1
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
2
|
Müller L, Hoppe T. UPS-dependent strategies of protein quality control degradation. Trends Biochem Sci 2024; 49:859-874. [PMID: 38945729 DOI: 10.1016/j.tibs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.
Collapse
Affiliation(s)
- Leonie Müller
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
3
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
4
|
Flagg MP, Lam B, Lam DK, Le TM, Kao A, Slaiwa YI, Hampton RY. Exploring the "misfolding problem" by systematic discovery and analysis of functional-but-degraded proteins. Mol Biol Cell 2023; 34:ar125. [PMID: 37729018 PMCID: PMC10848938 DOI: 10.1091/mbc.e23-06-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
In both health and disease, the ubiquitin-proteasome system (UPS) degrades point mutants that retain partial function but have decreased stability compared with their wild-type counterparts. This class of UPS substrate includes routine translational errors and numerous human disease alleles, such as the most common cause of cystic fibrosis, ΔF508-CFTR. Yet, there is no systematic way to discover novel examples of these "minimally misfolded" substrates. To address that shortcoming, we designed a genetic screen to isolate functional-but-degraded point mutants, and we used the screen to study soluble, monomeric proteins with known structures. These simple parent proteins yielded diverse substrates, allowing us to investigate the structural features, cytotoxicity, and small-molecule regulation of minimal misfolding. Our screen can support numerous lines of inquiry, and it provides broad access to a class of poorly understood but biomedically critical quality-control substrates.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Breanna Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Darren K. Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Tiffany M. Le
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Andy Kao
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Yousif I. Slaiwa
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
5
|
Zhou M, Fang R, Colson L, Donovan KA, Hunkeler M, Song Y, Zhang C, Chen S, Lee DH, Bradshaw GA, Eisert R, Ye Y, Kalocsay M, Goldberg A, Fischer ES, Lu Y. HUWE1 Amplifies Ubiquitin Modifications to Broadly Stimulate Clearance of Proteins and Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542866. [PMID: 37398461 PMCID: PMC10312588 DOI: 10.1101/2023.05.30.542866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.
Collapse
|
6
|
Cutrupi AN, Narayanan RK, Perez-Siles G, Grosz BR, Lai K, Boyling A, Ellis M, Lin RCY, Neumann B, Mao D, Uesugi M, Nicholson GA, Vucic S, Saporta MA, Kennerson ML. Novel gene-intergenic fusion involving ubiquitin E3 ligase UBE3C causes distal hereditary motor neuropathy. Brain 2023; 146:880-897. [PMID: 36380488 PMCID: PMC9976978 DOI: 10.1093/brain/awac424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Distal hereditary motor neuropathies (dHMNs) are a group of inherited diseases involving the progressive, length-dependent axonal degeneration of the lower motor neurons. There are currently 29 reported causative genes and four disease loci implicated in dHMN. Despite the high genetic heterogeneity, mutations in the known genes account for less than 20% of dHMN cases, with the mutations identified predominantly being point mutations or indels. We have expanded the spectrum of dHMN mutations with the identification of a 1.35 Mb complex structural variation (SV) causing a form of autosomal dominant dHMN (DHMN1 OMIM %182906). Given the complex nature of SV mutations and the importance of studying pathogenic mechanisms in a neuronal setting, we generated a patient-derived DHMN1 motor neuron model harbouring the 1.35 Mb complex insertion. The DHMN1 complex insertion creates a duplicated copy of the first 10 exons of the ubiquitin-protein E3 ligase gene (UBE3C) and forms a novel gene-intergenic fusion sense transcript by incorporating a terminal pseudo-exon from intergenic sequence within the DHMN1 locus. The UBE3C intergenic fusion (UBE3C-IF) transcript does not undergo nonsense-mediated decay and results in a significant reduction of wild-type full-length UBE3C (UBE3C-WT) protein levels in DHMN1 iPSC-derived motor neurons. An engineered transgenic Caenorhabditis elegans model expressing the UBE3C-IF transcript in GABA-ergic motor neurons shows neuronal synaptic transmission deficits. Furthermore, the transgenic animals are susceptible to heat stress, which may implicate defective protein homeostasis underlying DHMN1 pathogenesis. Identification of the novel UBE3C-IF gene-intergenic fusion transcript in motor neurons highlights a potential new disease mechanism underlying axonal and motor neuron degeneration. These complementary models serve as a powerful paradigm for studying the DHMN1 complex SV and an invaluable tool for defining therapeutic targets for DHMN1.
Collapse
Affiliation(s)
- Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ramesh K Narayanan
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Kaitao Lai
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Alexandra Boyling
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ruby C Y Lin
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Brent Neumann
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Di Mao
- Institute for Integrated Cell-Material Sciences and Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences and Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Garth A Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Steve Vucic
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
| |
Collapse
|
7
|
Wang Z, Orosa-Puente B, Spoel SH. Analysis of Proteasome-Associated Ubiquitin Ligase Activity. Methods Mol Biol 2023; 2581:57-67. [PMID: 36413310 DOI: 10.1007/978-1-0716-2784-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ubiquitin-proteasome system (UPS) is the predominant protein degradation machinery in eukaryotic cells. It is highly conserved among eukaryotes and essential for their survival. Through regulated proteolysis the UPS plays a key role in a myriad of cellular functions, including developmental and stress signaling, cell differentiation, and cell death. Attachment of a ubiquitin chain to a substrate can trigger its recruitment to the proteasome for proteolysis. To efficiently degrade substrates, however, the proteasome employs HECT-type ubiquitin ligases that can further remodel ubiquitin chains of proteasome-captured substrates. It is thought that this remodeling process is necessary to maintain substrate affinity for the proteasome and to completely translocate the substrate into the 20S proteolytic barrel. Here, we describe a protocol for purifying proteasomes and their associated accessory proteins and provide a practical way to detect proteasome-associated E3 ligase activity. This assay is reliable and efficient for assessing the ability of proteasomes to form ubiquitin conjugates and is applicable to a wide range of eukaryotic species.
Collapse
Affiliation(s)
- Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Wang Z, Orosa-Puente B, Nomoto M, Grey H, Potuschak T, Matsuura T, Mori IC, Tada Y, Genschik P, Spoel SH. Proteasome-associated ubiquitin ligase relays target plant hormone-specific transcriptional activators. SCIENCE ADVANCES 2022; 8:eabn4466. [PMID: 36269824 PMCID: PMC9586472 DOI: 10.1126/sciadv.abn4466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitin-proteasome system is vital to hormone-mediated developmental and stress responses in plants. Ubiquitin ligases target hormone-specific transcriptional activators (TAs) for degradation, but how TAs are processed by proteasomes remains unknown. We report that in Arabidopsis, the salicylic acid- and ethylene-responsive TAs, NPR1 and EIN3, are relayed from pathway-specific ubiquitin ligases to proteasome-associated HECT-type UPL3/4 ligases. Activity and stability of NPR1 were regulated by sequential action of three ubiquitin ligases, including UPL3/4, while proteasome processing of EIN3 required physical handover between ethylene-responsive SCFEBF2 and UPL3/4 ligases. Consequently, UPL3/4 controlled extensive hormone-induced developmental and stress-responsive transcriptional programs. Thus, our findings identify unknown ubiquitin ligase relays that terminate with proteasome-associated HECT-type ligases, which may be a universal mechanism for processive degradation of proteasome-targeted TAs and other substrates.
Collapse
Affiliation(s)
- Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mika Nomoto
- The Centre for Gene Research, Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Heather Grey
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas Potuschak
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Yasuomi Tada
- The Centre for Gene Research, Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Wang Z, Spoel SH. HECT ubiquitin ligases as accessory proteins of the plant proteasome. Essays Biochem 2022; 66:135-145. [PMID: 35635104 PMCID: PMC9400063 DOI: 10.1042/ebc20210064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/31/2022]
Abstract
The proteasome plays vital roles in eukaryotic cells by orchestrating the regulated degradation of large repertoires of substrates involved in numerous biological processes. Proteasome dysfunction is associated with a wide variety of human pathologies and in plants severely affects growth, development and responses to stress. The activity of E3 ubiquitin ligases marks proteins fated for degradation with chains of the post-translational modifier, ubiquitin. Proteasomal processing of ubiquitinated substrates involves ubiquitin chain recognition, deubiquitination, ATP-mediated unfolding and translocation, and proteolytic digestion. This complex series of steps is made possible not only by the many specialised subunits of the 1.5 MDa proteasome complex but also by a range of accessory proteins that are recruited to the proteasome. A surprising class of accessory proteins are members of the HECT-type family of ubiquitin ligases that utilise a unique mechanism for post-translational attachment of ubiquitin to their substrates. So why do proteasomes that already contain all the necessary machinery to recognise ubiquitinated substrates, harbour HECT ligase activity? It is now clear that some ubiquitin ligases physically relay their substrates to proteasome-associated HECT ligases, which prevent substrate stalling at the proteasome. Moreover, HECT ligases ubiquitinate proteasome subunits, thereby modifying the proteasome's ability to recognise substrates. They may therefore enable proteasomes to be both non-specific and extraordinarily selective in a complex substrate environment. Understanding the relationship between the proteasome and accessory HECT ligases will reveal how the proteasome controls so many diverse plant developmental and stress responses.
Collapse
Affiliation(s)
- Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
10
|
Spike CA, Tsukamoto T, Greenstein D. Ubiquitin ligases and a processive proteasome facilitate protein clearance during the oocyte-to-embryo transition in Caenorhabditis elegans. Genetics 2022; 221:iyac051. [PMID: 35377419 PMCID: PMC9071522 DOI: 10.1093/genetics/iyac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition. In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the oocyte-to-embryo transition. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase-promoting complex. However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles, are independently degraded through the action of other factors and that the oocyte ribonucleoprotein particles are disassembled in a concerted fashion during the oocyte-to-embryo transition. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the oocyte-to-embryo transition, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin, and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the oocyte-to-embryo transition during which many key oocyte regulatory proteins are rapidly targeted for degradation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules 2021; 11:biom11121821. [PMID: 34944465 PMCID: PMC8698790 DOI: 10.3390/biom11121821] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.
Collapse
|
12
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
13
|
Protein feature analysis of heat shock induced ubiquitination sites reveals preferential modification site localization. J Proteomics 2021; 239:104182. [PMID: 33705978 DOI: 10.1016/j.jprot.2021.104182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Protein aggregation is indicative of failing protein quality control systems. These systems are responsible for the refolding or degradation of aberrant and misfolded proteins. Heat stress can cause proteins to misfold, triggering cellular responses including a marked increase in the ubiquitination of proteins. This response has been characterized in yeast, however more studies are needed within mammalian cells. Herein, we examine proteins that become ubiquitinated during heat shock in human tissue culture cells using diGly enrichment coupled with mass spectrometry. A majority of these proteins are localized in the nucleus or cytosol. Proteins which are conjugated under stress display longer sequence lengths, more interaction partners, and more hydrophobic patches than controls but do not show lower melting temperatures. Furthermore, heat-induced conjugation sites occur less frequently in disordered regions and are closer to hydrophobic patches than other ubiquitination sites; perhaps providing novel insight into the molecular mechanism mediating this response. Nuclear and cytosolic pools of modified proteins appear to have different protein features. Using a pulse-SILAC approach, we found that both long-lived and newly-synthesized proteins are conjugated under stress. Modified long-lived proteins are predominately nuclear and were distinct from newly-synthesized proteins, indicating that different pathways may mediate the heat-induced increase of polyubiquitination. SIGNIFICANCE: The maintenance of protein homeostasis requires a balance of protein synthesis, folding, and degradation. Under stress conditions, the cell must rapidly adapt by increasing its folding capacity to eliminate aberrant proteins. A major pathway for proteolysis is mediated by the ubiquitin proteasome system. While increased ubiquitination after heat stress was observed over 30 years ago, it remains unclear which proteins are conjugated during heat shock in mammalian cells and by what means this conjugation occurs. In this study, we combined SILAC-based mass spectrometry with computational analyses to reveal features associated to proteins ubiquitinated while under heat shock. Interestingly, we found that conjugation sites induced by the stress are less often located within disordered regions and more often located near hydrophobic patches. Our study showcases how proteomics can reveal distinct feature associated to a cohort of proteins that are modified post translationally and how the ubiquitin conjugation sites are preferably selected in these conditions. Our work opens a new path for delineating the molecular mechanisms leading to the heat stress response and the regulation of protein homeostasis.
Collapse
|
14
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
15
|
The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun 2020; 11:477. [PMID: 31980598 PMCID: PMC6981147 DOI: 10.1038/s41467-019-13906-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2019] [Indexed: 01/28/2023] Open
Abstract
Proteins are targeted to the proteasome by the attachment of ubiquitin chains, which are markedly varied in structure. Three proteasome subunits–Rpn10, Rpn13, and Rpn1–can recognize ubiquitin chains. Here we report that proteins with single chains of K48-linked ubiquitin are targeted for degradation almost exclusively through binding to Rpn10. Rpn1 can act as a co-receptor with Rpn10 for K63 chains and for certain other chain types. Differences in targeting do not correlate with chain affinity to receptors. Surprisingly, in steady-state assays Rpn13 retarded degradation of various single-chain substrates. Substrates with multiple short ubiquitin chains can be presented for degradation by any of the known receptors, whereas those targeted to the proteasome through a ubiquitin-like domain are degraded most efficiently when bound by Rpn13 or Rpn1. Thus, the proteasome provides an unexpectedly versatile binding platform that can recognize substrates targeted for degradation by ubiquitin chains differing greatly in length and topology. Ubiquitylated proteins are degraded by the proteasome and the three proteasome subunits Rpn10, Rpn13 and Rpn1 recognize ubiquitin chains. Here the authors employ biochemical and kinetic assays and characterise the ubiquitin chain type specificities of these three ubiquitin receptors.
Collapse
|
16
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
17
|
Skelly MJ, Furniss JJ, Grey H, Wong KW, Spoel SH. Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. eLife 2019; 8:47005. [PMID: 31589140 PMCID: PMC6850887 DOI: 10.7554/elife.47005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/05/2019] [Indexed: 01/27/2023] Open
Abstract
Activation of systemic acquired resistance in plants is associated with transcriptome reprogramming induced by the unstable coactivator NPR1. Immune-induced ubiquitination and proteasomal degradation of NPR1 are thought to facilitate continuous delivery of active NPR1 to target promoters, thereby maximising gene expression. Because of this potentially costly sacrificial process, we investigated if ubiquitination of NPR1 plays transcriptional roles prior to its proteasomal turnover. Here we show ubiquitination of NPR1 is a progressive event in which initial modification by a Cullin-RING E3 ligase promotes its chromatin association and expression of target genes. Only when polyubiquitination of NPR1 is enhanced by the E4 ligase, UBE4, it is targeted for proteasomal degradation. Conversely, ubiquitin ligase activities are opposed by UBP6/7, two proteasome-associated deubiquitinases that enhance NPR1 longevity. Thus, immune-induced transcriptome reprogramming requires sequential actions of E3 and E4 ligases balanced by opposing deubiquitinases that fine-tune activity of NPR1 without strict requirement for its sacrificial turnover.
Collapse
Affiliation(s)
- Michael J Skelly
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James J Furniss
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather Grey
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ka-Wing Wong
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
The Proteasome Lid Triggers COP9 Signalosome Activity during the Transition of Saccharomyces cerevisiae Cells into Quiescence. Biomolecules 2019; 9:biom9090449. [PMID: 31487956 PMCID: PMC6770237 DOI: 10.3390/biom9090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
The class of Cullin-RING E3 ligases (CRLs) selectively ubiquitinate a large portion of proteins targeted for proteolysis by the 26S proteasome. Before degradation, ubiquitin molecules are removed from their conjugated proteins by deubiquitinating enzymes, a handful of which are associated with the proteasome. The CRL activity is triggered by modification of the Cullin subunit with the ubiquitin-like protein, NEDD8 (also known as Rub1 in Saccharomyces cerevisiae). Cullin modification is then reversed by hydrolytic action of the COP9 signalosome (CSN). As the NEDD8-Rub1 catalytic cycle is not essential for the viability of S. cerevisiae, this organism is a useful model system to study the alteration of Rub1-CRL conjugation patterns. In this study, we describe two distinct mutants of Rpn11, a proteasome-associated deubiquitinating enzyme, both of which exhibit a biochemical phenotype characterized by high accumulation of Rub1-modified Cdc53-Cullin1 (yCul1) upon entry into quiescence in S. cerevisiae. Further characterization revealed proteasome 19S-lid-associated deubiquitination activity that authorizes the hydrolysis of Rub1 from yCul1 by the CSN complex. Thus, our results suggest a negative feedback mechanism via proteasome capacity on upstream ubiquitinating enzymes.
Collapse
|
19
|
Gottlieb CD, Thompson ACS, Ordureau A, Harper JW, Kopito RR. Acute unfolding of a single protein immediately stimulates recruitment of ubiquitin protein ligase E3C (UBE3C) to 26S proteasomes. J Biol Chem 2019; 294:16511-16524. [PMID: 31375563 DOI: 10.1074/jbc.ra119.009654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/16/2019] [Indexed: 01/26/2023] Open
Abstract
The intracellular accumulation of aggregated misfolded proteins is a cytopathological hallmark of neurodegenerative diseases. However, the functional relationship between protein misfolding or aggregation and the cellular proteostasis network that monitors and maintains proteome health is poorly understood. Previous studies have associated translational suppression and transcriptional remodeling with the appearance of protein aggregates, but whether these responses are induced by aggregates or their misfolded monomeric or oligomeric precursors remains unclear. Because aggregation in cells is rapid, nonlinear, and asynchronous, it has not been possible to deconvolve these kinetically linked processes to determine the earliest cellular responses to misfolded proteins. Upon removal of the synthetic, biologically inert ligand shield-1 (S1), AgDD, an engineered variant FK506-binding protein (FKBP1A), rapidly (t ½ ∼5 min) unfolds and self-associates, forming detergent-insoluble, microscopic cytoplasmic aggregates. Using global diglycine-capture (K-GG) proteomics, we found here that this solubility transition is associated with immediate increases in ubiquitylation of AgDD itself, along with that of endogenous proteins that are components of the ribosome and the 26S proteasome. We also found that the earliest cellular responses to acute S1 removal include recruitment of ubiquitin protein ligase E3C (UBE3C) to the 26S proteasome and ubiquitylation of two key proteasomal ubiquitin receptors, 26S proteasome regulatory subunit RPN10 (RPN10) and Rpn13 homolog (RPN13 or ADRM1). We conclude that these proteasomal responses are due to AgDD protein misfolding and not to the presence of detergent-insoluble aggregates.
Collapse
Affiliation(s)
- Colin D Gottlieb
- Department of Biology, Stanford University, Stanford, California 94305
| | | | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts 02115
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts 02115
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
20
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
21
|
CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nat Struct Mol Biol 2019; 26:450-459. [PMID: 31133701 PMCID: PMC6554034 DOI: 10.1038/s41594-019-0230-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Stalled translation produces incomplete, ribosome-tethered polypeptides that the Ribosome-associated Quality Control (RQC) pathway targets for degradation via the E3 ubiquitin ligase Ltn1. During this process, the protein Rqc2 and the large ribosomal subunit elongate stalled polypeptides with carboxy-terminal alanine and threonine residues (CAT tails). Failure to degrade CAT-tailed proteins disrupts global protein homeostasis, as CAT-tailed proteins can aggregate and sequester chaperones. Why cells employ such a potentially toxic process during RQC is unclear. Here, we developed quantitative techniques to assess how CAT tails affect stalled polypeptide degradation in Saccharomyces cerevisiae. We found that CAT tails enhance Ltn1’s efficiency in targeting structured polypeptides, which are otherwise poor Ltn1 substrates. If Ltn1 fails to ubiquitylate those stalled polypeptides or becomes limiting, CAT tails act as degrons, marking proteins for proteasomal degradation off the ribosome. Thus, CAT tails functionalize the carboxy-termini of stalled polypeptides to drive their degradation on and off the ribosome.
Collapse
|
22
|
Furniss JJ, Grey H, Wang Z, Nomoto M, Jackson L, Tada Y, Spoel SH. Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity. PLoS Pathog 2018; 14:e1007447. [PMID: 30458055 PMCID: PMC6286022 DOI: 10.1371/journal.ppat.1007447] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/07/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Regulated degradation of proteins by the 26S proteasome plays important roles in maintenance and signalling in eukaryotic cells. Proteins are marked for degradation by the action of E3 ligases that site-specifically modify their substrates by adding chains of ubiquitin. Innate immune signalling in plants is deeply reliant on the ubiquitin-26S proteasome system. While progress has been made in understanding substrate ubiquitination during plant immunity, how these substrates are processed upon arrival at the proteasome remains unclear. Here we show that specific members of the HECT domain-containing family of ubiquitin protein ligases (UPL) play important roles in proteasomal substrate processing during plant immunity. Mutations in UPL1, UPL3 and UPL5 significantly diminished immune responses activated by the immune hormone salicylic acid (SA). In depth analyses of upl3 mutants indicated that these plants were impaired in reprogramming of nearly the entire SA-induced transcriptome and failed to establish immunity against a hemi-biotrophic pathogen. UPL3 was found to physically interact with the regulatory particle of the proteasome and with other ubiquitin-26S proteasome pathway components. In agreement, we demonstrate that UPL3 enabled proteasomes to form polyubiquitin chains, thereby regulating total cellular polyubiquitination levels. Taken together, our findings suggest that proteasome-associated ubiquitin ligase activity of UPL3 promotes proteasomal processivity and is indispensable for development of plant immunity.
Collapse
Affiliation(s)
- James J. Furniss
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather Grey
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhishuo Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mika Nomoto
- The Center for Gene Research, Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Lorna Jackson
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yasuomi Tada
- The Center for Gene Research, Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Steven H. Spoel
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E10009-E10017. [PMID: 29087340 PMCID: PMC5699081 DOI: 10.1073/pnas.1713574114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The essential roles of cytoplasmic E3 ligases in the protein quality control (PQC) pathways have been increasingly highlighted in yeast and animal studies. However, in plants, only CHIP E3 ligase has been characterized, while the knowledge of cytoplasmic PQC E3 ligases remains rudimentary. Misfolded Protein Sensing RING E3 ligase 1 (MPSR1), a self-regulatory sensor system that functions only in the occurrence of misfolded proteins, is an identified cytoplasmic PQC E3 ligase in plants that directly recognizes emergent misfolded proteins independently of chaperones. In addition, MPSR1 sustains the integrity and activity of the 26S proteasome under proteotoxic stress. Given that MPSR1 RING E3 ligase is well conserved in eukaryotes, this study sheds light on a PQC pathway that is present particularly in plants and beyond. Ubiquitin E3 ligases are crucial for eliminating misfolded proteins before they form cytotoxic aggregates that threaten cell fitness and survival. However, it remains unclear how emerging misfolded proteins in the cytoplasm can be selectively recognized and eliminated by E3 ligases in plants. We found that Misfolded Protein Sensing RING E3 ligase 1 (MPSR1) is an indispensable E3 ligase required for plant survival after protein-damaging stress. Under no stress, MPSR1 is prone to rapid degradation by the 26S proteasome, concealing its protein quality control (PQC) E3 ligase activity. Upon proteotoxic stress, MPSR1 directly senses incipient misfolded proteins and tethers ubiquitins for subsequent degradation. Furthermore, MPSR1 sustains the structural integrity of the proteasome complex at the initial stage of proteotoxic stress. Here, we suggest that the MPSR1 pathway is a constitutive mechanism for proteostasis under protein-damaging stress, as a front-line surveillance system in the cytoplasm.
Collapse
|
24
|
Kevei É, Pokrzywa W, Hoppe T. Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett 2017; 591:2616-2635. [PMID: 28699655 PMCID: PMC5601288 DOI: 10.1002/1873-3468.12750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Cellular differentiation, developmental processes, and environmental factors challenge the integrity of the proteome in every eukaryotic cell. The maintenance of protein homeostasis, or proteostasis, involves folding and degradation of damaged proteins, and is essential for cellular function, organismal growth, and viability 1, 2. Misfolded proteins that cannot be refolded by chaperone machineries are degraded by specialized proteolytic systems. A major degradation pathway regulating cellular proteostasis is the ubiquitin (Ub)/proteasome system (UPS), which regulates turnover of damaged proteins that accumulate upon stress and during aging. Despite a large number of structurally unrelated substrates, Ub conjugation is remarkably selective. Substrate selectivity is mainly provided by the group of E3 enzymes. Several observations indicate that numerous E3 Ub ligases intimately collaborate with molecular chaperones to maintain the cellular proteome. In this review, we provide an overview of specialized quality control E3 ligases playing a critical role in the degradation of damaged proteins. The process of substrate recognition and turnover, the type of chaperones they team up with, and the potential pathogeneses associated with their malfunction will be further discussed.
Collapse
Affiliation(s)
- Éva Kevei
- School of Biological Sciences, University of Reading, Whiteknights, UK
| | - Wojciech Pokrzywa
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
25
|
The Logic of the 26S Proteasome. Cell 2017; 169:792-806. [PMID: 28525752 DOI: 10.1016/j.cell.2017.04.023] [Citation(s) in RCA: 591] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022]
Abstract
The ubiquitin proteasome pathway is responsible for most of the protein degradation in mammalian cells. Rates of degradation by this pathway have generally been assumed to be determined by rates of ubiquitylation. However, recent studies indicate that proteasome function is also tightly regulated and determines whether a ubiquitylated protein is destroyed or deubiquitylated and survives longer. This article reviews recent advances in our understanding of the proteasome's multistep ATP-dependent mechanism, its biochemical and structural features that ensure efficient proteolysis and ubiquitin recycling while preventing nonselective proteolysis, and the regulation of proteasome activity by interacting proteins and subunit modifications, especially phosphorylation.
Collapse
|
26
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
27
|
Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc Natl Acad Sci U S A 2017; 114:E3404-E3413. [PMID: 28396413 DOI: 10.1073/pnas.1701734114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In mammalian cells, the 26S proteasomes vary in composition. In addition to the standard 28 subunits in the 20S core particle and 19 subunits in each 19S regulatory particle, a small fraction (about 10-20% in our preparations) also contains the deubiquitinating enzyme Usp14/Ubp6, which regulates proteasome activity, and the ubiquitin ligase, Ube3c/Hul5, which enhances proteasomal processivity. When degradation of ubiquitinated proteins in cells was inhibited, levels of Usp14 and Ube3c on proteasomes increased within minutes. Conversely, when protein ubiquitination was prevented, or when purified proteasomes hydrolyzed the associated ubiquitin conjugates, Usp14 and Ube3c dissociated rapidly (unlike other 26S subunits), but the inhibitor ubiquitin aldehyde slowed their dissociation. Recombinant Usp14 associated with purified proteasomes preferentially if they contained ubiquitin conjugates. In cells or extracts, adding Usp14 inhibitors (IU-1 or ubiquitin aldehyde) enhanced Usp14 and Ube3c binding further. Thus, in the substrate- or the inhibitor-bound conformations, Usp14 showed higher affinity for proteasomes and surprisingly enhanced Ube3c binding. Moreover, adding ubiquitinated proteins to cell extracts stimulated proteasome binding of both enzymes. Thus, Usp14 and Ube3c cycle together on and off proteasomes, and the presence of ubiquitinated substrates promotes their association. This mechanism enables proteasome activity to adapt to the supply of substrates.
Collapse
|
28
|
Jain N, Rai A, Mishra R, Ganesh S. Loss of malin, but not laforin, results in compromised autophagic flux and proteasomal dysfunction in cells exposed to heat shock. Cell Stress Chaperones 2017; 22:307-315. [PMID: 27975203 PMCID: PMC5352594 DOI: 10.1007/s12192-016-0754-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
Heat stress to a cell leads to the activation of heat shock response, which is required for the management of misfolded and unfolded proteins. Macroautophagy and proteasome-mediated degradation are the two cellular processes that degrade polyubiquitinated, misfolded proteins. Contrasting pieces of evidence exist on the effect of heat stress on the activation of the above-mentioned degradative pathways. Laforin phosphatase and malin E3 ubiquitin ligase, the two proteins defective in Lafora neurodegenerative disorder, are involved in cellular stress response pathways and are required for the activation of heat shock transcription factor - the heat shock factor 1 (HSF1) - and, consequently, for cellular protection under heat shock. While the role of laforin and malin in the proteolytic pathways is well established, their role in cellular recovery from heat shock was not explored. To address this, we investigated autophagic flux, proteasomal activity, and the level of polyubiquitinated proteins in Neuro2a cells partially silenced for laforin or malin protein and exposed to heat shock. We found that heat shock was able to induce autophagic flux, proteasomal activity and reduce the polyubiquitinated proteins load in the laforin-silenced cells but not in the malin-deficient cells. Loss of malin leads to reduced proteasomal activity in the heat-shocked cells. Taken together, our results suggest a distinct mode of action for laforin and malin in the heat shock-induced proteolytic processes.
Collapse
Affiliation(s)
- Navodita Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
29
|
Smith N, Adle DJ, Zhao M, Qin X, Kim H, Lee J. Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane. J Biol Chem 2016; 291:15082-92. [PMID: 27226596 DOI: 10.1074/jbc.m116.726265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays a critical role in the destruction of terminally misfolded proteins at the secretory pathway. The system also regulates expression levels of several proteins such as Pca1p, a cadmium exporter in yeast. To gain better insight into the mechanisms underlying ERAD of Pca1p and other polytopic proteins by the proteasome in the cytosol, our study determined the roles for the molecular factors of ERAD in dislodging Pca1p from the endoplasmic reticulum (ER). Inactivation of the 20S proteasome leads to accumulation of ubiquitinated Pca1p in the ER membrane, suggesting a role for the proteasome in extraction of Pca1p from the ER. Pca1p formed a complex with the proteasome at the membrane in a Doa10p E3 ligase-dependent manner. Cdc48p is required for recruiting the proteasome to Pca1p. Although the Ufd2p E4 ubiquitin chain extension enzyme is involved in efficient degradation of Pca1p, Ufd2p-deficient cells did not affect the formation of a complex between Pca1p and the proteasome. Two other polytopic membrane proteins undergoing ERAD, Ste6*p and Hmg2p, also displayed the same outcomes observed for Pca1p. However, poly-ubiquitinated Cpy1*p, a luminal ERAD substrate, was detected in the cytosol independent of proteolytic activities of the proteasome. These results indicate that extraction and degradation of polytopic membrane proteins at the ER is a coupled event. This mechanism would relieve the cost of exposed hydrophobic domains in the cytosol during ERAD.
Collapse
Affiliation(s)
- Nathan Smith
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - David J Adle
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Miaoyun Zhao
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Xiaojuan Qin
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and the College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| |
Collapse
|
30
|
Khmelinskii A, Meurer M, Ho CT, Besenbeck B, Füller J, Lemberg MK, Bukau B, Mogk A, Knop M. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol Biol Cell 2016; 27:360-70. [PMID: 26609072 PMCID: PMC4713137 DOI: 10.1091/mbc.e15-07-0525] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far, tFTs have been constructed by combining slower-maturing red fluorescent proteins (redFPs) with the faster-maturing superfolder green fluorescent protein (sfGFP). Toward a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing green fluorescent proteins (greenFPs) while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT toward slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for the design of new tFTs.
Collapse
Affiliation(s)
- Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chi-Ting Ho
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Birgit Besenbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Julia Füller
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Finley D, Chen X, Walters KJ. Gates, Channels, and Switches: Elements of the Proteasome Machine. Trends Biochem Sci 2015; 41:77-93. [PMID: 26643069 DOI: 10.1016/j.tibs.2015.10.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
The proteasome has emerged as an intricate machine that has dynamic mechanisms to regulate the timing of its activity, its selection of substrates, and its processivity. The 19-subunit regulatory particle (RP) recognizes ubiquitinated proteins, removes ubiquitin, and injects the target protein into the proteolytic chamber of the core particle (CP) via a narrow channel. Translocation into the CP requires substrate unfolding, which is achieved through mechanical force applied by a hexameric ATPase ring of the RP. Recent cryoelectron microscopy (cryoEM) studies have defined distinct conformational states of the RP, providing illustrative snapshots of what appear to be progressive steps of substrate engagement. Here, we bring together this new information with molecular analyses to describe the principles of proteasome activity and regulation.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
32
|
Okada M, Ohtake F, Nishikawa H, Wu W, Saeki Y, Takana K, Ohta T. Liganded ERα Stimulates the E3 Ubiquitin Ligase Activity of UBE3C to Facilitate Cell Proliferation. Mol Endocrinol 2015; 29:1646-57. [PMID: 26389696 DOI: 10.1210/me.2015-1125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Estrogen receptor (ER)α is a well-characterized ligand-dependent transcription factor. However, the global picture of its nongenomic functions remains to be illustrated. Here, we demonstrate a novel function of ERα during mitosis that facilitates estrogen-dependent cell proliferation. An E3 ubiquitin ligase, UBE3C, was identified in an ERα complex from estrogen-treated MCF-7 breast cancer cells arrested at mitosis. UBE3C interacts with ERα during mitosis in an estrogen-dependent manner. In vitro, estrogen dramatically stimulates the E3 activity of UBE3C in the presence of ERα. This effect was inhibited by the estrogen antagonist tamoxifen. Importantly, estrogen enhances the ubiquitination of cyclin B1 (CCNB1) and destabilizes CCNB1 during mitosis in a manner dependent on endogenous UBE3C. ERα, UBE3C, and CCNB1 colocalize in prophase nuclei and at metaphase spindles before CCNB1 is degraded in anaphase. Depletion of UBE3C attenuates estrogen-dependent cell proliferation without affecting the transactivation function of ERα. Collectively, these results demonstrate a novel ligand-dependent action of ERα that stimulates the activity of an E3 ligase. The mitotic role of estrogen may contribute to its effects on proliferation in addition to its roles in target gene expression.
Collapse
Affiliation(s)
- Maiko Okada
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Fumiaki Ohtake
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hiroyuki Nishikawa
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Wenwen Wu
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasushi Saeki
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Keiji Takana
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
33
|
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat Struct Mol Biol 2015; 22:712-9. [PMID: 26301997 PMCID: PMC4560640 DOI: 10.1038/nsmb.3075] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Substrates are targeted for proteasomal degradation through the attachment of ubiquitin chains that need to be removed by proteasomal deubiquitinases prior to substrate processing. In budding yeast, the deubiquitinase Ubp6 trims ubiquitin chains and affects substrate processing by the proteasome, but the underlying mechanisms and its location within the holoenzyme remained elusive. Here we show that Ubp6 activity strongly responds to interactions with the base ATPase and the conformational state of the proteasome. Electron-microscopy analyses reveal that ubiquitin-bound Ubp6 contacts the N-ring and AAA+ ring of the ATPase hexamer, in close proximity to the deubiquitinase Rpn11. Ubiquitin-bound Ubp6 inhibits substrate deubiquitination by Rpn11, stabilizes the substrate-engaged conformation of the proteasome, and allosterically interferes with the engagement of a subsequent substrate. Ubp6 may thus act as an ubiquitin-dependent timer to coordinate individual processing steps at the proteasome and modulate substrate degradation.
Collapse
|
34
|
Trausch-Azar JS, Abed M, Orian A, Schwartz AL. Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol 2015; 230:842-52. [PMID: 25204433 DOI: 10.1002/jcp.24812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
The E3 ubiquitin ligase and tumor suppressor SCF(Fbw7) exists as three isoforms that govern the degradation of a host of critical cell regulators, including c-Myc, cyclin E, and PGC-1α. Peroxisome proliferator activated receptor-gamma coactivator 1α (PGC-1α) is a transcriptional coactivator with broad effects on cellular energy metabolism. Cellular PGC-1α levels are tightly controlled in a dynamic state by the balance of synthesis and rapid degradation via the ubiquitin-proteasome system. Isoform-specific functions of SCF(Fbw7) are yet to be determined. Here, we show that the E3 ubiquitin ligase, SCF(Fbw7), regulates cellular PGC-1α levels via two independent, isoform-specific, mechanisms. The cytoplasmic isoform (SCF(Fbw7β)) reduces cellular PGC-1α levels via accelerated ubiquitin-proteasome degradation. In contrast, the nuclear isoform (SCF(Fbw7α)) increases cellular PGC-1α levels and protein stability via inhibition of ubiquitin-proteasomal degradation. When nuclear Fbw7α proteins are redirected to the cytoplasm, cellular PGC-1α protein levels are reduced through accelerated ubiquitin-proteasomal degradation. We find that SCF(Fbw7β) catalyzes high molecular weight PGC-1α-ubiquitin conjugation, whereas SCF(Fbw7α) produces low molecular weight PGC-1α-ubiquitin conjugates that are not effective degradation signals. Thus, selective ubiquitination by specific Fbw7 isoforms represents a novel mechanism that tightly regulates cellular PGC-1α levels. Fbw7 isoforms mediate degradation of a host of regulatory proteins. The E3 ubiquitin ligase, Fbw7, mediates PGC-1α levels via selective isoform-specific ubiquitination. Fbw7β reduces cellular PGC-1α via ubiquitin-mediated degradation, whereas Fbw7α increases cellular PGC-1α via ubiquitin-mediated stabilization.
Collapse
Affiliation(s)
- Julie S Trausch-Azar
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | | | | | | |
Collapse
|
35
|
Proteasome stress responses in Schistosoma mansoni. Parasitol Res 2015; 114:1747-60. [DOI: 10.1007/s00436-015-4360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/30/2015] [Indexed: 12/19/2022]
|
36
|
Fang NN, Chan GT, Zhu M, Comyn SA, Persaud A, Deshaies RJ, Rotin D, Gsponer J, Mayor T. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 2014; 16:1227-37. [PMID: 25344756 PMCID: PMC5224936 DOI: 10.1038/ncb3054] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022]
Abstract
The heat-shock response is a complex cellular program that induces major changes in protein translation, folding and degradation to alleviate toxicity caused by protein misfolding. Although heat shock has been widely used to study proteostasis, it remained unclear how misfolded proteins are targeted for proteolysis in these conditions. We found that Rsp5 and its mammalian homologue Nedd4 are important E3 ligases responsible for the increased ubiquitylation induced by heat stress. We determined that Rsp5 ubiquitylates mainly cytosolic misfolded proteins upon heat shock for proteasome degradation. We found that ubiquitylation of heat-induced substrates requires the Hsp40 co-chaperone Ydj1 that is further associated with Rsp5 upon heat shock. In addition, ubiquitylation is also promoted by PY Rsp5-binding motifs found primarily in the structured regions of stress-induced substrates, which can act as heat-induced degrons. Our results support a bipartite recognition mechanism combining direct and chaperone-dependent ubiquitylation of misfolded cytosolic proteins by Rsp5.
Collapse
Affiliation(s)
- Nancy N Fang
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Gerard T Chan
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Mang Zhu
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Avinash Persaud
- Program in Cell Biology, Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Raymond J Deshaies
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, 114-96 Caltech, 1200 E. California Boulevard Pasadena, California 91125, USA
| | - Daniela Rotin
- Program in Cell Biology, Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Joerg Gsponer
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
37
|
Nielsen SV, Poulsen EG, Rebula CA, Hartmann-Petersen R. Protein quality control in the nucleus. Biomolecules 2014; 4:646-61. [PMID: 25010148 PMCID: PMC4192666 DOI: 10.3390/biom4030646] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023] Open
Abstract
In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation.
Collapse
Affiliation(s)
- Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Esben G Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
38
|
Abstract
The ubiquitin proteasome system (UPS) is the main ATP-dependent protein degradation pathway in the cytosol and nucleus of eukaryotic cells. At its centre is the 26S proteasome, which degrades regulatory proteins and misfolded or damaged proteins. In a major breakthrough, several groups have determined high-resolution structures of the entire 26S proteasome particle in different nucleotide conditions and with and without substrate using cryo-electron microscopy combined with other techniques. These structures provide some surprising insights into the functional mechanism of the proteasome and will give invaluable guidance for genetic and biochemical studies of this key regulatory system.
Collapse
|
39
|
Inobe T, Matouschek A. Paradigms of protein degradation by the proteasome. Curr Opin Struct Biol 2014; 24:156-64. [PMID: 24632559 DOI: 10.1016/j.sbi.2014.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 01/10/2023]
Abstract
The proteasome is the main proteolytic machine in the cytosol and nucleus of eukaryotic cells where it degrades hundreds of regulatory proteins, removes damaged proteins, and produces peptides that are presented by MHC complexes. New structures of the proteasome particle show how its subunits are arranged and provide insights into how the proteasome is regulated. Proteins are targeted to the proteasome by tags composed of several ubiquitin moieties. The structure of the tags tunes the order in which proteins are degraded. The proteasome itself edits the ubiquitin tags and drugs that interfere in this process can enhance the clearance of toxic proteins from cells. Finally, the proteasome initiates degradation at unstructured regions within its substrates and this step contributes to substrate selection.
Collapse
Affiliation(s)
- Tomonao Inobe
- Frontier Research Core for Life Sciences, University of Toyama, Toyama 930-8555, Japan
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
41
|
Chu BW, Kovary KM, Guillaume J, Chen LC, Teruel MN, Wandless TJ. The E3 ubiquitin ligase UBE3C enhances proteasome processivity by ubiquitinating partially proteolyzed substrates. J Biol Chem 2013; 288:34575-87. [PMID: 24158444 DOI: 10.1074/jbc.m113.499350] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To maintain protein homeostasis, cells must balance protein synthesis with protein degradation. Accumulation of misfolded or partially degraded proteins can lead to the formation of pathological protein aggregates. Here we report the use of destabilizing domains, proteins whose folding state can be reversibly tuned using a high affinity ligand, as model substrates to interrogate cellular protein quality control mechanisms in mammalian cells using a forward genetic screen. Upon knockdown of UBE3C, an E3 ubiquitin ligase, a reporter protein consisting of a destabilizing domain fused to GFP is degraded more slowly and incompletely by the proteasome. Partial proteolysis is also observed when UBE3C is present but cannot ubiquitinate substrates because its active site has been mutated, it is unable to bind to the proteasome, or the substrate lacks lysine residues. UBE3C knockdown also results in less substrate polyubiquitination. Finally, knockdown renders cells more susceptible to the Hsp90 inhibitor 17-AAG, suggesting that UBE3C protects against the harmful accumulation of protein fragments arising from incompletely degraded proteasome substrates.
Collapse
Affiliation(s)
- Bernard W Chu
- From the Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
| | | | | | | | | | | |
Collapse
|
42
|
Comyn SA, Chan GT, Mayor T. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J Proteomics 2013; 100:92-101. [PMID: 23954725 DOI: 10.1016/j.jprot.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Maintaining proteostasis is crucial to cells given the toxic potential of misfolded proteins and aggregates. To this end, cells rely on a number of quality control pathways that survey proteins both during, as well as after synthesis to prevent protein aggregation, promote protein folding, and to target terminally misfolded proteins for degradation. In eukaryotes, the ubiquitin proteasome system plays a critical role in protein quality control by selectively targeting proteins for degradation. Recent studies have added to our understanding of cytosolic protein quality control, particularly in the area of cotranslational protein ubiquitination, and suggest that overlap exists across co- and post-translational protein quality control networks. Here, we review recent advances made in the area of cytoplasmic protein quality control with an emphasis on the pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. BIOLOGICAL SIGNIFICANCE Protein homeostasis, or proteostasis, encompasses the systems required by the cell for the generation and maintenance of the correct levels, conformational state, distribution, and degradation of its proteome. One of the challenges faced by the cell in maintaining proteostasis is the presence of misfolded proteins. Cells therefore have a number of protein quality control pathways to aid in folding or mediate the degradation of misfolded proteins. The ubiquitin proteasome system in particular plays a critical role in protein quality control by selectively targeting proteins for degradation. Nascent polypeptides can be ubiquitinated cotranslationally, however to what extent and how this is used by the cell as a quality control mechanism has, until recently, remained relatively unclear. The picture now emerging is one of two quality control networks: one that recognizes nascent polypeptides on stalled ribosomes and another that targets actively translating polypeptides that misfold, failing to attain their native conformation. These studies underscore the important balance between cotranslational protein folding and degradation in the maintenance of protein homeostasis. In this review we summarize recent advances made in the area of cytoplasmic protein quality control with an emphasis on pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Gerard T Chan
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
43
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
44
|
Martínez-Noël G, Galligan JT, Sowa ME, Arndt V, Overton TM, Harper JW, Howley PM. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol Cell Biol 2012; 32:3095-106. [PMID: 22645313 PMCID: PMC3434508 DOI: 10.1128/mcb.00201-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/21/2012] [Indexed: 02/01/2023] Open
Abstract
The E6AP ubiquitin ligase catalyzes the high-risk human papillomaviruses' E6-mediated ubiquitylation of p53, contributing to the neoplastic progression of cells infected by these viruses. Defects in the activity and the dosage of E6AP are linked to Angelman syndrome and to autism spectrum disorders, respectively, highlighting the need for precise control of the enzyme. With the exception of HERC2, which modulates the ubiquitin ligase activity of E6AP, little is known about the regulation or function of E6AP normally. Using a proteomic approach, we have identified and validated several new E6AP-interacting proteins, including HIF1AN, NEURL4, and mitogen-activated protein kinase 6 (MAPK6). E6AP exists as part of several different protein complexes, including the proteasome and an independent high-molecular-weight complex containing HERC2, NEURL4, and MAPK6. In examining the functional consequence of its interaction with the proteasome, we found that UBE3C (another proteasome-associated ubiquitin ligase), but not E6AP, contributes to proteasomal processivity in mammalian cells. We also found that E6 associates with the HERC2-containing high-molecular-weight complex through its binding to E6AP. These proteomic studies reveal a level of complexity for E6AP that has not been previously appreciated and identify a number of new cellular proteins through which E6AP may be regulated or functioning.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey T. Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mathew E. Sowa
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Verena Arndt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas M. Overton
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter M. Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
D'Arcy P, Linder S. Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 2012; 44:1729-38. [PMID: 22819849 DOI: 10.1016/j.biocel.2012.07.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a conserved pathway regulating numerous biological processes including protein turnover, DNA repair, and intracellular trafficking. Tumor cells are dependent on a functioning UPS, making it an ideal target for the development of novel anti-cancer therapies. The development of bortezomib (Velcade(®)) as a treatment for multiple myeloma and mantle cell lymphoma has verified this and suggests that targeting other components of the UPS may be a viable strategy for the treatment for cancer. We recently described a novel class of proteasome inhibitors that function by an alternative mechanism of action (D'Arcy et al., 2011). The small molecule b-AP15 blocks the deubiquitinase (DUB) activity of the 19S regulatory particle (19S RP) without inhibiting the proteolytic activities of the 20S core particle (20S CP). b-AP15 inhibits two proteasome-associated DUBs, USP14 and UCHL5, resulting in a rapid accumulation of high molecular weight ubiquitin conjugates and a functional proteasome shutdown. Interestingly, b-AP15 displays several differences to bortezomib including insensitivity to over-expression of the anti-apoptotic mediator Bcl-2 and anti-tumor activity in solid tumor models. In this review we will discuss the potential of proteasome deubiquitinase inhibitors as additions to the therapeutic arsenal against cancer.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Institute for Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 17176 Stockholm, Sweden.
| | | |
Collapse
|
46
|
Abstract
Failure to eliminate abnormal proteins in the cell is associated with numerous aggregation diseases. Misfolded proteins are normally detected by protein quality control and either refolded or eliminated. The ubiquitin-proteasome system is a major pathway that degrades these unwanted proteins. Ubiquitin ligases are central to these degradation pathways as they recognize aberrant proteins and covalently attach a polyubiquitin chain to target them to the proteasome. We discovered that the Hul5 ubiquitin ligase is a major player in a novel protein quality control pathway that targets cytosolic misfolded proteins. Hul5 is required for the maintenance of cell fitness and the increased ubiquitination of low solubility proteins after heat-shock in yeast cells. We identified several low-solubility substrates of Hul5, including the prion-like protein Pin3. It is now apparent that in the cytoplasm, misfolded proteins can be targeted by multiple degradation pathways. In this review, we discuss how the Hul5 protein quality control pathway may specifically target low solubility cytosolic proteins in the cell.
Collapse
Affiliation(s)
- Nancy N Fang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
47
|
Generation of free ubiquitin chains is up-regulated in stress and facilitated by the HECT domain ubiquitin ligases UFD4 and HUL5. Biochem J 2012; 444:611-7. [DOI: 10.1042/bj20111840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyubiquitin chains serve a variety of physiological roles. Typically the chains are bound covalently to a protein substrate and in many cases target it for degradation by the 26S proteasome. However, several studies have demonstrated the existence of free polyubiquitin chains which are not linked to a specific substrate. Several physiological functions have been attributed to these chains, among them playing a role in signal transduction and serving as storage of ubiquitin for utilization under stress. In the present study, we have established a system for the detection of free ubiquitin chains and monitoring their level under changing conditions. Using this system, we show that UFD4 (ubiquitin fusion degradation 4), a HECT (homologous with E6-AP C-terminus) domain ubiquitin ligase, is involved in free chain generation. We also show that generation of these chains is stimulated in response to a variety of stresses, particularly those caused by DNA damage. However, it appears that the stress-induced synthesis of free chains is catalysed by a different ligase, HUL5 (HECT ubiquitin ligase 5), which is also a HECT domain E3.
Collapse
|
48
|
Fredrickson EK, Gardner RG. Selective destruction of abnormal proteins by ubiquitin-mediated protein quality control degradation. Semin Cell Dev Biol 2012; 23:530-7. [PMID: 22245831 DOI: 10.1016/j.semcdb.2011.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/30/2022]
Abstract
Misfolded proteins are continuously produced in the cell and present an escalating detriment to cellular physiology if not managed effectively. As such, all organisms have evolved mechanisms to address misfolded proteins. One primary way eukaryotic cells handle the complication of misfolded proteins is by destroying them through the ubiquitin-proteasome system. To do this, eukaryotes possess specialized ubiquitin-protein ligases that have the capacity to recognize misfolded proteins over normally folded proteins. The strategies used by these Protein Quality Control (PQC) ligases to target the wide variety of misfolded proteins in the cell will likely be different than those used by ubiquitin-protein ligases that function in regulated degradation to target normally folded proteins. In this review, we highlight what is known about how misfolded proteins are recognized by PQC ubiquitin-protein ligases.
Collapse
Affiliation(s)
- Eric K Fredrickson
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
49
|
Kriegenburg F, Ellgaard L, Hartmann-Petersen R. Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation. FEBS J 2012; 279:532-42. [PMID: 22177318 DOI: 10.1111/j.1742-4658.2011.08456.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The accumulation of misfolded proteins presents a considerable threat to the health of individual cells and has been linked to severe diseases, including neurodegenerative disorders. Considering that, in nature, cells often are exposed to stress conditions that may lead to aberrant protein conformational changes, it becomes clear that they must have an efficient quality control apparatus to refold or destroy misfolded proteins. In general, cells rely on molecular chaperones to seize and refold misfolded proteins. If the native state is unattainable, misfolded proteins are targeted for degradation via the ubiquitin-proteasome system. The specificity of this proteolysis is generally provided by E3 ubiquitin-protein ligases, hundreds of which are encoded in the human genome. However, rather than binding the misfolded proteins directly, most E3s depend on molecular chaperones to recognize the misfolded protein substrate. Thus, by delegating substrate recognition to chaperones, E3s deftly utilize a pre-existing cellular system for selectively targeting misfolded proteins. Here, we review recent advances in understanding the interplay between molecular chaperones and the ubiquitin-proteasome system in the cytosol, nucleus, endoplasmic reticulum and mitochondria.
Collapse
|
50
|
Kraut DA, Matouschek A. Proteasomal degradation from internal sites favors partial proteolysis via remote domain stabilization. ACS Chem Biol 2011; 6:1087-95. [PMID: 21815694 DOI: 10.1021/cb2002285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system controls the concentrations of hundreds of regulatory proteins and removes misfolded and damaged proteins in eukaryotic cells. The proteasome recognizes ubiquitinated proteins and then engages its substrates at unstructured initiation regions. After initiation, it proceeds along the polypeptide chain, unraveling folded domains sequentially and degrading the protein completely. In vivo the proteasome can, and likely often does, initiate degradation at internal sites within its substrates, but it is not known how this affects the outcome of the degradation reaction. Here we find that domains flanking the initiation region can protect each other against degradation without interacting directly. The magnitude of this effect is related to the stability of both domains and can be tuned from complete degradation to complete protection of one domain. Partial proteasomal degradation has been observed in the cell in three signaling pathways and is associated with internal initiation. Thus, the basic biochemical mechanism of remote stabilization of protein domains is important in proteasome biology.
Collapse
Affiliation(s)
- Daniel A. Kraut
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|