1
|
Ee LS, Medina-Cano D, Uyehara CM, Schwarz C, Goetzler E, Salataj E, Polyzos A, Madhuranath S, Evans T, Hadjantonakis AK, Apostolou E, Vierbuchen T, Stadtfeld M. Transcriptional remodeling by OTX2 directs specification and patterning of mammalian definitive endoderm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596630. [PMID: 38854146 PMCID: PMC11160813 DOI: 10.1101/2024.05.30.596630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The molecular mechanisms that drive essential developmental patterning events in the mammalian embryo remain poorly understood. To generate a conceptual framework for gene regulatory processes during germ layer specification, we analyzed transcription factor (TF) expression kinetics around gastrulation and during in vitro differentiation. This approach identified Otx2 as a candidate regulator of definitive endoderm (DE), the precursor of all gut- derived tissues. Analysis of multipurpose degron alleles in gastruloid and directed differentiation models revealed that loss of OTX2 before or after DE specification alters the expression of core components and targets of specific cellular signaling pathways, perturbs adhesion and migration programs as well as de-represses regulators of other lineages, resulting in impaired foregut specification. Key targets of OTX2 are conserved in human DE. Mechanistically, OTX2 is required to establish chromatin accessibility at candidate enhancers, which regulate genes critical to establishing an anterior cell identity in the developing gut. Our results provide a working model for the progressive establishment of spatiotemporal cell identity by developmental TFs across germ layers and species, which may facilitate the generation of gut cell types for regenerative medicine applications.
Collapse
Affiliation(s)
- LS Ee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - D Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - CM Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - C Schwarz
- Emerald Cloud Lab, Austin, TX 78728 USA
| | - E Goetzler
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Salataj
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - S Madhuranath
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - T Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - AK Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - T Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
2
|
Chousal JN, Morey R, Srinivasan S, Lee K, Zhang W, Yeo AL, To C, Cho K, Garzo VG, Parast MM, Laurent LC, Cook-Andersen H. Molecular profiling of human blastocysts reveals primitive endoderm defects among embryos of decreased implantation potential. Cell Rep 2024; 43:113701. [PMID: 38277271 DOI: 10.1016/j.celrep.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Human embryo implantation is remarkably inefficient, and implantation failure remains among the greatest obstacles in treating infertility. Gene expression data from human embryos have accumulated rapidly in recent years; however, identification of the subset of genes that determine successful implantation remains a challenge. We leverage clinical morphologic grading-known for decades to correlate with implantation potential-and transcriptome analyses of matched embryonic and abembryonic samples to identify factors and pathways enriched and depleted in human blastocysts of good and poor morphology. Unexpectedly, we discovered that the greatest difference was in the state of extraembryonic primitive endoderm (PrE) development, with relative deficiencies in poor morphology blastocysts. Our results suggest that implantation success is most strongly influenced by the embryonic compartment and that deficient PrE development is common among embryos with decreased implantation potential. Our study provides a valuable resource for those investigating the markers and mechanisms of human embryo implantation.
Collapse
Affiliation(s)
- Jennifer N Chousal
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Lee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhang
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Ana Lisa Yeo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - V Gabriel Garzo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Mana M Parast
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Shankar V, van Blitterswijk C, Vrij E, Giselbrecht S. Automated, High-Throughput Phenotypic Screening and Analysis Platform to Study Pre- and Post-Implantation Morphogenesis in Stem Cell-Derived Embryo-Like Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304987. [PMID: 37991133 PMCID: PMC10811479 DOI: 10.1002/advs.202304987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfβ/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.
Collapse
Affiliation(s)
- Vinidhra Shankar
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Erik Vrij
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| |
Collapse
|
4
|
Wei Y, Zhang E, Yu L, Ci B, Sakurai M, Guo L, Zhang X, Lin S, Takii S, Liu L, Liu J, Schmitz DA, Su T, Zhang J, Shen Q, Ding Y, Zhan L, Sun HX, Zheng C, Xu L, Okamura D, Ji W, Tan T, Wu J. Dissecting embryonic and extraembryonic lineage crosstalk with stem cell co-culture. Cell 2023; 186:5859-5875.e24. [PMID: 38052213 PMCID: PMC10916932 DOI: 10.1016/j.cell.2023.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-β, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - E Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sirui Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shino Takii
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Su
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junmei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaoyan Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Ding
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Linfeng Zhan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | | | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Wei Y, Zhang E, Yu L, Ci B, Guo L, Sakurai M, Takii S, Liu J, Schmitz DA, Ding Y, Zhan L, Zheng C, Sun HX, Xu L, Okamura D, Ji W, Tan T, Wu J. Dissecting embryonic and extra-embryonic lineage crosstalk with stem cell co-culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531525. [PMID: 36945498 PMCID: PMC10028955 DOI: 10.1101/2023.03.07.531525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Faithful embryogenesis requires precise coordination between embryonic and extraembryonic tissues. Although stem cells from embryonic and extraembryonic origins have been generated for several mammalian species(Bogliotti et al., 2018; Choi et al., 2019; Cui et al., 2019; Evans and Kaufman, 1981; Kunath et al., 2005; Li et al., 2008; Martin, 1981; Okae et al., 2018; Tanaka et al., 1998; Thomson et al., 1998; Vandevoort et al., 2007; Vilarino et al., 2020; Yu et al., 2021b; Zhong et al., 2018), they are grown in different culture conditions with diverse media composition, which makes it difficult to study cross-lineage communication. Here, by using the same culture condition that activates FGF, TGF-β and WNT signaling pathways, we derived stable embryonic stem cells (ESCs), extraembryonic endoderm stem cells (XENs) and trophoblast stem cells (TSCs) from all three founding tissues of mouse and cynomolgus monkey blastocysts. This allowed us to establish embryonic and extraembryonic stem cell co-cultures to dissect lineage crosstalk during early mammalian development. Co-cultures of ESCs and XENs uncovered a conserved and previously unrecognized growth inhibition of pluripotent cells by extraembryonic endoderm cells, which is in part mediated through extracellular matrix signaling. Our study unveils a more universal state of stem cell self-renewal stabilized by activation, as opposed to inhibition, of developmental signaling pathways. The embryonic and extraembryonic stem cell co-culture strategy developed here will open new avenues for creating more faithful embryo models and developing more developmentally relevant differentiation protocols.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - E Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shino Takii
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Daniel A. Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Ding
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Linfeng Zhan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Vrij EJ, Scholte op Reimer YS, Fuentes LR, Guerreiro IM, Holzmann V, Aldeguer JF, Sestini G, Koo BK, Kind J, van Blitterswijk CA, Rivron NC. A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression. Development 2022; 149:dev192310. [PMID: 35993866 PMCID: PMC9534490 DOI: 10.1242/dev.192310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2022] [Indexed: 08/17/2023]
Abstract
Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.
Collapse
Affiliation(s)
- Erik J. Vrij
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yvonne S. Scholte op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Laury Roa Fuentes
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Isabel Misteli Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Viktoria Holzmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Javier Frias Aldeguer
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Clemens A. van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Nicolas C. Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
8
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
9
|
Molè MA, Weberling A, Fässler R, Campbell A, Fishel S, Zernicka-Goetz M. Integrin β1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition. Cell Rep 2021; 34:108834. [PMID: 33691117 PMCID: PMC7966855 DOI: 10.1016/j.celrep.2021.108834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
At implantation, the embryo establishes contacts with the maternal endometrium. This stage is associated with a high incidence of preclinical pregnancy losses. While the maternal factors underlying uterine receptivity have been investigated, the signals required by the embryo for successful peri-implantation development remain elusive. To explore these, we studied integrin β1 signaling, as embryos deficient for this receptor degenerate at implantation. We demonstrate that the coordinated action of pro-survival signals and localized actomyosin suppression via integrin β1 permits the development of the embryo beyond implantation. Failure of either process leads to developmental arrest and apoptosis. Pharmacological stimulation through fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), coupled with ROCK-mediated actomyosin inhibition, rescues the deficiency of integrin β1, promoting progression to post-implantation stages. Mutual exclusion between integrin β1 and actomyosin seems to be conserved in the human embryo, suggesting the possibility that these mechanisms could also underlie the transition of the human epiblast from pre- to post-implantation.
Collapse
Affiliation(s)
- Matteo Amitaba Molè
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alison Campbell
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, UK
| | - Simon Fishel
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, UK; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Tse JD, Moore R, Meng Y, Tao W, Smith ER, Xu XX. Dynamic conversion of cell sorting patterns in aggregates of embryonic stem cells with differential adhesive affinity. BMC DEVELOPMENTAL BIOLOGY 2021; 21:2. [PMID: 33407086 PMCID: PMC7788919 DOI: 10.1186/s12861-020-00234-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mammalian early development comprises the proliferation, differentiation, and self-assembly of the embryonic cells. The classic experiment undertaken by Townes and Holtfreter demonstrated the ability of dissociated embryonic cells to sort and self-organize spontaneously into the original tissue patterns. Here, we further explored the principles and mechanisms underlying the phenomenon of spontaneous tissue organization by studying aggregation and sorting of mouse embryonic stem (ES) cells with differential adhesive affinity in culture. RESULTS As observed previously, in aggregates of wild-type and E-cadherin-deficient ES cells, the cell assemblies exhibited an initial sorting pattern showing wild-type cells engulfed by less adhesive E-cadherin-deficient ES cells, which fits the pattern predicted by the differential adhesive hypothesis proposed by Malcom Steinberg. However, in further study of more mature cell aggregates, the initial sorting pattern reversed, with the highly adhesive wild-type ES cells forming an outer shell enveloping the less adhesive E-cadherin-deficient cells, contradicting Steinberg's sorting principle. The outer wild-type cells of the more mature aggregates did not differentiate into endoderm, which is known to be able to sort to the exterior from previous studies. In contrast to the naive aggregates, the mature aggregates presented polarized, highly adhesive cells at the outer layer. The surface polarity was observed as an actin cap contiguously spanning across the apical surface of multiple adjacent cells, though independent of the formation of tight junctions. CONCLUSIONS Our experimental findings suggest that the force of differential adhesive affinity can be overcome by even subtle polarity generated from strong bilateral ligation of highly adhesive cells in determining cell sorting patterns.
Collapse
Affiliation(s)
- Jeffrey D. Tse
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Robert Moore
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Yue Meng
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
11
|
Ryan AQ, Chan CJ, Graner F, Hiiragi T. Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation. Dev Cell 2019; 51:684-697.e4. [PMID: 31735667 PMCID: PMC6912163 DOI: 10.1016/j.devcel.2019.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Epithelial tissues typically form lumina. In mammalian blastocysts, in which the first embryonic lumen forms, many studies have investigated how the cell lineages are specified through genetics and signaling, whereas potential roles of the fluid lumen have yet to be investigated. We discover that in mouse pre-implantation embryos at the onset of lumen formation, cytoplasmic vesicles are secreted into intercellular space. The segregation of epiblast and primitive endoderm directly follows lumen coalescence. Notably, pharmacological and biophysical perturbation of lumen expansion impairs the specification and spatial segregation of primitive endoderm cells within the blastocyst. Luminal deposition of FGF4 expedites fate specification and partially rescues the reduced specification in blastocysts with smaller cavities. Combined, our results suggest that blastocyst lumen expansion plays a critical role in guiding cell fate specification and positioning, possibly mediated by luminally deposited FGF4. Lumen expansion may provide a general mechanism for tissue pattern formation. Lumenogenesis coincides with cytoplasmic vesicle release into intercellular space Mouse blastocyst epiblast-primitive endoderm segregation follows lumen expansion Reduced lumen expansion impairs cell fate specification and segregation Luminally deposited FGF4 expedites epiblast-primitive endoderm specification
Collapse
Affiliation(s)
- Allyson Quinn Ryan
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Laboratoire Matière et Systèmes Complexes, Université Denis Diderot, Paris 7, CNRS UMR 7057, Condorcet Building 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Chii Jou Chan
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - François Graner
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot, Paris 7, CNRS UMR 7057, Condorcet Building 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Takashi Hiiragi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Filimonow K, Saiz N, Suwińska A, Wyszomirski T, Grabarek JB, Ferretti E, Piliszek A, Plusa B, Maleszewski M. No evidence of involvement of E-cadherin in cell fate specification or the segregation of Epi and PrE in mouse blastocysts. PLoS One 2019; 14:e0212109. [PMID: 30735538 PMCID: PMC6368326 DOI: 10.1371/journal.pone.0212109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
During preimplantation mouse development stages, emerging pluripotent epiblast (Epi) and extraembryonic primitive endoderm (PrE) cells are first distributed in the blastocyst in a "salt-and-pepper" manner before they segregate into separate layers. As a result of segregation, PrE cells become localised on the surface of the inner cell mass (ICM), and the Epi is enclosed by the PrE on one side and by the trophectoderm on the other. During later development, a subpopulation of PrE cells migrates away from the ICM and forms the parietal endoderm (PE), while cells remaining in contact with the Epi form the visceral endoderm (VE). Here, we asked: what are the mechanisms mediating Epi and PrE cell segregation and the subsequent VE vs PE specification? Differences in cell adhesion have been proposed; however, we demonstrate that the levels of plasma membrane-bound E-cadherin (CDH1, cadherin 1) in Epi and PrE cells only differ after the segregation of these lineages within the ICM. Moreover, manipulating E-cadherin levels did not affect lineage specification or segregation, thus failing to confirm its role during these processes. Rather, we report changes in E-cadherin localisation during later PrE-to-PE transition which are accompanied by the presence of Vimentin and Twist, supporting the hypothesis that an epithelial-to-mesenchymal transition process occurs in the mouse peri-implantation blastocyst.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Embryology, Faculty of Biology, The University of Warsaw, I. Miecznikowa, Warsaw, Poland
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, Poland
| | - Nestor Saiz
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Aneta Suwińska
- Department of Embryology, Faculty of Biology, The University of Warsaw, I. Miecznikowa, Warsaw, Poland
| | - Tomasz Wyszomirski
- Faculty of Biology, Biological and Chemical Research Centre, The University of Warsaw, Zwirki i Wigury, Warsaw, Poland
| | - Joanna B. Grabarek
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Elisabetta Ferretti
- The Danish Stem Cell Centre (DanStem), University of Copenhagen, Blegdamsvej, Copenhagen N, Denmark
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, Poland
| | - Berenika Plusa
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
- * E-mail: (MM); (BP)
| | - Marek Maleszewski
- Department of Embryology, Faculty of Biology, The University of Warsaw, I. Miecznikowa, Warsaw, Poland
- * E-mail: (MM); (BP)
| |
Collapse
|
13
|
Blanc V, Xie Y, Kennedy S, Riordan JD, Rubin DC, Madison BB, Mills JC, Nadeau JH, Davidson NO. Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA (NEW YORK, N.Y.) 2019; 25:70-81. [PMID: 30309881 PMCID: PMC6298562 DOI: 10.1261/rna.068395.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/07/2018] [Indexed: 05/05/2023]
Abstract
Mammalian C to U RNA is mediated by APOBEC1, the catalytic deaminase, together with RNA binding cofactors (including A1CF and RBM47) whose relative physiological requirements are unresolved. Although A1CF complements APOBEC1 for in vitro RNA editing, A1cf-/- mice exhibited no change in apolipoproteinB (apoB) RNA editing, while Rbm47 mutant mice exhibited impaired intestinal RNA editing of apoB as well as other targets. Here we examined the role of A1CF and RBM47 in adult mouse liver and intestine, following deletion of either one or both gene products and also following forced (liver or intestinal) transgenic A1CF expression. There were minimal changes in hepatic and intestinal apoB RNA editing in A1cf-/- mice and no changes in either liver- or intestine-specific A1CF transgenic mice. Rbm47 liver-specific knockout (Rbm47LKO ) mice demonstrated reduced editing in a subset (11 of 20) of RNA targets, including apoB. By contrast, apoB RNA editing was virtually eliminated (<6% activity) in intestine-specific (Rbm47IKO ) mice with only five of 53 targets exhibiting C-to-U RNA editing. Double knockout of A1cf and Rbm47 in liver (ARLKO ) eliminated apoB RNA editing and reduced editing in the majority of other targets, with no changes following adenoviral APOBEC1 administration. Intestinal double knockout mice (ARIKO ) demonstrated further reduced editing (<10% activity) in four of five of the residual APOBEC1 targets identified in ARIKO mice. These data suggest that A1CF and RBM47 each function independently, yet interact in a tissue-specific manner, to regulate the activity and site selection of APOBEC1 dependent C-to-U RNA editing.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| |
Collapse
|
14
|
Meng Y, Moore R, Tao W, Smith ER, Tse JD, Caslini C, Xu XX. GATA6 phosphorylation by Erk1/2 propels exit from pluripotency and commitment to primitive endoderm. Dev Biol 2018; 436:55-65. [PMID: 29454706 PMCID: PMC5912698 DOI: 10.1016/j.ydbio.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
The transcription factor GATA6 and the Fgf/Ras/MAPK signaling pathway are essential for the development of the primitive endoderm (PrE), one of the two lineages derived from the pluripotent inner cell mass (ICM) of mammalian blastocysts. A mutant mouse line in which Gata6-coding exons are replaced with H2BGFP (histone H2B Green Fluorescence Protein fusion protein) was developed to monitor Gata6 promoter activity. In the Gata6-H2BGFP heterozygous blastocysts, the ICM cells that initially had uniform GFP fluorescence signal at E3.5 diverged into two populations by the 64-cell stage, either as the GFP-high PrE or the GFP-low epiblasts (Epi). However in the GATA6-null blastocysts, the originally moderate GFP expression subsided in all ICM cells, indicating that the GATA6 protein is required to maintain its own promoter activity during PrE linage commitment. In embryonic stem cells, expressed GATA6 was shown to bind and activate the Gata6 promoter in PrE differentiation. Mutations of a conserved serine residue (S264) for Erk1/2 phosphorylation in GATA6 protein drastically impacted its ability to activate its own promoter. We conclude that phosphorylation of GATA6 by Erk1/2 compels exit from pluripotent state, and the phosphorylation propels a GATA6 positive feedback regulatory circuit to compel PrE differentiation. Our findings resolve the longstanding question on the dual requirements of GATA6 and Ras/MAPK pathway for PrE commitment of the pluripotent ICM.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Robert Moore
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth R Smith
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jeffrey D Tse
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Corrado Caslini
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
15
|
Abstract
At the time of implantation, the mouse blastocyst has developed three cell lineages: the epiblast (Epi), the primitive endoderm (PrE), and the trophectoderm (TE). The PrE and TE are extraembryonic tissues but their interactions with the Epi are critical to sustain embryonic growth, as well as to pattern the embryo. We review here the cellular and molecular events that lead to the production of PrE and Epi lineages and discuss the different hypotheses that are proposed for the induction of these cell types. In the second part, we report the current knowledge about the epithelialization of the PrE.
Collapse
|
16
|
Meng Y, Cai KQ, Moore R, Tao W, Tse JD, Smith ER, Xu XX. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Dev Dyn 2017; 246:517-530. [PMID: 28387983 DOI: 10.1002/dvdy.24503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. RESULTS We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. CONCLUSIONS We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Wensi Tao
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Smith ER, Meng Y, Moore R, Tse JD, Xu AG, Xu XX. Nuclear envelope structural proteins facilitate nuclear shape changes accompanying embryonic differentiation and fidelity of gene expression. BMC Cell Biol 2017; 18:8. [PMID: 28088180 PMCID: PMC5237523 DOI: 10.1186/s12860-017-0125-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nuclear size and shape are specific to a cell type, function, and location, and can serve as indicators of disease and development. We previously found that lamin A/C and associated nuclear envelope structural proteins were upregulated when murine embryonic stem (ES) cells differentiated to primitive endoderm cells. Here we further investigated the morphological changes of nuclei that accompany this differentiation. RESULTS The nuclei of undifferentiated wild type cells were found shaped as flattened, irregular ovals, whereas nuclei of Gata4-positive endoderm cells were more spherical, less flattened, and with a slightly reduced volume. The morphological change was confirmed in the trophectoderm and primitive endoderm lineages of E4.5 blastocysts, compared to larger and more irregularly shaped of the nuclei of the inner cell mass. We established ES cells genetically null for the nuclear lamina proteins lamin A/C or the inner nuclear envelope protein emerin, or compound mutant for both lamin A/C and emerin. ES cells deficient in lamin A/C differentiated to endoderm but less efficiently, and the nuclei remained flattened and failed to condense. The size and shape of emerin-deficient nuclei also remained uncondensed after treatment with RA. The emerin/lamin A/C double knockout ES cells failed to differentiate to endoderm cells, though the nuclei condensed but retained a generally flattened ellipsoid shape. Additionally, ES cells deficient for lamin A/C and/or emerin had compromised ability to undergo endoderm differentiation, where the differentiating cells often exhibited coexpression of pluripotent and differentiation markers, such as Oct3/4 and Gata4, respectively, indicating an infidelity of gene regulation. CONCLUSIONS The results suggest that changes in nuclear size and shape, which are mediated by nuclear envelope structural proteins lamin A/C and/or emerin, also impact gene regulation and lineage differentiation in early embryos. Nevertheless, mice lacking both lamin A/C and emerin were born at the expected frequency, indicating their embryonic development is completed despite the observed protein deficiency.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA.
| | - Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Arn G Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| |
Collapse
|
18
|
Li S, Qi Y, McKee K, Liu J, Hsu J, Yurchenco PD. Integrin and dystroglycan compensate each other to mediate laminin-dependent basement membrane assembly and epiblast polarization. Matrix Biol 2016; 57-58:272-284. [PMID: 27449702 DOI: 10.1016/j.matbio.2016.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 01/17/2023]
Abstract
During early embryogenesis, endodermal γ1-laminin expression is required for basement membrane (BM) assembly, promoting conversion of non-polar pluripotent cells into polarized epiblast. The influence of laminin-111 (Lm111) and its integrin and dystroglycan (DG) receptors on epiblast in embryoid bodies (EBs), a model for differentiation of the embryonic plate, was further investigated. Lm111 added to the medium of EBs initiated conversion of inner nonpolar cell to the polarized epiblast epithelium with an exterior-to-central basal-to-apical orientation. Microinjection of Lm111 into EB interiors resulted in an interior BM with complete inversion of cell polarity. Lm111 assembled a BM on integrin-β1 null EBs with induction of polarization at reduced efficiency. β-Integrin compensation was not detected in these nulls with integrin adaptor proteins failing to assemble. A dimer of laminin LG domains 4-5 (LZE3) engineered to strongly bind to α-dystroglycan almost completely inhibited laminin accumulation on integrin β1-null EBs, reducing BM and ablating cell polarization. When Lm111 was incubated with integrin-β1/dystroglycan double-knockout EBs, laminin failed to accumulate on the EBs, the EBs did not differentiate, and the EBs underwent apoptosis. Collectively the findings support the hypotheses that the locus of laminin cell surface assembly can determine the axis of epithelial polarity. This requires integrin- and/or dystroglycan-dependent binding to laminin LG domains with the highest efficiency achieved when both receptors are present. Finally, EBs that cannot assemble a matrix undergo apoptosis.
Collapse
Affiliation(s)
- Shaohua Li
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Yanmei Qi
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Karen McKee
- Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jie Liu
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - June Hsu
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Persistent cell migration and adhesion rely on retrograde transport of β(1) integrin. Nat Cell Biol 2015; 18:54-64. [PMID: 26641717 DOI: 10.1038/ncb3287] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022]
Abstract
Integrins have key functions in cell adhesion and migration. How integrins are dynamically relocalized to the leading edge in highly polarized migratory cells has remained unexplored. Here, we demonstrate that β1 integrin (known as PAT-3 in Caenorhabditis elegans), but not β3, is transported from the plasma membrane to the trans-Golgi network, to be resecreted in a polarized manner. This retrograde trafficking is restricted to the non-ligand-bound conformation of β1 integrin. Retrograde trafficking inhibition abrogates several β1-integrin-specific functions such as cell adhesion in early embryonic development of mice, and persistent cell migration in the developing posterior gonad arm of C. elegans. Our results establish a paradigm according to which retrograde trafficking, and not endosomal recycling, is the key driver for β1 integrin function in highly polarized cells. These data more generally suggest that the retrograde route is used to relocalize plasma membrane machinery from previous sites of function to the leading edge of migratory cells.
Collapse
|