1
|
Buffard M, Naldi A, Freiss G, Deckert M, Radulescu O, Coopman PJ, Larive RM. Comparison of SYK Signaling Networks Reveals the Potential Molecular Determinants of Its Tumor-Promoting and Suppressing Functions. Biomolecules 2021; 11:biom11020308. [PMID: 33670716 PMCID: PMC7923165 DOI: 10.3390/biom11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 01/18/2023] Open
Abstract
Spleen tyrosine kinase (SYK) can behave as an oncogene or a tumor suppressor, depending on the cell and tissue type. As pharmacological SYK inhibitors are currently evaluated in clinical trials, it is important to gain more information on the molecular mechanisms underpinning these opposite roles. To this aim, we reconstructed and compared its signaling networks using phosphoproteomic data from breast cancer and Burkitt lymphoma cell lines where SYK behaves as a tumor suppressor and promoter. Bioinformatic analyses allowed for unveiling the main differences in signaling pathways, network topology and signal propagation from SYK to its potential effectors. In breast cancer cells, the SYK target-enriched signaling pathways included intercellular adhesion and Hippo signaling components that are often linked to tumor suppression. In Burkitt lymphoma cells, the SYK target-enriched signaling pathways included molecules that could play a role in SYK pro-oncogenic function in B-cell lymphomas. Several protein interactions were profoundly rewired in the breast cancer network compared with the Burkitt lymphoma network. These data demonstrate that proteomic profiling combined with mathematical network modeling allows untangling complex pathway interplays and revealing difficult to discern interactions among the SYK pathways that positively and negatively affect tumor formation and progression.
Collapse
Affiliation(s)
- Marion Buffard
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Aurélien Naldi
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France;
- Lifeware Group, Inria Saclay-île de France, F-91120 Palaiseau, France
| | - Gilles Freiss
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
| | - Marcel Deckert
- C3M, Université Côte d'Azur, INSERM, équipe «Microenvironnement, Signalisation et Cancer», F-06204 Nice, France;
| | - Ovidiu Radulescu
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Peter J. Coopman
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- CNRS—Centre National de la Recherche Scientifique, 1919 Route de Mende, F-34293 Montpellier, France
| | - Romain M. Larive
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- IBMM, Université Montpellier, CNRS, ENSCM, F-34093 Montpellier, France
- Correspondence: ; Tel.: +33-467-61-24-30; Fax: +33-467-61-37-87
| |
Collapse
|
2
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
3
|
Park S, Jang JW, Moon EY. BAFF attenuates oxidative stress-induced cell death by the regulation of mitochondria membrane potential via Syk activation in WiL2-NS B lymphoblasts. Sci Rep 2020; 10:11784. [PMID: 32678160 PMCID: PMC7366908 DOI: 10.1038/s41598-020-68628-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
Cell survival is facilitated by the maintenance of mitochondrial membrane potential (MMP). B cell activating factor (BAFF) plays a role in survival, differentiation, and maturation of B cells. In the present study, we examined whether BAFF could attenuate oxidative stress-induced B cell death by the regulation of MMP collapse via spleen tyrosine kinase (Syk) activation using WiL2-NS human B lymphoblast cells. BAFF binds to receptors on WiL2-NS cells. When the cells were incubated in serum-deprived conditions with 1% fetal bovine serum (FBS), BAFF reduced the percentage of dead cells as determined through trypan blue staining and caspase 3 activity. BAFF also inhibited MMP collapse with 1% FBS, as indicated by a decrease in the number of cells with high-red fluorescence of MitoProbe™ JC-1 reagent or a decrease in the percentage of DiOC6-stained cells. Reactive oxygen species (ROS) production was reduced by incubation with BAFF in the presence of 10% or 1% FBS. BAFF inhibited MMP collapse, cell growth retardation, dead cell formation, and caspase 3 activation caused by treatment with H2O2. Syk phosphorylation on tyrosine (Y) 525/526 was increased in cells incubated with 1% FBS in the presence of BAFF than cells incubated with 1% FBS or BAFF alone. BAY61-3606, a Syk inhibitor reduced the effect of BAFF on MMP collapse, caspase 3 activation, cell growth retardation, and dead cell formation. Together, these data demonstrate that BAFF might attenuate oxidative stress-induced B cell death and growth retardation by the maintenance of MMP through Syk activation by Y525/526 phosphorylation. Therefore, BAFF and Syk might be therapeutic targets in the pathogenesis of B cell-associated diseases such as autoimmune disease.
Collapse
Affiliation(s)
- Sojin Park
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro Kwangjin-gu, Seoul, 05006, Republic of Korea
| | - Ju-Won Jang
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro Kwangjin-gu, Seoul, 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro Kwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
4
|
Feng C, Roy A, Post CB. Entropic allostery dominates the phosphorylation-dependent regulation of Syk tyrosine kinase release from immunoreceptor tyrosine-based activation motifs. Protein Sci 2018; 27:1780-1796. [PMID: 30051939 PMCID: PMC6225982 DOI: 10.1002/pro.3489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/15/2023]
Abstract
Spleen tyrosine kinase (Syk) is an essential player in immune signaling through its ability to couple multiple classes of membrane immunoreceptors to intracellular signaling pathways. Ligand binding leads to the recruitment of Syk to a phosphorylated cytoplasmic region of the receptors called ITAM. Syk binds to ITAM with high-affinity (nanomolar Kd ) via its tandem pair of SH2 domains. The affinity between Syk and ITAM is allosterically regulated by phosphorylation at Y130 in a linker connecting the tandem SH2 domains; when Y130 is phosphorylated, the binding affinity decreases (micromolar Kd ). Previous equilibrium binding studies attribute the increase in the binding free energy to an intra-molecular binding (isomerization) step of the tandem SH2 and ITAM, but a physical basis for the increased free energy is unknown. Here, we provide evidence that Y130 phosphorylation imposes an entropy penalty to isomerization, but surprisingly, has negligible effect on the SH2 binding interactions with ITAM and thus on the binding enthalpy. An analysis of NMR chemical shift differences characterized conformational effects of ITAM binding, and binding thermodynamics were measured from isothermal titration calorimetry. Together the data support a previously unknown mechanism for the basis of regulating protein-protein interactions through protein phosphorylation. The decreased affinity for Syk association with immune receptor ITAMs by Y130 phosphorylation is an allosteric mechanism driven by an increased entropy penalty, likely contributed by conformational disorder in the SH2-SH2 inter-domain structure, while SH2-ITAM binding contacts are not affected, and binding enthalpy is unchanged.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| | - Amitava Roy
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAIDNational Institutes of HealthHamilton, Montana, 59840
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| |
Collapse
|
5
|
Park S, Jang JW, Moon EY. Spleen tyrosine kinase-dependent Nrf2 activation regulates oxidative stress-induced cell death in WiL2-NS human B lymphoblasts. Free Radic Res 2018; 52:977-987. [PMID: 30203714 DOI: 10.1080/10715762.2018.1505044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoimmune rheumatic lesions are often characterised by the immune cell recruitment including B lymphocytes and the presence of reactive oxygen species (ROS), which increase antioxidant gene transcription via nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Spleen tyrosine kinase (Syk) has a major role in the signal transmission of all haematopoietic lineage cells including B/T cells, mast cells, and macrophages. In this study, we investigated whether B cell survival is regulated by Nrf2 via ROS-mediated Syk activation in WiL2-NS human B lymphoblast cells. When WiL2-NS cells were incubated with 1% foetal bovine serum (FBS), the survival rate and mitochondrial membrane potential (MMP) were reduced. In addition, 1% FBS increased caspase 3 activity, cytochrome C release, nuclear localisation of Nrf2, and ROS production. N-acetylcysteine attenuated ROS production and nuclear translocation of Nrf2. It also inhibited cell death, caspase 3 activation, MMP collapse, and cytochrome C release. Results from the 1% FBS treatment were consistent with those of H2O2 treatment. Syk phosphorylation at tyrosine 525/526 was increased by incubation with 1% FBS or treatment with 100 µM H2O2. Nuclear translocation of Nrf2 by H2O2 was inhibited by treatment with BAY61-3606, a Syk inhibitor. BAY61-3606 also promoted MMP collapse, cytochrome C release, caspase 3 activation, and cell death. Taken together, these results implicate that Syk controls oxidative stress-induced human B cell death via nuclear translocation of Nrf2 and MMP collapse. These results suggest that Syk is a novel regulator of Nrf2 activation.
Collapse
Affiliation(s)
- Sojin Park
- a Department of Bioscience and Biotechnology , Sejong University , Seoul , Republic of Korea
| | - Ju-Won Jang
- a Department of Bioscience and Biotechnology , Sejong University , Seoul , Republic of Korea
| | - Eun-Yi Moon
- a Department of Bioscience and Biotechnology , Sejong University , Seoul , Republic of Korea
| |
Collapse
|
6
|
Qiao Y, Tian X, Men L, Li S, Chen Y, Xue M, Hu Y, Zhou P, Long G, Shi Y, Liu R, Liu Y, Qi Z, Cui Y, Shen Y. Spleen tyrosine kinase promotes NLR family pyrin domain containing 3 inflammasome‑mediated IL‑1β secretion via c‑Jun N‑terminal kinase activation and cell apoptosis during diabetic nephropathy. Mol Med Rep 2018; 18:1995-2008. [PMID: 29901140 PMCID: PMC6072182 DOI: 10.3892/mmr.2018.9164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes and can cause an increased mortality risk. It was previously reported that NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the pathogenesis of diabetes. However, the underlying mechanism is not clearly understood. In the present study, the effects of spleen tyrosine kinase (Syk) and c-Jun N-terminal kinase (JNK) on the NLRP3 inflammasome were examined in vivo and in vitro. Sprague-Dawley rats were injected intraperitoneally with streptozotocin (65 mg/kg) to induce diabetes. HK2 cells and rat glomerular mesangial cells (RGMCs) were examined to detect the expression of JNK and NLRP3 inflammasome-associated proteins following treatment with a Syk inhibitor or Syk-small interfering (si)RNA in a high glucose condition. In the present study, it was revealed that the protein and mRNA expression levels of NLRP3 inflammasome-associated molecules and the downstream mature interleukin (IL)-1β were upregulated in vivo and in vitro. The Syk inhibitor and Syk-siRNA suppressed high glucose-induced JNK activation, and subsequently downregulated the activation of the NLRP3 inflammasome and mature IL-1β in HK2 cells and RGMCs. Furthermore, high glucose-induced apoptosis of HK2 cells was reduced by the Syk inhibitor BAY61-3606. Therefore, the present results determined that high glucose-induced activation of the NLRP3 inflammasome is mediated by Syk/JNK activation, which subsequently increased the protein expression level of IL-1β and mature IL-1β. The present study identified that the Syk/JNK/NLRP3 signaling pathway may serve a vital role in the pathogenesis of DN.
Collapse
Affiliation(s)
- Yingchun Qiao
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Xixi Tian
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Li Men
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Shengyu Li
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yufeng Chen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Meiting Xue
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yahui Hu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Pengfei Zhou
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Guangfeng Long
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yue Shi
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Ruiqing Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yunde Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| |
Collapse
|
7
|
Post-Transcriptional Regulation of Anti-Apoptotic BCL2 Family Members. Int J Mol Sci 2018; 19:ijms19010308. [PMID: 29361709 PMCID: PMC5796252 DOI: 10.3390/ijms19010308] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Anti-apoptotic B cell lymphoma 2 (BCL2) family members (BCL2, MCL1, BCLxL, BCLW, and BFL1) are key players in the regulation of intrinsic apoptosis. Dysregulation of these proteins not only impairs normal development, but also contributes to tumor progression and resistance to various anti-cancer therapies. Therefore, cells maintain strict control over the expression of anti-apoptotic BCL2 family members using multiple mechanisms. Over the past two decades, the importance of post-transcriptional regulation of mRNA in controlling gene expression and its impact on normal homeostasis and disease have begun to be appreciated. In this review, we discuss the RNA binding proteins (RBPs) and microRNAs (miRNAs) that mediate post-transcriptional regulation of the anti-apoptotic BCL2 family members. We describe their roles and impact on alternative splicing, mRNA turnover, and mRNA subcellular localization. We also point out the importance of future studies in characterizing the crosstalk between RBPs and miRNAs in regulating anti-apoptotic BCL2 family member expression and ultimately apoptosis.
Collapse
|
8
|
Librizzi M, Caradonna F, Cruciata I, Dębski J, Sansook S, Dadlez M, Spencer J, Luparello C. Molecular Signatures Associated with Treatment of Triple-Negative MDA-MB231 Breast Cancer Cells with Histone Deacetylase Inhibitors JAHA and SAHA. Chem Res Toxicol 2017; 30:2187-2196. [PMID: 29129070 DOI: 10.1021/acs.chemrestox.7b00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Jay Amin hydroxamic acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA's cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 μM. JAHA's lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction, and autophagy mechanisms. To glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination of differential display-PCR, proteome analysis, and COMET assay techniques and shown some differences in the molecular signature profiles induced by exposure to either HDACis. In particular, in contrast to the more numerous and diversified changes induced by SAHA, JAHA has shown a more selective impact on expression of molecular signatures involved in antioxidant activity and DNA repair. Besides expanding the biological knowledge of the effect exerted by the modifications in compound structures on cell phenotype, the molecular elements put in evidence in our study may provide promising targets for therapeutic interventions on TNBCs.
Collapse
Affiliation(s)
- Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| | - Fabio Caradonna
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| | - Ilenia Cruciata
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex , Falmer, Brighton BN1 9QJ, United Kingdom
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawinskiego 5a, 02-106 Warsaw, Poland
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex , Falmer, Brighton BN1 9QJ, United Kingdom
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
9
|
Ugrinova I, Petrova M, Chalabi-Dchar M, Bouvet P. Multifaceted Nucleolin Protein and Its Molecular Partners in Oncogenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:133-164. [PMID: 29459030 DOI: 10.1016/bs.apcsb.2017.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Discovered in 1973, nucleolin is one of the most abundant phosphoproteins of the nucleolus. The ability of nucleolin to be involved in many cellular processes is probably related to its structural organization and its capability to form many different interactions with other proteins. Many functions of nucleolin affect cellular processes involved in oncogenesis-for instance: in ribosome biogenesis; in DNA repair, remodeling, and genome stability; in cell division and cell survival; in chemokine and growth factor signaling pathways; in angiogenesis and lymphangiogenesis; in epithelial-mesenchymal transition; and in stemness. In this review, we will describe the different functions of nucleolin in oncogenesis through its interaction with other proteins.
Collapse
Affiliation(s)
- Iva Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Maria Petrova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mounira Chalabi-Dchar
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France
| | - Philippe Bouvet
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
10
|
Dasgupta N, Thakur BK, Ta A, Dutta P, Das S. Suppression of Spleen Tyrosine Kinase (Syk) by Histone Deacetylation Promotes, Whereas BAY61-3606, a Synthetic Syk Inhibitor Abrogates Colonocyte Apoptosis by ERK Activation. J Cell Biochem 2016; 118:191-203. [PMID: 27293079 DOI: 10.1002/jcb.25625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/10/2016] [Indexed: 01/10/2023]
Abstract
Spleen tyrosine kinase (Syk), a non-receptor tyrosine kinase, regulates tumor progression, either negatively or positively, depending on the tissue lineage. Information about the role of Syk in colorectal cancers (CRC) is limited, and conflicting reports have been published. We studied Syk expression and its role in differentiation and apoptosis of the colonocytes. Here, we reported for the first time that expression of two transcript variants of Syk is suppressed in colonocytes during butyrate-induced differentiation, which mediates apoptosis of HT-29 cells. Despite being a known HDAC inhibitor, butyrate deacetylates histone3/4 around the transcription start site (TSS) of Syk. Histone deacetylation precludes the binding of RNA Polymerase II to the promoter and inhibits transcription. Since butyrate is a colonic metabolite derived from undigested fibers, our study offers a plausible explanation of the underlying mechanisms of the protective role of butyrate as well as the dietary fibers against CRC through the regulation of Syk. We also report that combined use of butyrate and highly specific Syk inhibitor BAY61-3606 does not enhance differentiation and apoptosis of colonocytes. Instead, BAY completely abolishes butyrate-induced differentiation and apoptosis in a Syk- and ERK1/2-dependent manner. While butyrate dephosphorylates ERK1/2 in HT-29 cells, BAY re-phosphorylates it, leading to its activation. This study describes a novel mechanism of butyrate action in CRC and explores the role of Syk in butyrate-induced differentiation and apoptosis. In addition, our study highlights those commercial small molecule inhibitors, although attractive drug candidates should be used with concern because of their frequent off-target effects. J. Cell. Biochem. 118: 191-203, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Bhupesh Kumar Thakur
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Pujarini Dutta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
11
|
Sharman J, Di Paolo J. Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: the promise of entospletinib. Ther Adv Hematol 2016; 7:157-70. [PMID: 27247756 PMCID: PMC4872176 DOI: 10.1177/2040620716636542] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The B-cell receptor signaling pathway has emerged as an important therapeutic target in chronic lymphocytic leukemia and other B-cell malignancies. Novel agents have been developed targeting the signaling enzymes spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase, and phosphoinositide 3-kinase delta. This review discusses the rationale for targeting these enzymes, as well as the preclinical and clinical evidence supporting their role as therapeutic targets, with a particular focus on SYK inhibition with entospletinib.
Collapse
Affiliation(s)
- Jeff Sharman
- Willamette Valley Cancer Institute and Research Center, US Oncology Research, 3377 Riverbend Drive, Suite 500, Springfield, OR 97477, USA
| | - Julie Di Paolo
- Department of Biology, Gilead Sciences, Inc., Foster City, CA, USA
| |
Collapse
|
12
|
Ghosh S, Geahlen RL. Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease. EBioMedicine 2015; 2:1785-98. [PMID: 26870803 PMCID: PMC4740304 DOI: 10.1016/j.ebiom.2015.09.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Microglial cells in the brains of Alzheimer's patients are known to be recruited to amyloid-beta (Aβ) plaques where they exhibit an activated phenotype, but are defective for plaque removal by phagocytosis. In this study, we show that microglia stressed by exposure to sodium arsenite or Aβ(1–42) peptides or fibrils form extensive stress granules (SGs) to which the tyrosine kinase, SYK, is recruited. SYK enhances the formation of SGs, is active within the resulting SGs and stimulates the production of reactive oxygen and nitrogen species that are toxic to neuronal cells. This sequestration of SYK inhibits the ability of microglial cells to phagocytose Escherichia coli or Aβ fibrils. We find that aged microglial cells are more susceptible to the formation of SGs; and SGs containing SYK and phosphotyrosine are prevalent in the brains of patients with severe Alzheimer's disease. Phagocytic activity can be restored to stressed microglial cells by treatment with IgG, suggesting a mechanism to explain the therapeutic efficacy of intravenous IgG. These studies describe a mechanism by which stress, including exposure to Aβ, compromises the function of microglial cells in Alzheimer's disease and suggest approaches to restore activity to dysfunctional microglial cells. Chronic stress promotes the formation of large, persistent stress granules in microglial cells. SYK is recruited to stress granules, which promotes inflammatory responses and inhibits phagocytosis. Phagocytic activity of stressed cells can be recovered by treatment with IgG.
Microglial cells in the brains of patients with Alzheimer's disease are activated, but are defective at phagocytosis of amyloid plaques. Activation and phagocytosis require the SYK tyrosine kinase. Chronic exposure to amyloid-beta promotes the formation of persistent stress granules to which active SYK binds and these are found in the brains of patients with severe Alzheimer's disease. This activation and sequestration of SYK promotes inflammation and inhibits phagocytosis. Phagocytic activity can be recovered by treatment with IgG, which causes a redistribution of SYK within the cell, suggesting potential therapeutic approaches to restoring microglial cell function to diseased or aged brains.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Krisenko MO, Higgins RL, Ghosh S, Zhou Q, Trybula JS, Wang WH, Geahlen RL. Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem 2015; 290:27803-15. [PMID: 26429917 DOI: 10.1074/jbc.m115.642900] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 12/16/2022] Open
Abstract
Syk is a cytoplasmic kinase that serves multiple functions within the immune system to couple receptors for antigens and antigen-antibody complexes to adaptive and innate immune responses. Recent studies have identified additional roles for the kinase in cancer cells, where its expression can either promote or suppress tumor cell growth, depending on the context. Proteomic analyses of Syk-binding proteins identified several interacting partners also found to be recruited to stress granules. We show here that the treatment of cells with inducers of stress granule formation leads to the recruitment of Syk to these protein-RNA complexes. This recruitment requires the phosphorylation of Syk on tyrosine and results in the phosphorylation of proteins at or near the stress granule. Grb7 is identified as a Syk-binding protein involved in the recruitment of Syk to the stress granule. This recruitment promotes the formation of autophagosomes and the clearance of stress granules from the cell once the stress is relieved, enhancing the ability of cells to survive the stress stimulus.
Collapse
Affiliation(s)
- Mariya O Krisenko
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Reneé L Higgins
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Soumitra Ghosh
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Qing Zhou
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Joy S Trybula
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Wen-Horng Wang
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Robert L Geahlen
- From the Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
14
|
Yu Y, Gaillard S, Phillip JM, Huang TC, Pinto SM, Tessarollo NG, Zhang Z, Pandey A, Wirtz D, Ayhan A, Davidson B, Wang TL, Shih IM. Inhibition of Spleen Tyrosine Kinase Potentiates Paclitaxel-Induced Cytotoxicity in Ovarian Cancer Cells by Stabilizing Microtubules. Cancer Cell 2015; 28:82-96. [PMID: 26096845 PMCID: PMC5257279 DOI: 10.1016/j.ccell.2015.05.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/11/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Resistance to chemotherapy represents a major obstacle for long-term remission, and effective strategies to overcome drug resistance would have significant clinical impact. We report that recurrent ovarian carcinomas after paclitaxel/carboplatin treatment have higher levels of spleen tyrosine kinase (SYK) and phospho-SYK. In vitro, paclitaxel-resistant cells expressed higher SYK, and the ratio of phospho-SYK/SYK positively associated with paclitaxel resistance in ovarian cancer cells. Inactivation of SYK by inhibitors or gene knockdown sensitized paclitaxel cytotoxicity in vitro and in vivo. Analysis of the phosphotyrosine proteome in paclitaxel-resistant tumor cells revealed that SYK phosphorylates tubulins and microtubule-associated proteins. Inhibition of SYK enhanced microtubule stability in paclitaxel-resistant tumor cells that were otherwise insensitive. Thus, targeting SYK pathway is a promising strategy to enhance paclitaxel response.
Collapse
Affiliation(s)
- Yu Yu
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Stephanie Gaillard
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tai-Chung Huang
- Department of Biological Chemistry and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Sneha M Pinto
- Department of Biological Chemistry and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Nayara G Tessarollo
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Biotechnology Program/Renorbio, Health Science Center, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Zhen Zhang
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Biological Chemistry and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Denis Wirtz
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ayse Ayhan
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Pathology, Seirei Mikatahara Hospital and Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Tian-Li Wang
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | - Ie-Ming Shih
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
15
|
Muller M, Hutin S, Marigold O, Li KH, Burlingame A, Glaunsinger BA. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases. PLoS Pathog 2015; 11:e1004899. [PMID: 25965334 PMCID: PMC4428876 DOI: 10.1371/journal.ppat.1004899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, the viral endonuclease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs escape SOX-induced cleavage and remain robustly expressed. Prominent among these is interleukin-6 (IL-6), a growth factor important for survival of KSHV infected B cells. IL-6 escape is notable because it contains a sequence within its 3' untranslated region (UTR) that can confer protection when transferred to a SOX-targeted mRNA, and thus overrides the endonuclease targeting mechanism. Here, we pursued how this protective RNA element functions to maintain mRNA stability. Using affinity purification and mass spectrometry, we identified a set of proteins that associate specifically with the protective element. Although multiple proteins contributed to the escape mechanism, depletion of nucleolin (NCL) most severely impacted protection. NCL was re-localized out of the nucleolus during lytic KSHV infection, and its presence in the cytoplasm was required for protection. After loading onto the IL-6 3' UTR, NCL differentially bound to the translation initiation factor eIF4H. Disrupting this interaction, or depleting eIF4H, reinstated SOX targeting of the RNA, suggesting that interactions between proteins bound to distant regions of the mRNA are important for escape. Finally, we found that the IL-6 3' UTR was also protected against mRNA degradation by the vhs endonuclease encoded by herpes simplex virus, despite the fact that its mechanism of mRNA targeting is distinct from SOX. These findings highlight how a multitude of RNA-protein interactions can impact endonuclease targeting, and identify new features underlying the regulation of the IL-6 mRNA.
Collapse
Affiliation(s)
- Mandy Muller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Stephanie Hutin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Oliver Marigold
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Cell and Molecular Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
16
|
Shen ZJ, Malter JS. Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1. Biomolecules 2015; 5:412-34. [PMID: 25874604 PMCID: PMC4496679 DOI: 10.3390/biom5020412] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023] Open
Abstract
The accumulation of 3' untranslated region (3'-UTR), AU-rich element (ARE) containing mRNAs, are predominantly controlled at the post-transcriptional level. Regulation appears to rely on a variable and dynamic interaction between mRNA target and ARE-specific binding proteins (AUBPs). The AUBP-ARE mRNA recognition is directed by multiple intracellular signals that are predominantly targeted at the AUBPs. These include (but are unlikely limited to) methylation, acetylation, phosphorylation, ubiquitination and isomerization. These regulatory events ultimately affect ARE mRNA location, abundance, translation and stability. In this review, we describe recent advances in our understanding of phosphorylation and its impact on conformation of the AUBPs, interaction with ARE mRNAs and highlight the role of Pin1 mediated prolyl cis-trans isomerization in these biological process.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| |
Collapse
|
17
|
Krisenko MO, Geahlen RL. Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:254-63. [PMID: 25447675 DOI: 10.1016/j.bbamcr.2014.10.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
SYK (spleen tyrosine kinase) is well-characterized in the immune system as an essential enzyme required for signaling through multiple classes of immune recognition receptors. As a modulator of tumorigenesis, SYK has a bit of a schizophrenic reputation, acting in some cells as a tumor promoter and in others as a tumor suppressor. In many hematopoietic malignancies, SYK provides an important survival function and its inhibition or silencing frequently leads to apoptosis. In cancers of non-immune cells, SYK provides a pro-survival signal, but can also suppress tumorigenesis by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration.
Collapse
Affiliation(s)
- Mariya O Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
18
|
A PREVIOUSLY UNKNOWN UNIQUE CHALLENGE FOR INHIBITORS OF SYK ATP-BINDING SITE: ROLE OF SYK AS A CELL CYCLE CHECKPOINT REGULATOR. EBioMedicine 2014; 1:16-28. [PMID: 25506060 PMCID: PMC4259291 DOI: 10.1016/j.ebiom.2014.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The identification of SYK as a molecular target in B-lineage leukemia/lymphoma cells prompted the development of SYK inhibitors as a new class of anti-cancer drug candidates. Here we report that induction of the SYK gene expression in human cells causes a significant down-regulation of evolutionarily conserved genes associated with mitosis and cell cycle progression providing unprecedented evidence that SYK is a master regulator of cell cycle regulatory checkpoint genes in human cells. We further show that SYK regulates the G2 checkpoint by physically associating with and inhibiting the dual-specificity phosphatase CDC25C via phosphorylation of its S216 residue. SYK depletion by RNA interference or treatment with the chemical SYK inhibitor prevented nocodazole-treated human cell lines from activating the G2 checkpoint via CDC25C S216-phosphorylation and resulted in polyploidy. Our study provides genetic and biochemical evidence that spleen tyrosine kinase (SYK) has a unique role in the activation of the G2 checkpoint in both non-lymphohematopoietic and B-lineage lymphoid cells. This previously unknown role of SYK as a cell cycle checkpoint regulator represents an unforeseen and significant challenge for inhibitors of SYK ATP binding site. SYK is a cell cycle regulatory kinase that phosphorylates CDC25C at S216 SYK is a master regulator of cell cycle regulatory checkpoint genes in human cells Inhibitors of SYK ATP binding site may increase the risk for secondary cancer
Collapse
|