difference according to two-allele haplotype distribution between papillary thyroid carcinoma cases and control groups. CONCLUSION Our findings suggest that FOXE1 variations generate a higher risk for poor histopathological features of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Erkan Somuncu
- General Surgery, Erzincan University, Mengucek Gazi Training Research HospitalErzincan, Turkey
| | - Adem Karatas
- General Surgery, Istanbul University, Cerrahpasa Medicine FacultyIstanbul, Turkey
| | - Sina Ferahman
- General Surgery, Istanbul University, Cerrahpasa Medicine FacultyIstanbul, Turkey
| | - Neslihan Saygili
- Molecular Biology, Istanbul University, The Institute of Experimental MedicineIstanbul, Turkey
| | - Eren Yilmaz
- Molecular Biology, Istanbul University, The Institute of Experimental MedicineIstanbul, Turkey
| | - Oguz Ozturk
- Molecular Biology, Istanbul University, The Institute of Experimental MedicineIstanbul, Turkey
| | - Metin Kapan
- General Surgery, Istanbul University, Cerrahpasa Medicine FacultyIstanbul, Turkey
| |
Collapse
|
35
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
36
|
Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc Natl Acad Sci U S A 2015; 112:6128-33. [PMID: 25918370 DOI: 10.1073/pnas.1506255112] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The [A] allele of SNP rs965513 in 9q22 has been consistently shown to be highly associated with increased papillary thyroid cancer (PTC) risk with an odds ratio of ∼1.8 as determined by genome-wide association studies, yet the molecular mechanisms remain poorly understood. Previously, we noted that the expression of two genes in the region, forkhead box E1 (FOXE1) and PTC susceptibility candidate 2 (PTCSC2), is regulated by rs965513 in unaffected thyroid tissue, but the underlying mechanisms were not elucidated. Here, we fine-mapped the 9q22 region in PTC and controls and detected an ∼33-kb linkage disequilibrium block (containing the lead SNP rs965513) that significantly associates with PTC risk. Chromatin characteristics and regulatory element signatures in this block disclosed at least three regulatory elements functioning as enhancers. These enhancers harbor at least four SNPs (rs7864322, rs12352658, rs7847449, and rs10759944) that serve as functional variants. The variant genotypes are associated with differential enhancer activities and/or transcription factor binding activities. Using the chromosome conformation capture methodology, long-range looping interactions of these elements with the promoter region shared by FOXE1 and PTCSC2 in a human papillary thyroid carcinoma cell line (KTC-1) and unaffected thyroid tissue were found. Our results suggest that multiple variants coinherited with the lead SNP and located in long-range enhancers are involved in the transcriptional regulation of FOXE1 and PTCSC2 expression. These results explain the mechanism by which the risk allele of rs965513 predisposes to thyroid cancer.
Collapse
|
37
|
Edlund RK, Birol O, Groves AK. The role of foxi family transcription factors in the development of the ear and jaw. Curr Top Dev Biol 2015; 111:461-95. [PMID: 25662269 DOI: 10.1016/bs.ctdb.2014.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian outer, middle, and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this chapter, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm.
Collapse
Affiliation(s)
- Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
38
|
Fernández LP, López-Márquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 2015; 11:29-42. [PMID: 25350068 DOI: 10.1038/nrendo.2014.186] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.
Collapse
Affiliation(s)
- Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
39
|
Abstract
Context
Accurate classification of follicular-patterned thyroid lesions is not always an easy task on routine surgical hematoxylin-eosin–stained or cytologic fine-needle aspiration specimens. The diagnostic challenges are partially due to differential diagnostic criteria that are often subtle and subjective. In the past decades, tremendous advances have been made in molecular gene profiling of tumors and diagnostic immunohistochemistry, aiding in diagnostic accuracy and proper patient management.
Objective
To evaluate the diagnostic utility of the most commonly studied immunomarkers in the field of thyroid pathology by review of the literature, using the database of indexed articles in PubMed (US National Library of Medicine) from 1976–2013.
Data Sources
Literature review, authors' research data, and personal practice experience.
Conclusions
The appropriate use of immunohistochemistry by applying a panel of immunomarkers and using a standardized technical and interpretational method may complement the morphologic assessment and aid in the accurate classification of difficult thyroid lesions.
Collapse
Affiliation(s)
- Haiyan Liu
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Fan Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
40
|
He H, Li W, Liyanarachchi S, Jendrzejewski J, Srinivas M, Davuluri RV, Nagy R, de la Chapelle A. Genetic predisposition to papillary thyroid carcinoma: involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2. J Clin Endocrinol Metab 2015; 100:E164-72. [PMID: 25303483 PMCID: PMC4283026 DOI: 10.1210/jc.2014-2147] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT By genome-wide association studies, the risk allele [A] of SNP rs965513 predisposes strongly to papillary thyroid carcinoma (PTC). It is located in a gene-poor region of 9q22, some 60 kb from the FOXE1 gene. The underlying mechanisms remain to be discovered. OBJECTIVE Our objective was to identify novel transcripts in the 9q22 locus and correlate gene expression levels with the genotypes of rs965513. DESIGN We performed 3' and 5' rapid amplification of cDNA ends and RT-PCR to detect novel transcripts. One novel transcript was forcibly expressed in a cell line followed by gene expression array analysis. We genotyped rs965513 from PTC patients and measured gene expression levels by real-time RT-PCR in unaffected thyroid tissue and matched tumor. SETTING This was a laboratory-based study using cells from clinical tissue samples and a cancer cell line. MAIN OUTCOME MEASURES We detected previously uncharacterized transcripts and evaluated the gene expression levels and the correlation with the risk allele of rs965513, age, gender, chronic lymphocyte thyroiditis (CLT), and TSH levels. RESULTS We found a novel long intergenic noncoding RNA gene and named it papillary thyroid cancer susceptibility candidate 2 (PTCSC2). Transcripts of PTCSC2 are down-regulated in PTC tumors. The risk allele [A] of rs965513 was significantly associated with low expression of unspliced PTCSC2, FOXE1, and TSHR in unaffected thyroid tissue. We also observed a significant association of age and CLT with PTCSC2 unspliced transcript levels. The correlation between the rs965513 genotype and the PTCSC2 unspliced transcript levels remained significant after adjusting for age, gender, and CLT. Forced expression of PTCSC2 in the BCPAP cell line affected the expression of a subset of noncoding and coding transcripts with enrichment of genes functionally involved in cell cycle and cancer. CONCLUSIONS Our data suggest a role for PTCSC2, FOXE1, and TSHR in the predisposition to PTC.
Collapse
Affiliation(s)
- Huiling He
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology, and Medical Genetics (H.H., W.L., S.L., J.J., M.S., R.N., A.d.l.C), and Department of Internal Medicine (R.N.), Ohio State University Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio 43210; and Division of Health and Biomedical Informatics, Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center (R.V.D.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Genetic variants associated with serum thyroid stimulating hormone (TSH) levels in European Americans and African Americans from the eMERGE Network. PLoS One 2014; 9:e111301. [PMID: 25436638 PMCID: PMC4249871 DOI: 10.1371/journal.pone.0111301] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/31/2014] [Indexed: 02/05/2023] Open
Abstract
Thyroid stimulating hormone (TSH) hormone levels are normally tightly regulated within an individual; thus, relatively small variations may indicate thyroid disease. Genome-wide association studies (GWAS) have identified variants in PDE8B and FOXE1 that are associated with TSH levels. However, prior studies lacked racial/ethnic diversity, limiting the generalization of these findings to individuals of non-European ethnicities. The Electronic Medical Records and Genomics (eMERGE) Network is a collaboration across institutions with biobanks linked to electronic medical records (EMRs). The eMERGE Network uses EMR-derived phenotypes to perform GWAS in diverse populations for a variety of phenotypes. In this report, we identified serum TSH levels from 4,501 European American and 351 African American euthyroid individuals in the eMERGE Network with existing GWAS data. Tests of association were performed using linear regression and adjusted for age, sex, body mass index (BMI), and principal components, assuming an additive genetic model. Our results replicate the known association of PDE8B with serum TSH levels in European Americans (rs2046045 p = 1.85×10−17, β = 0.09). FOXE1 variants, associated with hypothyroidism, were not genome-wide significant (rs10759944: p = 1.08×10−6, β = −0.05). No SNPs reached genome-wide significance in African Americans. However, multiple known associations with TSH levels in European ancestry were nominally significant in African Americans, including PDE8B (rs2046045 p = 0.03, β = −0.09), VEGFA (rs11755845 p = 0.01, β = −0.13), and NFIA (rs334699 p = 1.50×10−3, β = −0.17). We found little evidence that SNPs previously associated with other thyroid-related disorders were associated with serum TSH levels in this study. These results support the previously reported association between PDE8B and serum TSH levels in European Americans and emphasize the need for additional genetic studies in more diverse populations.
Collapse
|
42
|
Enhancer biology and enhanceropathies. Nat Struct Mol Biol 2014; 21:210-9. [DOI: 10.1038/nsmb.2784] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/06/2014] [Indexed: 12/18/2022]
|
43
|
Rogge RA, Kalashnikova AA, Muthurajan UM, Porter-Goff ME, Luger K, Hansen JC. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA. J Vis Exp 2013. [PMID: 24056546 DOI: 10.3791/50354] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.
Collapse
Affiliation(s)
- Ryan A Rogge
- Biochemistry and Molecular Biology, Colorado State University
| | | | | | | | | | | |
Collapse
|
44
|
Fernández LP, López-Márquez A, Martínez ÁM, Gómez-López G, Santisteban P. New insights into FoxE1 functions: identification of direct FoxE1 targets in thyroid cells. PLoS One 2013; 8:e62849. [PMID: 23675434 PMCID: PMC3652843 DOI: 10.1371/journal.pone.0062849] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND FoxE1 is a thyroid-specific forkhead transcription factor essential for thyroid gland development, as well as for the maintenance of the thyroid differentiated state in adults. FoxE1 recognizes and binds to a short DNA sequence present in thyroglobulin (Tg) and thyroperoxidase (Tpo) promoters, but FoxE1 binding to regulatory regions other than Tg and Tpo promoters remains almost unexplored. Improving knowledge of the regulatory functions of FoxE1 is necessary to clarify its role in endocrine syndromes and cancer susceptibility. METHODOLOGY/PRINCIPAL FINDING In order to further investigate downstream FoxE1 targets, we performed a genome-wide expression screening after knocking-down FoxE1 and obtained new insights into FoxE1 transcriptional networks in thyroid follicular cells. After validation, we confirmed Adamts9, Cdh1, Duox2 and S100a4 as upregulated genes and Casp4, Creld2, Dusp5, Etv5, Hsp5a, Nr4a2 and Tm4sf1 as downregulated genes when FoxE1 was silenced. In promoter regions of putative FoxE1-regulated genes and also in the promoters of the classical thyroid genes Nis, Pax8 and Titf1, we performed an in silico search of the FoxE1 binding motif that was in close proximity to the NF1/CTF binding sequence, as previously described for other forkhead factors. Using chromatin immunoprecipitation we detected specific in vivo FoxE1 binding to novel regulatory regions in two relevant thyroid genes, Nis and Duox2. Moreover, we demonstrated simultaneous binding of FoxE1 and NF1/CTF to the Nis upstream enhancer region, as well as a clear functional activation of the Nis promoter by both transcription factors. CONCLUSIONS/SIGNIFICANCE In search for potential downstream mediators of FoxE1 function in thyroid cells, we identified two novel direct FoxE1 target genes. To our knowledge, this is the first evidence regarding the implication of Nis and Duox2 in executing the transcriptional program triggered by FoxE1. Furthermore, this study points out the important role of FoxE1 in the regulation of a large number of genes in thyroid cells.
Collapse
Affiliation(s)
- Lara P. Fernández
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Ángel M. Martínez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Cancer genetics and genomics of human FOX family genes. Cancer Lett 2012; 328:198-206. [PMID: 23022474 DOI: 10.1016/j.canlet.2012.09.017] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/16/2022]
Abstract
Forkhead-box (FOX) family proteins, involved in cell growth and differentiation as well as embryogenesis and longevity, are DNA-binding proteins regulating transcription and DNA repair. The focus of this review is on the mechanisms of FOX-related human carcinogenesis. FOXA1 is overexpressed as a result of gene amplification in lung cancer, esophageal cancer, ER-positive breast cancer and anaplastic thyroid cancer and is point-mutated in prostate cancer. FOXA1 overexpression in breast cancer and prostate cancer is associated with good or poor prognosis, respectively. Single nucleotide polymorphism (SNP) within the 5'-UTR of the FOXE1 (TTF2) gene is associated with thyroid cancer risk. FOXF1 overexpression in breast cancer is associated with epithelial-to-mesenchymal transition (EMT). FOXM1 is overexpressed owing to gene amplification in basal-type breast cancer and diffuse large B-cell lymphoma (DLBCL), and it is transcriptionally upregulated owing to Hedgehog-GLI, hypoxia-HIF1α or YAP-TEAD signaling activation. FOXM1 overexpression leads to malignant phenotypes by directly upregulating CCNB1, AURKB, MYC and SKP2 and indirectly upregulating ZEB1 and ZEB2 via miR-200b downregulation. Tumor suppressor functions of FOXO transcription factors are lost in cancer cells as a result of chromosomal translocation, deletion, miRNA-mediated repression, AKT-mediated cytoplasmic sequestration or ubiquitination-mediated proteasomal degradation. FOXP1 is upregulated as a result of gene fusion or amplification in DLBCL and MALT lymphoma and also repression of miRNAs, such as miR-1, miR-34a and miR-504. FOXP1 overexpression is associated with poor prognosis in DLBCL, gastric MALT lymphoma and hepatocellular carcinoma but with good prognosis in breast cancer. In neuroblastoma, the entire coding region of the FOXR1 (FOXN5) gene is fused to the MLL or the PAFAH1B gene owing to interstitial deletions. FOXR1 fusion genes function as oncogenes that repress transcription of FOXO target genes. Whole-genome sequencing data from tens of thousands of human cancers will uncover the mutational landscape of FOX family genes themselves as well as FOX-binding sites, which will be ultimately applied for cancer diagnostics, prognostics, and therapeutics.
Collapse
|
46
|
Epigenetic obstacles encountered by transcription factors: reprogramming against all odds. Curr Opin Genet Dev 2012; 22:409-15. [PMID: 22922161 DOI: 10.1016/j.gde.2012.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022]
Abstract
Reprogramming of a somatic nucleus to an induced pluripotent state can be achieved in vitro through ectopic expression of Oct4 (Pou5f1), Sox2, Klf4 and c-Myc. While the ability of these factors to regulate transcription in a pluripotent context has been studied extensively, their ability to interact with and remodel a somatic genome remains underexplored. Several recent studies have begun to provide mechanistic insights that will eventually lead to a more rational design and improved understanding of nuclear reprogramming.
Collapse
|
47
|
Molecular Analysis of TTF-1 and TTF-2 Genes in Patients with Early Onset Papillary Thyroid Carcinoma. JOURNAL OF ONCOLOGY 2012; 2012:359246. [PMID: 22481925 PMCID: PMC3317125 DOI: 10.1155/2012/359246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 12/27/2011] [Indexed: 11/22/2022]
Abstract
Two common variants, close from TTF-1 and TTF-2, were shown to predispose to thyroid cancer (TC) in European populations. We aimed to investigate whether TTF-1 and TTF-2 variants might contribute to TC early onset (EO). Tumor samples from eighteen patients with papillary TC (PTC), who underwent total thyroidectomy at an age of ≤21, were screened for TTF-1 and TTF-2 variants. No TTF-1 variants were documented; two novel germinal TTF-2 variants, c.200C>G (p.A67G) and c.510C>A (p.A170A), were identified in two patients. Two already described TTF-2 variants were also documented; the allelic frequency among patients was not different from that observed among controls. Moreover, RET/PTC rearrangements and the BRAFV600E mutation were identified in 5/18 and 2/18 PTCs, respectively. Thyroglobulin (TG) and thyroid peroxidase (TPO) expression was found to be significantly decreased in tumors, and the lowest level of TPO expression occurred in a tumor harboring both the p.A67GTTF-2 variant and a RET/PTC3 rearrangement.
Collapse
|
48
|
Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011; 25:2227-41. [PMID: 22056668 DOI: 10.1101/gad.176826.111] [Citation(s) in RCA: 1145] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factors are adaptor molecules that detect regulatory sequences in the DNA and target the assembly of protein complexes that control gene expression. Yet much of the DNA in the eukaryotic cell is in nucleosomes and thereby occluded by histones, and can be further occluded by higher-order chromatin structures and repressor complexes. Indeed, genome-wide location analyses have revealed that, for all transcription factors tested, the vast majority of potential DNA-binding sites are unoccupied, demonstrating the inaccessibility of most of the nuclear DNA. This raises the question of how target sites at silent genes become bound de novo by transcription factors, thereby initiating regulatory events in chromatin. Binding cooperativity can be sufficient for many kinds of factors to simultaneously engage a target site in chromatin and activate gene expression. However, in cases in which the binding of a series of factors is sequential in time and thus not initially cooperative, special "pioneer transcription factors" can be the first to engage target sites in chromatin. Such initial binding can passively enhance transcription by reducing the number of additional factors that are needed to bind the DNA, culminating in activation. In addition, pioneer factor binding can actively open up the local chromatin and directly make it competent for other factors to bind. Passive and active roles for the pioneer factor FoxA occur in embryonic development, steroid hormone induction, and human cancers. Herein we review the field and describe how pioneer factors may enable cellular reprogramming.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics Program, Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
49
|
Magnani L, Ballantyne EB, Zhang X, Lupien M. PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer. PLoS Genet 2011; 7:e1002368. [PMID: 22125492 PMCID: PMC3219601 DOI: 10.1371/journal.pgen.1002368] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/18/2011] [Indexed: 01/19/2023] Open
Abstract
Altered transcriptional programs are a hallmark of diseases, yet how these are established is still ill-defined. PBX1 is a TALE homeodomain protein involved in the development of different types of cancers. The estrogen receptor alpha (ERα) is central to the development of two-thirds of all breast cancers. Here we demonstrate that PBX1 acts as a pioneer factor and is essential for the ERα-mediated transcriptional response driving aggressive tumors in breast cancer. Indeed, PBX1 expression correlates with ERα in primary breast tumors, and breast cancer cells depleted of PBX1 no longer proliferate following estrogen stimulation. Profiling PBX1 recruitment and chromatin accessibility across the genome of breast cancer cells through ChIP-seq and FAIRE-seq reveals that PBX1 is loaded and promotes chromatin openness at specific genomic locations through its capacity to read specific epigenetic signatures. Accordingly, PBX1 guides ERα recruitment to a specific subset of sites. Expression profiling studies demonstrate that PBX1 controls over 70% of the estrogen response. More importantly, the PBX1-dependent transcriptional program is associated with poor-outcome in breast cancer patients. Correspondingly, PBX1 expression alone can discriminate a priori the outcome in ERα-positive breast cancer patients. These features are markedly different from the previously characterized ERα-associated pioneer factor FoxA1. Indeed, PBX1 is the only pioneer factor identified to date that discriminates outcome such as metastasis in ERα-positive breast cancer patients. Together our results reveal that PBX1 is a novel pioneer factor defining aggressive ERα-positive breast tumors, as it guides ERα genomic activity to unique genomic regions promoting a transcriptional program favorable to breast cancer progression.
Collapse
Affiliation(s)
- Luca Magnani
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Elizabeth B. Ballantyne
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Xiaoyang Zhang
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Mathieu Lupien
- Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Institute of Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| |
Collapse
|
50
|
Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 2011; 27:465-74. [PMID: 21885149 DOI: 10.1016/j.tig.2011.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 11/20/2022]
Abstract
Chromatin is a well-known obstacle to transcription as it controls DNA accessibility, which directly impacts the recruitment of the transcriptional machinery. The recent burst of functional genomic studies provides new clues as to how transcriptional competency is regulated in this context. In this review, we discuss how these studies have shed light on a specialized subset of transcription factors, defined as pioneer factors, which direct recruitment of downstream transcription factors to establish lineage-specific transcriptional programs. In particular, we present evidence of an interplay between pioneer factors and the epigenome that could be central to this process. Finally, we discuss how pioneer factors, whose expression and function are altered in tumors, are also being considered for their prognostic value and should therefore be regarded as potential therapeutic targets. Thus, pioneer factors emerge as key players that connect the epigenome and transcription in health and disease.
Collapse
|