1
|
Zhou W, Su P, Wang Y, Li Z, Liu L. Exploration of the molecular linkage between endometriosis and Crohn disease by bioinformatics methods. Medicine (Baltimore) 2024; 103:e38097. [PMID: 38758892 PMCID: PMC11098239 DOI: 10.1097/md.0000000000038097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) is a common disease in reproductive-age woman and Crohn disease (CD) is a chronic inflammatory disorder in gastrointestinal tract. Previous studies reported that patients with EMT had an increased risk of CD. However, the linkage between EMT and CD remains unclear. In this study, we aimed to investigate the potential molecular mechanism of EMT and CD. METHODS The microarray data of EMT and CD were downloaded from Gene Expression Omnibus. Common genes of EMT and CD were obtained to perform the Gene Ontology and Kyoto Encyclopedia of Gene Genomes enrichments. The protein-protein interaction network was constructed by Cytoscape software and the hub genes were identified by CytoHubba plug-in. Finally we predicted the transcription factors (TFs) of hub genes and constructed a TFs-hub genes regulation network. RESULTS A total of 50 common genes were identified. Kyoto Encyclopedia of Gene Genomes enrichment showed that the common genes mainly enriched in MAPK pathway, VEGF pathway, Wnt pathway, TGF-beta pathway, and Ras pathway. Fifteen hub genes were collected from the protein-protein interaction network, including FMOD, FRZB, CPE, SST, ISG15, EFEMP1, KDR, ADRA2A, FZD7, AQP1, IGFBP5, NAMPT, PLUA, FGF9, and FHL2. Among them, FGF9, FZD7, IGFBP5, KDR, and NAMPT were both validated in the other 2 datasets. Finally TFs-hub genes regulation network were constructed. CONCLUSION Our findings firstly revealed the linkage between EMT and CD, including inflammation, angiogenesis, immune regulation, and cell behaviors, which may lead to the risk of CD in EMT. FGF9, FZD7, IGFBP5, KDR, and NAMPT may closely relate to the linkage.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Gastroenterology, The Six Affiliated Hospital of South China University of Technology, Foshan City, Guangdong Province, China
| | - Peizhu Su
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Yilin Wang
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Zhaotao Li
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Liu Liu
- Department of Gastroenterology, The Six Affiliated Hospital of South China University of Technology, Foshan City, Guangdong Province, China
| |
Collapse
|
2
|
Tang H, Lin T, Wu M, Tsai S. Progesterone resistance in endometriosis: A pathophysiological perspective and potential treatment alternatives. Reprod Med Biol 2024; 23:e12588. [PMID: 38854774 PMCID: PMC11157498 DOI: 10.1002/rmb2.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Background Endometriosis is a common gynecological disease affecting women of reproductive age. Patients with endometriosis frequently experience severe chronic pain and have higher chances to experience infertility. Progesterone resistance is a major problem that develops during the medical treatment of endometriosis, which often leads to treatment failure of hormonal therapies. Previous studies indicated that the dysregulation of progesterone receptors (PR) is the primary factor leading to progesterone resistance in endometriosis. Methods This review article systematically reviewed and summarized findings extracted from previously published papers available on PubMed, encompassing both experimental studies and clinical trials. Main findings Various determinants influencing PR expression in endometriosis have been identified, including the environmental toxins, microRNAs, cell signaling pathways, genetic mutations, and the pro-inflammatory cytokines. The selective estrogen/progesterone receptor modulators have emerged as novel therapeutic approaches for treating endometriosis, offering potential improvements in overcoming progesterone resistance. Conclusion Concerns and limitations persist despite the newly developed drugs. Therefore, studies on unraveling new therapeutic targets based on the molecular mechanisms of progesterone resistance is warranted for the development potential alternatives to overcome hormonal treatment failure in endometriosis.
Collapse
Affiliation(s)
- Hsiao‐Chien Tang
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Ting‐Chien Lin
- Department of Gynecology and ObstetricsNational Cheng Kung University HospitalTainanTaiwan
| | - Meng‐Hsing Wu
- Department of Gynecology and ObstetricsNational Cheng Kung University HospitalTainanTaiwan
- Department of PhysiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Shaw‐Jenq Tsai
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of PhysiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of Biomedical SciencesCollege of Science, National Chung Cheng UniversityChiayiTaiwan
| |
Collapse
|
3
|
Tao X, Du R, Guo S, Feng X, Yu T, OuYang Q, Chen Q, Fan X, Wang X, Guo C, Li X, Xue F, Chen S, Tong M, Lazarus M, Zuo S, Yu Y, Shen Y. PGE 2 -EP3 axis promotes brown adipose tissue formation through stabilization of WTAP RNA methyltransferase. EMBO J 2022; 41:e110439. [PMID: 35781818 DOI: 10.15252/embj.2021110439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Brown adipose tissue (BAT) functions as a thermogenic organ and is negatively associated with cardiometabolic diseases. N6 -methyladenosine (m6 A) modulation regulates the fate of stem cells. Here, we show that the prostaglandin E2 (PGE2 )-E-prostanoid receptor 3 (EP3) axis was activated during mouse interscapular BAT development. Disruption of EP3 impaired the browning process during adipocyte differentiation from pre-adipocytes. Brown adipocyte-specific depletion of EP3 compromised interscapular BAT formation and aggravated high-fat diet-induced obesity and insulin resistance in vivo. Mechanistically, activation of EP3 stabilized the Zfp410 mRNA via WTAP-mediated m6 A modification, while knockdown of Zfp410 abolished the EP3-induced enhancement of brown adipogenesis. EP3 prevented ubiquitin-mediated degradation of WTAP by eliminating PKA-mediated ERK1/2 inhibition during brown adipocyte differentiation. Ablation of WTAP in brown adipocytes abrogated the protective effect of EP3 overexpression in high-fat diet-fed mice. Inhibition of EP3 also retarded human embryonic stem cell differentiation into mature brown adipocytes by reducing the WTAP levels. Thus, a conserved PGE2 -EP3 axis promotes BAT development by stabilizing WTAP/Zfp410 signaling in a PKA/ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shumin Guo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangling Feng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian OuYang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Xutong Fan
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xueqi Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chen Guo
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Minghan Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City, Japan
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Smits K, Gansemans Y, Tilleman L, Van Nieuwerburgh F, Van De Velde M, Gerits I, Ververs C, Roels K, Govaere J, Peelman L, Deforce D, Van Soom A. Maternal Recognition of Pregnancy in the Horse: Are MicroRNAs the Secret Messengers? Int J Mol Sci 2020; 21:ijms21020419. [PMID: 31936511 PMCID: PMC7014256 DOI: 10.3390/ijms21020419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 01/22/2023] Open
Abstract
The signal for maternal recognition of pregnancy (MRP) has still not been identified in the horse. High-throughput molecular biology at the embryo-maternal interface has substantially contributed to the knowledge on pathways affected during MRP, but an integrated study in which proteomics, transcriptomics and miRNA expression can be linked directly is currently lacking. The aim of this study was to provide such analysis. Endometrial biopsies, uterine fluid, embryonic tissues, and yolk sac fluid were collected 13 days after ovulation during pregnant and control cycles from the same mares. Micro-RNA-Sequencing was performed on all collected samples, mRNA-Sequencing on the same tissue samples and mass spectrometry was conducted previously on the same fluid samples. Differential expression of miRNA, mRNA and proteins showed high conformity with literature and confirmed involvement in pregnancy establishment, embryo quality, steroid synthesis and prostaglandin regulation, but the link between differential miRNAs and their targets was limited and did not indicate the identity of an unequivocal signal for MRP in the horse. Differential expression at the embryo-maternal interface was prominent, highlighting a potential role of miRNAs in embryo-maternal communication during early pregnancy in the horse. These data provide a strong basis for future targeted studies.
Collapse
Affiliation(s)
- Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Correspondence:
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Margot Van De Velde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ilse Gerits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Cyrillus Ververs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Roels
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luc Peelman
- Animal Genetics Lab, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
5
|
Asakawa M, Itoh M, Suganami T, Sakai T, Kanai S, Shirakawa I, Yuan X, Hatayama T, Shimada S, Akiyama Y, Fujiu K, Inagaki Y, Manabe I, Yamaoka S, Yamada T, Tanaka S, Ogawa Y. Upregulation of cancer-associated gene expression in activated fibroblasts in a mouse model of non-alcoholic steatohepatitis. Sci Rep 2019; 9:19601. [PMID: 31862949 PMCID: PMC6925281 DOI: 10.1038/s41598-019-56039-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH), characterized by chronic inflammation and fibrosis, is predicted to be the leading cause of cirrhosis and hepatocellular carcinoma (HCC) in the next decade. Although recent evidence suggests the importance of fibrosis as the strongest determinant of HCC development, the molecular mechanisms underlying NASH-induced carcinogenesis still remain unclear. Here we performed RNA sequencing analysis to compare gene expression profiles of activated fibroblasts prepared from two distinct liver fibrosis models: carbon tetrachloride–induced fibrosis as a model without obesity and HCC and genetically obese melanocortin 4 receptor–deficient (MC4R-KO) mice fed Western diet, which develop steatosis, NASH, and eventually HCC. Our data showed that activated fibroblasts exhibited distinct gene expression patterns in each etiology, and that the ‘pathways in cancer’ were selectively upregulated in the activated fibroblasts from MC4R-KO mice. The most upregulated gene in these pathways was fibroblast growth factor 9 (FGF9), which was induced by metabolic stress such as palmitate. FGF9 exerted anti-apoptotic and pro-migratory effects in fibroblasts and hepatoma cells in vitro and accelerated tumor growth in a subcutaneous xenograft model. This study reveals upregulation of cancer-associated gene expression in activated fibroblasts in NASH, which would contribute to the progression from NASH to HCC.
Collapse
Affiliation(s)
- Masahiro Asakawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Itoh
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan. .,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takeru Sakai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Kanai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Xunmei Yuan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomi Hatayama
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhito Fujiu
- Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
6
|
Leisinger C, Klein C, Markle M, Premanandan C, Sones J, Pinto C, Paccamonti D. Altered gene expression in embryos and endometrium collected on day 8 of induced aluteal cycles in mares. Theriogenology 2019; 128:81-90. [DOI: 10.1016/j.theriogenology.2019.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
|
7
|
Wu MH, Hsiao KY, Tsai SJ. Hypoxia: The force of endometriosis. J Obstet Gynaecol Res 2019; 45:532-541. [PMID: 30618168 DOI: 10.1111/jog.13900] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
AIM Summarize recent findings of how hypoxia regulates numerous important processes to facilitate the implantation, proliferation and progression of ectopic endometriotic lesions. METHODS Most up-to-date evidences about how hypoxia contributes to the disease pathogenesis of endometriosis and potential therapeutic approaches were collected by conducting a comprehensive search of medical literature electronic databases. Quality of data was analyzed by experienced experts including gynecologist and basic scientists. RESULTS Uterus is a highly vascularized organ, which makes endometrial cells constantly expose to high concentration of oxygen. When endometrial tissues shed off from the eutopic uterus and retrograde to the peritoneal cavity, they face severe hypoxic stress. Even with successful implantation to ovaries or peritoneum, the hypoxic stress remains as a critical issue because endometrial cells are used to live in the well-oxygenated environment. Under the hypoxia condition, cells undergo epigenetic modulation and evolve several survival processes including steroidogenesis, angiogenesis, inflammation and metabolic switch. The complex gene regulatory network driven by hypoxia ensures endometriotic cells can survive under the hostile peritoneal microenvironment. CONCLUSION Hypoxia plays critical roles in promoting pathological processes to facilitate the development of endometriosis. Targeting hypoxia-mediated gene network represents an alternative approach for the treatment of endometriosis.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Li W, Fan X, Zhang M, Huang L, Lv S, Wang L, Wu Y, Dai C, Xu J, Xu P, Fu Z, Jia X, Shi X. Systematic analysis of hsa-miR-363 gene overexpression pattern in endometrial stromal cells. Int J Mol Med 2018; 42:2793-2800. [PMID: 30226573 DOI: 10.3892/ijmm.2018.3840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/18/2018] [Indexed: 11/06/2022] Open
Abstract
Endometriosis is a benign disease, but has invasion and metastasis characteristics similar to malignant tumors. Clinically, it is a difficult problem of gynecological clinical treatment for its high recurrence rate. It has been confirmed that miR-363 was downregulated in endometriosis tissues and miR-363 overexpression inhibited the invasion ability of endometrial stromal cells (ESCs). In order to explore the potential mechanism of miR-363-reduced ESC migration and invasion progression, we sought to demonstrate the targeted mRNA expression levels of miR-363 through microarray, and performed cluster analysis to identify potential functions of these targeted genes in ESCs. The wound migration assay showed that there was an observable trend of cell migration potential decrease after transfection with hsa-miR-363. The qRT-PCR result showed that compared to miR-363 negative control cell group, miR-363 was upregulated 3,264.58-fold after miR-363 lentiviral transfection in miR-363 mimics group. The microarray data showed that compared to ESCs miR-363 negative control cell group, 249 genes were upregulated in ESCs miR-363 mimics cells group, and 139 genes were downregulated. Gene Ontology analysis and the pathway analysis data demonstrated that these target genes are mainly involved in cell migration, cell adhesion and invasion, proliferation, apoptosis, alteration of endometrial cells and some related signaling pathways. Our study explored the gene expression pattern after miR-363 overexpression, which could expand the insights into the miR-363 function and molecular mechanisms in endometriosis.
Collapse
Affiliation(s)
- Wenqu Li
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Xuemei Fan
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Mi Zhang
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Lei Huang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Shanshan Lv
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Luyu Wang
- Soochow University, Soochow, Jiangsu 215004, P.R. China
| | - Ying Wu
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Chencheng Dai
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Xu
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Pengfei Xu
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Ziyi Fu
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Xuemei Jia
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Xiaoyan Shi
- Department of Gynecology, Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternal and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
9
|
Fu JL, Hsiao KY, Lee HC, Li WN, Chang N, Wu MH, Tsai SJ. Suppression of COUP-TFII upregulates angiogenin and promotes angiogenesis in endometriosis. Hum Reprod 2018; 33:1517-1527. [DOI: 10.1093/humrep/dey220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 05/26/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jhao-Lin Fu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Yang Hsiao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Chi Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ning Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsing Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics & Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
FGF-FGFR Mediates the Activity-Dependent Dendritogenesis of Layer IV Neurons during Barrel Formation. J Neurosci 2017; 37:12094-12105. [PMID: 29097598 DOI: 10.1523/jneurosci.1174-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known for their potent effects on cell proliferation/differentiation and cortical patterning in the developing brain. However, little is known regarding the roles of FGFs/FGFRs in cortical circuit formation. Here we show that Fgfr1/2/3 and Fgf7/9/10/22 mRNAs are expressed in the developing primary somatosensory (S1) barrel cortex. Barrel cortex layer IV spiny stellate cells (bSCs) are the primary recipients of ascending sensory information via thalamocortical axons (TCAs). Detail quantification revealed distinctive phases for bSC dendritogenesis: orienting dendrites toward TCAs, adding de novo dendritic segments, and elongating dendritic length, while maintaining dendritic patterns. Deleting Fgfr1/2/3 in bSCs had minimal impact on dendritic polarity but transiently increased the number of dendritic segments. However, 6 d later, FGFR1/2/3 loss of function reduced dendritic branch numbers. These data suggest that FGFs/FGFRs have a role in stabilizing dendritic patterning. Depolarization of cultured mouse cortical neurons upregulated the levels of several Fgf/Fgfr mRNAs within 2 h. In vivo, within 6 h of systemic kainic acid administration at postnatal day 6, mRNA levels of Fgf9, Fgf10, Fgfr2c, and Fgfr3b in S1 cortices were enhanced, and this was accompanied by exuberant dendritogenesis of bSCs by 24 h. Deleting Fgfr1/2/3 abolished kainic acid-induced bSC dendritic overgrowth. Finally, FGF9/10 gain of function also resulted in extensive dendritogenesis. Together, our data suggest that FGFs/FGFRs can be regulated by glutamate transmission to modulate/stabilize bSC dendritic complexity. Both male and female mice were used for our study.SIGNIFICANCE STATEMENT Glutamatergic transmission plays critical roles in cortical circuit formation. Its dysregulation has been proposed as a core factor in the etiology of many neurological diseases. We found that excessive glutamate transmission upregulated mRNA expression of Fgfrs and their ligands Fgfs Deleting Fgfr1/2/3 not only impaired bSC dendritogenesis but also abolished glutamate transmission-induced dendritic overgrowth. Overexpressing FGF9 or FGF10 in cortical glutamatergic neurons results in excessive dendritic outgrowth within 24 h, resembling the changes induced by excessive glutamate transmission. Our findings provide strong evidence for the physiological role of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) in establishing and maintaining cortical circuits. Perturbing the expression levels of FGFs/FGFRs by excessive glutamatergic neurotransmission could lead to abnormal neuronal circuits, which may contribute to neurological and psychiatric disease.
Collapse
|
11
|
Rezq S, Abdel-Rahman AA. Rostral Ventrolateral Medulla EP3 Receptor Mediates the Sympathoexcitatory and Pressor Effects of Prostaglandin E2 in Conscious Rats. J Pharmacol Exp Ther 2016; 359:290-299. [PMID: 27572469 DOI: 10.1124/jpet.116.233502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
Whereas few studies have dealt with the central sympathoexcitatory action of the inflammatory prostanoid prostaglandin E2 (PGE2), there is no information on the expression and cardiovascular function of different PGE2 (EP) receptors in one of the major cardiovascular-regulating nuclei, the rostral ventrolateral medulla (RVLM). The current study aimed at filling this knowledge gap as well as elucidating the implicated molecular mechanisms. To achieve these goals, we showed the expression of EP2, EP3, and EP4 receptors in the RVLM and investigated their cardiovascular roles in conscious rats, ex vivo as well as in cultured PC12 cells. Intra-RVLM PGE2 significantly increased blood pressure and sympathetic dominance (spectral analysis). Studies with selective EP receptor subtype agonists and antagonists showed that these PGE2-evoked responses were only replicated by intra-RVLM activation of the EP3 receptor with its agonist sulprostone. The RVLM of PGE2-treated rats exhibited increases in c-Fos expression and extracellular signal-regulated kinase 1/2 and neuronal nitric oxide synthase phosphorylation along with oxidative stress, and PGE2 increased l-glutamate release in PC12 cells (surrogates of RVLM neurons). Abrogation of the PGE2-evoked pressor and biochemical responses only occurred following EP3 receptor blockade (N-[(5-Bromo-2-methoxyphenyl)sulfonyl]-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide, L-798106). These findings suggest the dependence of RVLM PGE2-mediated sympathoexcitation/pressor response on local EP3 receptor signaling in conscious rats, and highlight central EP3 receptor blockade as a potential therapeutic modality for hypertension management.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
12
|
Lian S, Xia Y, Ung TT, Khoi PN, Yoon HJ, Lee SG, Kim KK, Jung YD. Prostaglandin E 2 stimulates urokinase-type plasminogen activator receptor via EP2 receptor-dependent signaling pathways in human AGS gastric cancer cells. Mol Carcinog 2016; 56:664-680. [PMID: 27377703 DOI: 10.1002/mc.22524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022]
Abstract
Aberrant expression of urokinase-type plasminogen activator receptor (uPAR) has been observed in human gastric cancers. Prostaglandin E2 (PGE2 ), whose biosynthesis is catalyzed by cyclooxygenase-2 (COX-2), is implicated in cancer metastasis; however, the cellular and molecular mechanisms of PGE2 -driven uPAR expression are yet to be elucidated in human gastric cancer AGS cells. In this study, we showed that PGE2 induces uPAR expression in concentration- and time-dependent manners. Furthermore, using antagonists and siRNA, we found that among the four subtypes of PGE2 receptors, EP2 receptors are involved in PGE2 -induced uPAR expression. PGE2 induced the activation of Src, epidermal growth factor receptor (EGFR), c-Jun NH2 -terminal kinase (JNK), extracellular signal-regulated kinase (Erk), and p38 mitogen activated protein kinase (p38 MAPK). Specific inhibitor and mutagenesis studies showed that Src, EGFR, JNK1/2, and Erk1/2 are involved in PGE2 -induced uPAR expression. PGE2 induces EP2-dependent phosphorylation of Src, while the activation of Src-dependent EGFR leads to the phosphorylation of JNK1/2 and Erk1/2. Deletion and site-directed mutagenesis studies demonstrated the involvement of transcription factor activator protein (AP)-1 and nuclear factor-kappa B (NF-κB) in PGE2 -induced uPAR expression. EGFR-dependent MAPKs (JNK1/2 and Erk1/2) function as the upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. AGS cells pre-treated with PGE2 showed remarkably enhanced invasiveness, which was partially abrogated by uPAR-neutralizing antibodies. To the best of our knowledge, this is the first report that PGE2 -induced uPAR expression, which stimulates invasiveness of human gastric cancer AGS cells, is mediated by the EP2 receptor-dependent Src/EGFR/JNK1/2, Erk1/2/AP-1, and Src/EGFR/JNK1/2, Erk1/2/NF-κB cascades. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sen Lian
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong Xia
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Trong Thuan Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun Joong Yoon
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sam Gyu Lee
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung Keun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Wu MH, Hsiao KY, Tsai SJ. Endometriosis and possible inflammation markers. Gynecol Minim Invasive Ther 2015. [DOI: 10.1016/j.gmit.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Xie C, Sun X, Chen J, Ng CF, Lau KM, Cai Z, Jiang X, Chan HC. Down-regulated CFTR During Aging Contributes to Benign Prostatic Hyperplasia. J Cell Physiol 2015; 230:1906-15. [PMID: 25546515 DOI: 10.1002/jcp.24921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/18/2014] [Indexed: 01/27/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a hyper-proliferative disease of the aging prostate; however, the exact mechanism underlying the development of BPH remains incompletely understood. The present study investigated the possible involvement of the cystic fibrosis transmembrane conductance regulator (CFTR), which has been previously shown to negatively regulate nuclear factor-κB (NF-κB)/cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) pathway, in the pathogenesis of BPH. Our results showed decreasing CFTR and increasing COX2 expression in rat prostate tissues with aging. Furthermore, suppression of CFTR led to increased expression of COX2 and over-production of PGE2 in a normal human prostate epithelial cell line (PNT1A) with elevated NF-κB activity. PGE2 stimulated the proliferation of primary rat prostate stromal cells but not epithelial cells, with increased PCNA expression. In addition, the condition medium from PNT1A cells after inhibition or knockdown of CFTR promoted cell proliferation of prostate stromal cells which could be reversed by COX2 or NF-κB inhibitor. More importantly, the involvement of CFTR in BPH was further demonstrated by the down-regulation of CFTR and up-regulation of COX2/NF-κB in human BPH samples. The present results suggest that CFTR may be involved in regulating PGE2 production through its negative regulation on NF-κB/COX2 pathway in prostate epithelial cells, which consequently stimulates cell growth of prostate stromal cells. The overstimulation of prostate stromal cell proliferation by down-regulation of CFTR-enhanced PGE2 production and release during aging may contribute to the development of BPH.
Collapse
Affiliation(s)
- Chen Xie
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Shatin, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abnormal Expression of Prostaglandins E2 and F2α Receptors and Transporters in Patients with Endometriosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:808146. [PMID: 26240828 PMCID: PMC4512562 DOI: 10.1155/2015/808146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/25/2014] [Accepted: 12/08/2014] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the level of expression of prostaglandin receptivity and uptake factors in eutopic and ectopic endometrium of women with endometriosis. Design. Prospective study. Setting. Human reproduction research laboratory. Patients. Seventy-eight patients with endometriosis and thirty healthy control subjects. Intervention(s). Endometrial and endometriotic tissue samples were obtained during laparoscopic surgery. Main Outcome Measure(s). Real-time polymerase chain reaction assay of mRNA encoding prostaglandin E2 receptors (EP1, EP2, EP3, and EP4), prostaglandin F2α receptor (FP), prostaglandin transporter (PGT), and multidrug resistance-associated protein 4 (MRP4); immunohistochemical localization of expressed proteins. Results. Marked increases in receptors EP3, EP4, and FP and transporters PGT and MRP4 in ectopic endometrial tissue were noted, without noticeable change associated with disease stage. An increase in EP3 expression and decreases in FP and PGT were observed in the eutopic endometrium of endometriosis patients in conjunction with the phases of the menstrual cycle. Conclusion(s). This study is the first to demonstrate a possible relationship between endometriosis and enhanced prostaglandin activity. In view of the wide range of prostaglandin functions, increasing cell receptivity and facilitating uptake in endometrial tissue could contribute to the initial steps of overgrowth and have an important role to play in the pathogenesis and symptoms of this disease.
Collapse
|
16
|
Prostaglandin Transporter (PGT/SLCO2A1) Protects the Lung from Bleomycin-Induced Fibrosis. PLoS One 2015; 10:e0123895. [PMID: 25923111 PMCID: PMC4414486 DOI: 10.1371/journal.pone.0123895] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/02/2015] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin (PG) E2 exhibits an anti-fibrotic effect in the lung in response to inflammatory reactions and is a high-affinity substrate of PG transporter (SLCO2A1). The present study aimed to evaluate the pathophysiological relevance of SLCO2A1 to bleomycin (BLM)-induced pulmonary fibrosis in mice. Immunohistochemical analysis indicated that Slco2a1 protein was expressed in airway and alveolar type I (ATI) and II (ATII) epithelial cells, and electron-microscopic immunohistochemistry further demonstrated cell surface expression of Slco2a1 in ATI cells in wild type (WT) C57BL/6 mice. PGE2 uptake activity was abrogated in ATI-like cells from Slco2a1-deficient (Slco2a1-/-) mice, which was clearly observed in the cells from WT mice. Furthermore, the PGE2 concentrations in lung tissues were lower in Slco2a1-/- than in WT mice. The pathological relevance of SLCO2A1 was further studied in mouse BLM-induced pulmonary fibrosis models. BLM (1 mg/kg) or vehicle (phosphate buffered saline) was intratracheally injected into WT and Slco2a1-/- mice, and BLM-induced fibrosis was evaluated on day 14. BLM induced more severe fibrosis in Slco2a1-/- than in WT mice, as indicated by thickened interstitial connective tissue and enhanced collagen deposition. PGE2 levels were higher in bronchoalveolar lavage fluid, but lower in lung tissues of Slco2a1-/- mice. Transcriptional upregulation of TGF-β1 was associated with enhanced gene transcriptions of downstream targets including plasminogen activator inhitor-1. Furthermore, Western blot analysis demonstrated a significant activation of protein kinase C (PKC) δ along with a modest activation of Smad3 in lung from Slco2a1-/- mice, suggesting a role of PKCδ associated with TGF-β signaling in aggravated fibrosis in BLM-treated Slco2a1-/- mice. In conclusion, pulmonary PGE2 disposition is largely regulated by SLCO2A1, demonstrating that SLCO2A1 plays a critical role in protecting the lung from BLM-induced fibrosis.
Collapse
|
17
|
Kobayashi H, Higashiura Y, Koike N, Akasaka J, Uekuri C, Iwai K, Niiro E, Morioka S, Yamada Y. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes. Reprod Sci 2014; 21:966-972. [PMID: 24615936 DOI: 10.1177/1933719114526473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yumi Higashiura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Natsuki Koike
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Juria Akasaka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Emiko Niiro
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Sachiko Morioka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
18
|
Santulli P, Borghese B, Noël JC, Fayt I, Anaf V, de Ziegler D, Batteux F, Vaiman D, Chapron C. Hormonal therapy deregulates prostaglandin-endoperoxidase synthase 2 (PTGS2) expression in endometriotic tissues. J Clin Endocrinol Metab 2014; 99:881-90. [PMID: 24423291 DOI: 10.1210/jc.2013-2950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Endometriosis is a common gynecologic condition characterized by an important inflammatory process mediated by the prostaglandin pathway. Oral contraceptives are the treatment of choice for symptomatic endometriotic women. However the effects of oral contraceptives use and prostaglandin pathway in endometriotic women are actually still unknown. OBJECTIVE To investigate the expression of prostaglandin pathway key genes in endometriotic tissue, affected or not by hormonal therapy, as compared with healthy endometrial tissue. DESIGN This was a comparative laboratory study. SETTING This study was conducted in a tertiary-care university hospital. PATIENTS Seventy-six women, with (n = 46) and without (n = 30) histologically proven endometriosis. MAIN OUTCOME MEASURES Prostaglandin-endoperoxidase synthase (PTGS)1, PTGS2, prostaglandin E receptor (PTGER)1, PTGER2, PTGER3, and PTGER4 mRNA levels in endometrium of disease-free women and in eutopic and ectopic endometrium of endometriosis-affected women. PTGS2 expression was further investigated by immunohistochemistry, using specific monoclonal antibodies. PTGS2 expression was analyzed at mRNA and protein levels and correlated with taking hormonal treatment. RESULTS PTGS2 expression was significantly increased in eutopic and ectopic endometrium as compared with healthy tissue (induction of 9.6- and 6.3-fold, respectively; P = .001). PTGS2 immunoreactivity increased gradually from normal endometrium to eutopic and ectopic endometrium (h-score of 96.7 ± 55.0, 128.3 ± 66.1, and 226.7 ± 62.6, respectively, P < .001). PTGER2, PTGER3, and PTGER4 expression increased significantly and gradually from normal to eutopic and ectopic endometrium, whereas PTGER1 remained unchanged. Patients under hormonal treatment had a higher PTGS2 expression at transcriptional and protein levels as compared with those without treatment (P = .002 and P = .025, respectively). CONCLUSIONS Prostaglandin pathway is strongly deregulated in eutopic and ectopic endometrium of women suffering from endometriosis for the benefit of an increased PTGS2 expression. We show for the first time that hormonal treatment appears to enhance even more PTGS2 expression. These results contribute to explain why medical treatment could fail to control endometriosis progression.
Collapse
MESH Headings
- Adult
- Case-Control Studies
- Contraceptives, Oral, Hormonal/administration & dosage
- Contraceptives, Oral, Hormonal/adverse effects
- Cyclooxygenase 1/genetics
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Endometriosis/enzymology
- Endometriosis/genetics
- Endometrium/enzymology
- Endometrium/pathology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Prostaglandins/metabolism
- Receptors, Prostaglandin E, EP1 Subtype/genetics
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
Collapse
Affiliation(s)
- Pietro Santulli
- Université Paris Descartes (P.S., B.B., D.d.Z., C.C.), Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Ouest, Centre Hospitalier Universitaire Cochin St Vincent de Paul, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France; Université Paris Descartes (P.S., B.B., D.V., C.C.), Sorbonne Paris Cité, Inserm, Unité de Recherche U1016, Institut Cochin, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), 75014 Paris, France; Université Paris Descartes (P.S., F.B.), Sorbonne Paris Cité, Faculté de Médecine, Laboratoire d'Immunologie, Équipe d'Accueil 1833 Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75679 Paris Cedex 14, France; and Department of Gynecopathology (J-C.N., I.F., V.A.), Erasme University Hospital, Free University of Brussels, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen TM, Shih YH, Tseng JT, Lai MC, Wu CH, Li YH, Tsai SJ, Sun HS. Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res 2013; 42:2932-44. [PMID: 24334956 PMCID: PMC3950685 DOI: 10.1093/nar/gkt1286] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human fibroblast growth factor 9 (FGF9) is a potent mitogen involved in many physiological processes. Although FGF9 messenger RNA (mRNA) is ubiquitously expressed in embryos, FGF9 protein expression is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in human malignancies including cancers, but the mechanism remains largely unknown. Here, we report that FGF9 protein, but not mRNA, was increased in hypoxia. Two sequence elements, the upstream open reading frame (uORF) and the internal ribosome entry site (IRES), were identified in the 5' UTR of FGF9 mRNA. Functional assays indicated that FGF9 protein synthesis was normally controlled by uORF-mediated translational repression, which kept the protein at a low level, but was upregulated in response to hypoxia through a switch to IRES-dependent translational control. Our data demonstrate that FGF9 IRES functions as a cellular switch to turn FGF9 protein synthesis ‘on’ during hypoxia, a likely mechanism underlying FGF9 overexpression in cancer cells. Finally, we provide evidence to show that hypoxia-induced translational activation promotes FGF9 protein expression in colon cancer cells. Altogether, this dynamic working model may provide a new direction in anti-tumor therapies and cancer intervention.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Institute of Bioinformatics and Biosignaling, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan and Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gori I, Rodriguez Y, Pellegrini C, Achtari C, Hornung D, Chardonnens E, Wunder D, Fiche M, Canny GO. Augmented epithelial multidrug resistance-associated protein 4 expression in peritoneal endometriosis: regulation by lipoxin A(4). Fertil Steril 2013; 99:1965-73.e2. [PMID: 23472950 DOI: 10.1016/j.fertnstert.2013.01.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To compare the expression of the prostaglandin (PG) E(2) transporter multidrug resistance-associated protein 4 (MRP4) in eutopic and ectopic endometrial tissue from endometriosis patients with that of control subjects and to examine whether MRP4 is regulated by the antiinflammatory lipid lipoxin A(4) (LXA(4)) in endometriotic epithelial cells. DESIGN Molecular analysis in human samples and a cell line. SETTING Two university hospitals and a private clinic. PATIENT(S) A total of 59 endometriosis patients and 32 age- and body mass index-matched control subjects undergoing laparoscopy or hysterectomy. INTERVENTION(S) Normal, eutopic, and ectopic endometrial biopsies as well as peritoneal fluid were obtained during surgery performed during the proliferative phase of the menstrual cycle. 12Z endometriotic epithelial cells were used for in vitro mechanistic studies. MAIN OUTCOME MEASURE(S) Tissue MRP4 mRNA levels were quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and localization was analyzed with the use of immunohistochemistry. Cellular MRP4 mRNA and protein were quantified by qRT-PCR and Western blot, respectively. PGE(2) was measured in peritoneal fluid and cell supernatants using an enzyme immunoassay (EIA). RESULT(S) MRP4 was expressed in eutopic and ectopic endometrium, where it was overexpressed in peritoneal lesions and localized in the cytoplasm of glandular epithelial cells. LXA(4) attenuated MRP4 mRNA and protein levels in endometriotic epithelial cells in a dose-dependent manner, while not affecting the expression of enzymes involved in PGE(2) metabolism. Investigations employing receptor antagonists and small interfering RNA revealed that this occurred through estrogen receptor α. Accordingly, LXA(4) treatment inhibited extracellular PGE(2) release. CONCLUSION(S) We report for the first time that MRP4 is expressed in human endometrium, elevated in peritoneal endometriosis, and modulated by LXA(4) in endometriotic epithelial cells.
Collapse
Affiliation(s)
- Ilaria Gori
- Department of Gynecology, Obstetrics, and Medical Genetics, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu KL, Huang EY, Jhu EW, Huang YH, Su WH, Chuang PC, Yang KD. Overexpression of galectin-3 enhances migration of colon cancer cells related to activation of the K-Ras-Raf-Erk1/2 pathway. J Gastroenterol 2013; 48:350-9. [PMID: 23015305 DOI: 10.1007/s00535-012-0663-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 08/07/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Galectin-3 has been independently correlated with malignant behavior in human colon cancer. The involvement of galectin-3 in the invasiveness of colon cancer cells remains to be determined. We investigated whether galectin-3 was involved in the colon cancer cell migration mediated by certain kinase pathways. METHODS We studied 2 colon cancer cell lines (DLD-1 and Caco2) and clinical samples. Immunostaining and Western blotting were used to analyze the expression of galectin-3 in vitro and in the clinical samples. Short hairpin RNA and overexpression of galectin-3 were used to study loss- and gain-of-function in a wound-healing assay and a Transwell migration assay, and Western blotting was used to study the Ras-Raf signaling pathway. RESULTS Galectin-3 was expressed at lower levels in DLD-1 than in Caco2 cells. The lower galectin-3 level in DLD-1 cells was associated with decreased cell migration, in comparison with that of Caco2 cells. Overexpression of galectin-3 increased the migration rate of DLD-1, while knockdown of galectin-3 decreased the migration. Overexpression of galectin-3 was correlated with increased lamellipodia formation and distal lung localization in a mouse model. The galectin-3 enhancement of DLD-1 cell migration was mediated by K-Ras, Raf and Erk1/2 pathway activation, but not the H-Ras, p38, or JNK activation. CONCLUSIONS Galectin-3 plays an important role in regulating colon cancer cell migration and potential distal localization. The galectin-3 enhancement of cell migration is mediated through the K-Ras-Raf-Erk1/2 pathway. Specific targeting of the K-Ras-Raf-Erk1/2 pathway may be useful for treating colon cancers associated with increased galectin-3 expression.
Collapse
Affiliation(s)
- Keng-Liang Wu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Wu MH, Chuang PC, Lin YJ, Tsai SJ. Suppression of annexin A2 by prostaglandin E₂ impairs phagocytic ability of peritoneal macrophages in women with endometriosis. Hum Reprod 2013; 28:1045-53. [PMID: 23340055 DOI: 10.1093/humrep/det003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Is annexin A2 involved in the reduced phagocytic ability of macrophages in endometriosis? SUMMARY ANSWER Data from women with endometriosis and a murine model of the disease show that expression of annexin A2 in peritoneal macrophages is inhibited by prostaglandin E2 (PGE2) and this impairs the phagocytic ability of macrophages. WHAT IS ALREADY KNOWN Endometriosis is a chronic inflammatory disease that recruits many immune cells, especially macrophages, to the peritoneal cavity. The phagocytic ability of peritoneal macrophages isolated from women with endometriosis is reduced. STUDY DESIGN, SIZE, DURATION A laboratory study. Thirty-five patients (20 with and 15 without endometriosis) of reproductive age with normal menstrual cycles were recruited. PARTICIPANTS/MATERIALS, SETTING, METHODS Peritoneal macrophages isolated from women with or without endometriosis were cultured and treated with vehicle, PGE2 and different EP receptor agonists, and the expression of annexin A2 was quantified by RT-PCR and western blotting. Annexin A2 was knocked down (by small interfering RNA) in normal macrophages or overexpressed (by treatment with recombinant protein) in endometriotic macrophages and their phagocytic ability was measured by flow cytometry. Peritoneal macrophages were isolated from a mouse model of endometriosis and treated with PGE2 or cyclo-oxygenase (COX) inhibitors, and annexin A2 mRNA was quantified. MAIN RESULTS AND THE ROLE OF CHANCE Levels of annexin A2 were markedly reduced in peritoneal macrophages from women with endometriosis versus controls (mRNA: P < 0.01). The level of annexin A2 mRNA in the macrophages was reduced by PGE2 (P < 0.01/P < 0.05 in women without/with endometriosis versus control) via the EP2/EP4 receptor-dependent signaling pathway. Treatment with PGE2 or knockdown of annexin A2 inhibited the phagocytic ability of macrophages (P < 0.05 versus control), while treatment with annexin A2 recombinant protein enhanced phagocytosis. Autologous transplantation animal studies further confirmed that levels of annexin A2 in peritoneal macrophages were markedly reduced in mice treated with PGE2 (P < 0.01 versus control). In contrast, treatment with COX inhibitors to inhibit PGE2 production enhanced annexin A2 expression in peritoneal macrophages (P < 0.05 versus control). LIMITATIONS, REASONS FOR CAUTION We have provided no direct demonstration that phagocytic activity is indeed decreased in peritoneal cells from patients with endometriosis or that their endometriotic fluid contains increased amounts of PGE2 when compared with control subjects. WIDER IMPLICATIONS OF THE FINDINGS Inhibiting PGE2 signaling, in order to restore or enhance the phagocytic capability of macrophages, may represent a new direction of thinking in developing novel strategies against endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from National Science Council of Taiwan, Republic of China (NSC97-2314-B-006-020-MY3) to M.-H.W. and (NSC98-2320-B-006-026-MY3) to S.-J.T., and grants from the Chang Gung Memorial Hospital, Taiwan, Republic of China (CMRPG891432 and CMRPG8A0531) to P.-C.C. None of the authors have any conflicts of interest.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
23
|
Lin SC, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrinol Metab 2012; 97:E1515-23. [PMID: 22648654 DOI: 10.1210/jc.2012-1450] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Aberrant activation of MAPK has been implicated to play important roles in pathological processes of endometriosis. However, how MAPK are constitutively activated in endometriotic tissues remains largely unknown. microRNA are small noncoding RNA that regulate the stability or translational efficiency of target mRNA by interacting with the 3' untranslated region. Thus, miRNA are thought to be modulators of the transcriptional response, fine-tuning gene expression. OBJECTIVE The aim of this study was to evaluate the functional roles of microRNA-20a (miR20a) in MAPK activation and the pathogenesis of endometriosis. DESIGN miR20a expression was analyzed in nonpaired (endometrium = 17; endometriosis = 37) and paired (n = 12) endometriotic tissues by quantitative RT-PCR. Overexpression of miR20a in eutopic endometrial stromal cells or inhibition of miR20a in ectopic endometriotic stromal cells was used to evaluate its impact on ERK phosphorylation and subsequently angiogenesis- and proliferation-related gene expression. RESULTS Levels of miR20a were up-regulated in endometriotic stromal cells. Elevation of miR20a was up-regulated by hypoxia inducible factor-1α. The up-regulation of miR20a causes the down-regulation of dual-specificity phosphatase-2, which leads to prolonged ERK phosphorylation and an increase in the expression of several angiogenic genes. Furthermore, the up-regulation of miR20a enhances the prostaglandin E(2)-induced expression of fibroblast growth factor-9, a potent mitogen that stimulates both endothelial and endometrial cell proliferation. CONCLUSION Our findings provide the novel mechanism that not only functionally links together hypoxic stress, miR20a expression, aberrant ERK phosphorylation, and angiogenesis but also demonstrates that miR20a is an important modulator in the development of endometriosis.
Collapse
Affiliation(s)
- Shih-Chieh Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Su WH, Chuang PC, Huang EY, Yang KD. Radiation-induced increase in cell migration and metastatic potential of cervical cancer cells operates via the K-Ras pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:862-71. [PMID: 22138581 DOI: 10.1016/j.ajpath.2011.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 09/22/2011] [Accepted: 10/25/2011] [Indexed: 10/14/2022]
Abstract
Radiotherapy is a well established treatment for cervical cancer, the second most common cancer in women worldwide. However, metastasis often circumvents the efficacy of radiotherapy. This study was conducted to elucidate the molecular mechanism of radioresistance-associated metastatic potential of cervical cancer cells. We established three radioresistant cervical cancer cell lines by exposure of cells to a sublethal dose of radiation and screened for lines that exhibited an increased migration phenotype for at least 6 months before undertaking mechanistic studies. Radiation-associated metastatic potential was evaluated using a wound-healing assay, time-lapse recording, and cell locomotion into the lungs of BALB/c nude mice. The radioresistant C33A and CaSki cell lines, but not the radioresistant HeLa cell line, exhibited significantly increased cell migration and wound healing than did wild-type cells. Furthermore, K-Ras played a prometastatic role via the activation of c-Raf/p38, whereas interference of those mediators via either RNA interference-mediated knockdown or the use of chemical inhibitors substantially reversed the radioresistance-associated increase in cell migration. Clinical examination further showed the relative up-regulation of the K-Ras/c-Raf/p38 pathway in locally recurring tumors and distant metastases compared with in the primary cervical tumor. These findings demonstrate that a sublethal dose of radiation can enhance the metastatic potential of human cervical cancer cells via K-Ras/c-Raf/p38 signaling, highlighting the potential development of specific inhibitors for reducing metastatic potential during radiotherapy.
Collapse
Affiliation(s)
- Wen-Hong Su
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
25
|
Wu MH, Lin SC, Hsiao KY, Tsai SJ. Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol 2011; 225:390-400. [DOI: 10.1002/path.2963] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 01/24/2023]
|
26
|
Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1405-14. [PMID: 21763680 DOI: 10.1016/j.ajpath.2011.05.050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 01/21/2023]
Abstract
The switch of cellular metabolism from mitochondrial respiration to glycolysis is the hallmark of cancer cells and is associated with tumor malignancy. Pyruvate dehydrogenase kinase-1 (PDK1) and PDK3 participate in the metabolic switch of cancer cells; however, the medical significance of PDK1 and PDK3 in cancer progression is not known. Here, we assessed the expression profiles of PDK1 and PDK3 in colorectal cancer. Western blot analysis (n = 74) demonstrated that PDK3 was markedly increased in colon cancer compared to that in adjacent normal tissues, whereas PDK1 was decreased in cancer cells. In addition, PDK3 expression was positively correlated with that of hypoxia inducible factor-1α (HIF-1α) in cancer cells. Further analysis using immunohistochemical staining revealed that PDK3 levels were positively associated with severity of cancer and negatively associated with disease-free survival. In vitro studies using several colon cancer cell lines showed that PDK3 expression was controlled by HIF-1α and contributed to hypoxia-induced increased drug resistance, perhaps explaining why patients with PDK3 overexpression have a greater incidence of treatment failure. Taken together, our findings suggest that PDK3 plays an important role in the metabolic switch and drug resistance of colon cancer and is potentially a novel target for cancer therapy.
Collapse
|
27
|
Gau BH, Chen TM, Shih YHJ, Sun HS. FUBP3 interacts with FGF9 3' microsatellite and positively regulates FGF9 translation. Nucleic Acids Res 2011; 39:3582-93. [PMID: 21252297 PMCID: PMC3089454 DOI: 10.1093/nar/gkq1295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A TG microsatellite in the 3'-untranslated region (UTR) of FGF9 mRNA has previously been shown to modulate FGF9 expression. In the present study, we investigate the possible interacting protein that binds to FGF9 3'-UTR UG-repeat and study the mechanism underlying this protein-RNA interaction. We first applied RNA pull-down assays and LC-MS analysis to identify proteins associated with this repetitive sequence. Among the identified proteins, FUBP3 specifically bound to the synthetic (UG)(15) oligoribonucleotide as shown by supershift in RNA-EMSA experiments. The endogenous FGF9 protein was upregulated in response to transient overexpression and downregulated after knockdown of FUBP3 in HEK293 cells. As the relative levels of FGF9 mRNA were similar in these two conditions, and the depletion of FUBP3 had no effect on the turn-over rate of FGF9 mRNA, these data suggested that FUBP3 regulates FGF9 expression at the post-transcriptional level. Further examination using ribosome complex pull-down assay showed overexpression of FUBP3 promotes FGF9 expression. In contrast, polyribosome-associated FGF9 mRNA decreased significantly in FUBP3-knockdown HEK293 cells. Finally, reporter assay suggested a synergistic effect of the (UG)-motif with FUBP3 to fine-tune the expression of FGF9. Altogether, results from this study showed the novel RNA-binding property of FUBP3 and the interaction between FUBP3 and FGF9 3'-UTR UG-repeat promoting FGF9 mRNA translation.
Collapse
Affiliation(s)
- Bing-Huang Gau
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
28
|
NFAT and CREB regulate Kaposi's sarcoma-associated herpesvirus-induced cyclooxygenase 2 (COX-2). J Virol 2010; 84:12733-53. [PMID: 20943963 DOI: 10.1128/jvi.01065-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
COX-2 has been implicated in Kaposi's sarcoma-associated herpesvirus (KSHV) latency and pathogenesis (A. George Paul, N. Sharma-Walia, N. Kerur, C. White, and B. Chandran, Cancer Res. 70:3697-3708, 2010; P. P. Naranatt, H. H. Krishnan, S. R. Svojanovsky, C. Bloomer, S. Mathur, and B. Chandran, Cancer Res. 64:72-84, 2004; N. Sharma-Walia, A. G. Paul, V. Bottero, S. Sadagopan, M. V. Veettil, N. Kerur, and B. Chandran, PLoS Pathog. 6:e1000777, 2010; N. Sharma-Walia, H. Raghu, S. Sadagopan, R. Sivakumar, M. V. Veettil, P. P. Naranatt, M. M. Smith, and B. Chandran, J. Virol. 80:6534-6552, 2006). However, the precise regulatory mechanisms involved in COX-2 induction during KSHV infection have never been explored. Here, we identified cis-acting elements involved in the transcriptional regulation of COX-2 upon KSHV de novo infection. Promoter analysis using human COX-2 promoter deletion and mutation reporter constructs revealed that nuclear factor of activated T cells (NFAT) and the cyclic AMP (cAMP) response element (CRE) modulate KSHV-mediated transcriptional regulation of COX-2. Along with multiple KSHV-induced signaling pathways, infection-induced prostaglandin E(2) (PGE(2)) also augmented COX-2 transcription. Infection of endothelial cells markedly induced COX-2 expression via a cyclosporine A-sensitive, calcineurin/NFAT-dependent pathway. KSHV infection increased intracellular cAMP levels and activated protein kinase A (PKA), which phosphorylated the CRE-binding protein (CREB) at serine 133, which probably led to interaction with CRE in the COX-2 promoter, thereby enhancing COX-2 transcription. PKA selective inhibitor H-89 pretreatment strongly inhibited CREB serine 133, indicating the involvement of a cAMP-PKA-CREB-CRE loop in COX-2 transcriptional regulation. In contrast to phosphatidylinositol 3-kinase and protein kinase C, inhibition of FAK and Src effectively reduced KSHV infection-induced COX-2 transcription and protein levels. Collectively, our study indicates that mediation of COX-2 transcription upon KSHV infection is a paradigm of a complex regulatory milieu involving the interplay of multiple signal cascades and transcription factors. Intervention at each step of COX-2/PGE(2) induction can be used as a potential therapeutic target to treat KSHV-associated neoplasm and control inflammatory sequels of KSHV infection.
Collapse
|
29
|
McCormick C, Jones RL, Kennedy S, Wadsworth RM. Activation of prostanoid EP receptors by prostacyclin analogues in rabbit iliac artery: Implications for anti-restenotic potential. Eur J Pharmacol 2010; 641:160-7. [DOI: 10.1016/j.ejphar.2010.04.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/31/2010] [Accepted: 04/23/2010] [Indexed: 12/21/2022]
|
30
|
Chen TM, Hsu CH, Tsai SJ, Sun HS. AUF1 p42 isoform selectively controls both steady-state and PGE2-induced FGF9 mRNA decay. Nucleic Acids Res 2010; 38:8061-71. [PMID: 20716519 PMCID: PMC3001084 DOI: 10.1093/nar/gkq717] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factor 9 (FGF9) is an autocrine/paracrine growth factor that plays vital roles in many physiologic processes including embryonic development. Aberrant expression of FGF9 causes human diseases and thus it highlights the importance of controlling FGF9 expression; however, the mechanism responsible for regulation of FGF9 expression is largely unknown. Here, we show the crucial role of an AU-rich element (ARE) in FGF9 3′-untranslated region (UTR) on controlling FGF9 expression. Our data demonstrated that AUF1 binds to this ARE to regulate FGF9 mRNA stability. Overexpression of each isoform of AUF1 (p37, p40, p42 and p45) showed that only the p42 isoform reduced the steady-state FGF9 mRNA. Also, knockdown of p42AUF1 prolonged the half-life of FGF9 mRNA. The induction of FGF9 mRNA in prostaglandin (PG) E2-treated human endometrial stromal cells was accompanied with declined cytoplasmic AUF1. Nevertheless, ablation of AUF1 led to sustained elevation of FGF9 expression in these cells. Our study demonstrated that p42AUF1 regulates both steady-state and PGE2-induced FGF9 mRNA stability through ARE-mediated mRNA degradation. Since almost half of the FGF family members are ARE-containing genes, our findings also suggest that ARE-mediated mRNA decay is a common pathway to control FGFs expression, and it represents a novel RNA regulon to coordinate FGFs homeostasis in various physiological conditions.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
31
|
Merkl M, Ulbrich SE, Otzdorff C, Herbach N, Wanke R, Wolf E, Handler J, Bauersachs S. Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol Reprod 2010; 83:874-86. [PMID: 20631402 DOI: 10.1095/biolreprod.110.085233] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Establishment and maintenance of pregnancy in equids is only partially understood. To provide new insights into early events of this process, we performed a systematic analysis of transcriptome changes in the endometrium at Days 8 and 12 of pregnancy. Endometrial biopsy samples from pregnant and nonpregnant stages were taken from the same mares. Composition of the collected biopsy samples was analyzed using quantitative stereological techniques to determine proportions of surface and glandular epithelium and blood vessels. Microarray analysis did not reveal detectable changes in gene expression at Day 8, whereas at Day 12 of pregnancy 374 differentially expressed genes were identified, 332 with higher and 42 with lower transcript levels in pregnant endometrium. Expression of selected genes was validated by quantitative real-time RT-PCR. Gene set enrichment analysis, functional annotation clustering, and cocitation analysis were performed to characterize the genes differentially expressed in Day 12 pregnant endometrium. Many known estrogen-induced genes and genes involved in regulation of estrogen signaling were found, but also genes known to be regulated by progesterone and prostaglandin E2. Additionally, differential expression of a number of genes related to angiogenesis and vascular remodeling suggests an important role of this process. Furthermore, genes that probably have conserved functions across species, such as CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, and TNFSF10, were identified. This study revealed the potential target genes and pathways of conceptus-derived estrogens, progesterone, and prostaglandin E2 in the equine endometrium probably involved in the early events of establishment and maintenance of pregnancy in the mare.
Collapse
Affiliation(s)
- M Merkl
- Clinic for Horses, Center for Clinical Veterinary Medicine, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lawlor G, Doran PP, MacMathuna P, Murray DW. MYEOV (myeloma overexpressed gene) drives colon cancer cell migration and is regulated by PGE2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:81. [PMID: 20569498 PMCID: PMC2904283 DOI: 10.1186/1756-9966-29-81] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/22/2010] [Indexed: 11/10/2022]
Abstract
Introduction We have previously reported that Myeov (MYEloma OVerexpressed gene) expression is enhanced in colorectal cancer (CRC) and that it promotes CRC cell proliferation and invasion. The role of Myeov in CRC migration is unclear. ProstaglandinE2 (PGE 2) is a known factor in promoting CRC carcinogenesis. The role of PGE 2 in modulating Myeov expression has also not been defined. Aim To assess the role of Myeov expression in CRC cell migration and to evaluate the role of PGE 2 in Myeov bioactivity. Methods siRNA mediated Myeov knockdown was achieved in T84 CRC cells. Knockdown was assessed using quantitative real time PCR. The effect of knockdown on CRC cell migration was assessed using a scratch wound healing assay. Separately, T84 cells were treated with PGE 2 (0.00025 μ M, 0.1 μ M and 1 μ M) from 30 min to 3 hours and the effect on Myeov gene expression was assessed using real time PCR. Results Myeov knockdown resulted in a significant reduction in CRC cell migration, observable as early as 12 hours (P < 0.05) with a 39% reduction compared to control at 36 hours (p < 0.01). Myeov expression was enhanced after treatment with PGE 2, with the greatest effect seen at 60 mins for all 3 PGE 2 doses. This response was dose dependent with a 290%, 550% & 1,000% increase in Myeov expression for 0.00025 μ M, 0.1 μ M and 1 μ M PGE 2 respectively. Conclusion In addition to promoting CRC proliferation and invasion, our findings indicate that Myeov stimulates CRC cell migration, and its expression may be PGE 2 dependant.
Collapse
Affiliation(s)
- Garrett Lawlor
- Gastrointestinal Unit, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | | | | | | |
Collapse
|
33
|
Sharma-Walia N, Paul AG, Bottero V, Sadagopan S, Veettil MV, Kerur N, Chandran B. Kaposi's sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog 2010; 6:e1000777. [PMID: 20169190 PMCID: PMC2820536 DOI: 10.1371/journal.ppat.1000777] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 01/19/2010] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS. Kaposi's sarcoma associated herpes virus (KSHV), with a 160 kb DNA genome, has evolved with two distinct life cycle phases, namely latency and lytic replication. KS, a complex angioproliferative disease, is regulated by a balance between pro-angiogenic and anti-angiogenic factors. In our previous study, we showed that KSHV modulates host factors COX-2/PGE2 for its own advantage to promote its latent (persistent) infection. The premise that COX-2 is involved in growth and progression of several types of solid cancers and inflammation associated diseases has been well documented but has never been studied in KS. Here, utilizing COX-2 inhibition strategies, including chemical inhibition and a gene silencing approach, we systematically identified the potential role of KSHV induced COX-2/PGE2 in viral pathogenesis related events such as secretion of inflammatory and angiogenic cytokines, MMPs and cell adhesion in de novo infected or latently infected endothelial cells. We report that COX-2/PGE2 inhibition down-regulates viral latent gene expression and survival of latently infected endothelial cells. The data emanating from our in vitro studies is valuable, informative and requires further examination using an in vitro angiogenic model and in vivo nude mice model to further validate COX-2 as a novel therapeutic to target latent infection and the associated diseases like KS.
Collapse
Affiliation(s)
- Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America.
| | | | | | | | | | | | | |
Collapse
|
34
|
Chuang PC, Lin YJ, Wu MH, Wing LYC, Shoji Y, Tsai SJ. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:850-60. [PMID: 20035060 PMCID: PMC2808090 DOI: 10.2353/ajpath.2010.090551] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2009] [Indexed: 12/21/2022]
Abstract
Dysfunction in macrophage-mediated phagocytosis of aberrant cells that undergo retrograde transport to the peritoneal cavity is considered an important factor in the development of endometriosis. However, the mechanisms responsible for the loss of function of macrophages remain largely unknown. Herein, we report that prostaglandin (PG) E(2), via the EP2 receptor-dependent signaling pathway, inhibits the expression of CD36 in peritoneal macrophages, resulting in reduced phagocytic ability. PGE(2)-mediated inhibition of macrophage phagocytic capability was restored by ectopic expression of CD36. Treatment with PGE(2) inhibited CD36-dependent phagocytosis of peritoneal macrophages and increased the number and size of endometriotic lesions in mice. In contrast, blockade of PGE(2) production by cyclooxygenase inhibitors enhanced the phagocytic ability of peritoneal macrophages and reduced endometriotic lesion formation. Taken together, our findings reveal a potential mechanism of immune dysfunction during endometriosis development and may contribute to the design of an effective prevention/treatment regimen.
Collapse
MESH Headings
- Animals
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- CD36 Antigens/physiology
- Cells, Cultured
- Dinoprostone/pharmacology
- Dinoprostone/physiology
- Down-Regulation/drug effects
- Endometriosis/chemically induced
- Endometriosis/etiology
- Endometriosis/genetics
- Endometriosis/metabolism
- Female
- Gene Expression Regulation/drug effects
- Humans
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred C57BL
- Peritoneal Diseases/chemically induced
- Peritoneal Diseases/etiology
- Peritoneal Diseases/genetics
- Peritoneal Diseases/metabolism
- Phagocytosis/drug effects
- Phagocytosis/genetics
- Phagocytosis/physiology
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP2 Subtype
- U937 Cells
Collapse
Affiliation(s)
- Pei-Chin Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Wu MH, Huang MF, Chang FM, Tsai SJ. Leptin on peritoneal macrophages of patients with endometriosis. Am J Reprod Immunol 2009; 63:214-21. [PMID: 20047585 DOI: 10.1111/j.1600-0897.2009.00779.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM The expression of cyclooxygenase (COX)-2 is considered as a marker of macrophage activation and has been implicated in the development of endometriosis. Leptin is an immunomodulator, which may also affect the development of endometriosis. However, how leptin contributes to these pathological processes has not been completely understood. The aim of this study was to investigate the effects of leptin on peritoneal macrophages and its relationship with endometriosis. METHODS OF STUDY Peritoneal fluid from 60 women of reproductive age was obtained while they underwent laparoscopy. Forty patients had endometriosis and 20 patients did not have endometriosis. The concentration of leptin in the peritoneal fluid and prostaglandin F(2alpha) levels was measured by ELISA, and the other protein expression using Western blot when peritoneal macrophages were stimulated with leptin. RESULTS Concentration of leptin in peritoneal fluid was increased in patients with endometriosis compared with disease-free normal control. Functional leptin receptor was present in peritoneal macrophages. Treatment of peritoneal macrophages with leptin induced COX-2 expression. Production of prostaglandin F(2alpha) by peritoneal macrophages was increased after leptin stimulation in women with endometriosis. CONCLUSION Elevated concentration of leptin in peritoneal fluid may contribute to the pathological process of endometriosis through activation of peritoneal macrophages.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, Taiwan
| | | | | | | |
Collapse
|
36
|
He Q, Harding P, LaPointe MC. PKA, Rap1, ERK1/2, and p90RSK mediate PGE2 and EP4 signaling in neonatal ventricular myocytes. Am J Physiol Heart Circ Physiol 2009; 298:H136-43. [PMID: 19880670 DOI: 10.1152/ajpheart.00251.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that 1) inhibition of cyclooxygenase-2 and PGE(2) production reduces hypertrophy after myocardial infarction in mice and 2) PGE(2) acting through its EP4 receptor causes hypertrophy of neonatal ventricular myocytes (NVMs) via ERK1/2. It is known that EP4 couples to adenylate cyclase, cAMP, and PKA. The present study was designed to determine interactions between the cAMP-PKA pathway and ERK1/2 and to further characterize events downstream of ERK1/2. We hypothesized that PKA and the small GTPase Rap are upstream of ERK1/2 and that 90-kDa ribosomal S6 kinase (p90RSK) is activated downstream. Treatment of NVMs with PGE(2) activated Rap, and this activation was inhibited in part by an EP4 antagonist and PKA inhibition. Transfection of a dominant negative mutant of Rap reduced PGE(2) activation of ERK1/2. PGE(2) activation of p90RSK was also dependent on EP4, PKA, and Rap. We also tested the involvement of Rap, ERK1/2, and p90RSK in PGE(2) regulation of gene expression. PGE(2) stimulation of brain natriuretic peptide promoter activity was blocked by either ERK1/2 inhibition or a dominant negative mutation of p90RSK. PGE(2) stimulation of c-Fos was dependent on EP4, PKA, ERK1/2, and p90RSK, whereas only the latter two kinases were involved in PGE(2) regulation of early growth response-1. Finally, we tested the involvement of EP4-dependent signaling in the NVM growth response and found that the overexpression of EP4 increased NVM cell size. We conclude that EP4-dependent signaling in NVMs in part involves PKA, Rap, ERK1/2, and p90RSK and results in the increased expression of brain natriuretic peptide and c-Fos.
Collapse
Affiliation(s)
- Quan He
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
37
|
Chen W, Tsai SJ, Wang CA, Tsai JC, Zouboulis C. Human sebocytes express prostaglandin E2 receptors EP2 and EP4 but treatment with prostaglandin E2 does not affect testosterone production. Br J Dermatol 2009; 161:674-7. [DOI: 10.1111/j.1365-2133.2009.09165.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Israel DD, Regan JW. EP(3) prostanoid receptor isoforms utilize distinct mechanisms to regulate ERK 1/2 activation. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:238-45. [PMID: 19416642 DOI: 10.1016/j.bbalip.2009.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 01/06/2009] [Accepted: 01/26/2009] [Indexed: 02/06/2023]
Abstract
Prostaglandin-E(2) (PGE(2)) is a hormone derived from the metabolism of arachidonic acid whose functions include regulation of platelet aggregation, fever and smooth muscle contraction/relaxation. PGE(2) mediates its physiological and pathophysiological effects through its binding to four G-protein coupled receptor subtypes, named EP(1), EP(2), EP(3) and EP(4). The EP(3) prostanoid receptor is unique in that it has multiple isoforms generated by alternative mRNA splicing. These splice variants display differences in tissue expression, constitutive activity and regulation of signaling molecules. To date there are few reports identifying differential activities of EP(3) receptor isoforms and their effects on gene regulation. We generated HEK cell lines expressing the human EP(3-Ia), EP(3-II) or EP(3-III) isoforms. Using immunoblot analysis we found that nM concentrations of PGE(2) strongly stimulated the phosphorylation of ERK 1/2 by the EP(3-II) and EP(3-III) isoforms; whereas, ERK 1/2 phosphorylation by the EP(3-Ia) isoform was minimal and only occurred at muM concentrations of PGE(2). Furthermore, the mechanisms of the PGE(2) mediated phosphorylation of ERK 1/2 by the EP(3-II) and EP(3-III) isoforms were different. Thus, PGE(2) stimulation of ERK 1/2 phosphorylation by the EP(3-III) isoform involves activation of a Galpha(i)/PI3K/PKC/Src and EGFR-dependent pathway; while for the EP(3-II) isoform it involves activation of a Galpha(i)/Src and EGFR-dependent pathway. These differences result in unique differences in the regulation of reporter plasmid activity for the downstream effectors ELK1 and AP-1 by the EP(3-II) and EP(3-III) prostanoid receptor isoforms.
Collapse
Affiliation(s)
- Davelene D Israel
- Department of Pharmacology and Toxicology, The University of Arizona, College of Pharmacy, 1703 E. Mabel St., Tucson, AZ 85721, USA
| | | |
Collapse
|
39
|
Song KS, Choi YH, Kim JM, Lee H, Lee TJ, Yoon JH. Suppression of prostaglandin E2-induced MUC5AC overproduction by RGS4 in the airway. Am J Physiol Lung Cell Mol Physiol 2009; 296:L684-92. [PMID: 19201815 DOI: 10.1152/ajplung.90396.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism by which E-prostanoid (EP) receptor is critically involved in PGE(2)-induced mucin 5AC (MUC5AC) gene expression in the airway has been unclear. Furthermore, there have been little reports regarding the negative regulatory mechanism and/or proteins that affect PGE(2)-induced MUC5AC overproduction. In the present study, we found that PGE(2) induced MUC5AC gene expression in a dose-dependent manner (EC(50): 73.31 +/- 3.13 nM) and that the EP(2/4)-specific agonist, misoprostol, increased MUC5AC mRNA level, whereas the EP(1/3)-specific agonist, sulprostone, had no effect. Interestingly, the cAMP concentration (685.1 +/- 14.9 pM) of the EC(50) value of EP(4)-mediated cAMP production was much higher than that of EP(2) (462.33 +/- 23.79 pM), suggesting that EP(4) has higher sensitivity to PGE(2) compared with EP(2). Moreover, PGE(2)-induced Muc5ac overproduction was much increased in regulator of G protein signaling (Rgs) 4 knockout (KO) mice compared with wild-type mice at both transcriptional and translational levels, and it was dramatically suppressed in Rgs4 KO mice that had been infected with lentivirus expressing RGS4 (lenti::RGS4) compared with lentivirus expressing enhanced green fluorescent protein (lenti::eGFP). Finally, we demonstrate that PGE(2) can induce MUC5AC overproduction via the EP(4) receptor and that RGS4 may have suppressive effects in controlling MUC5AC overexpression in the airway. These findings may provide a molecular paradigm for the development of novel drugs for respiratory diseases.
Collapse
|
40
|
Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 2008; 283:28106-14. [PMID: 18718909 DOI: 10.1074/jbc.m803508200] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The switch of cellular metabolism from mitochondrial respiration to glycolysis is the hallmark of cancer cells and associated with tumor malignancy. However, the mechanism of this metabolic switch remains largely unknown. Herein, we reported that hypoxia-inducible factor-1 (HIF-1) induced pyruvate dehydrogenase kinase-3 (PDK3) expression leading to inhibition of mitochondrial respiration. Promoter activity assay, small interference RNA knockdown assay, and chromatin immunoprecipitation assay demonstrated that hypoxia-induced PDK3 gene activity was regulated by HIF-1 at the transcriptional level. Forced expression of PDK3 in cancer cells resulted in increased lactic acid accumulation and drugs resistance, whereas knocking down PDK3 inhibited hypoxia-induced cytoplasmic glycolysis and cell survival. These data demonstrated that increased PDK3 expression due to elevated HIF-1alpha in cancer cells may play critical roles in metabolic switch during cancer progression and chemoresistance in cancer therapy.
Collapse
Affiliation(s)
- Chun-Wun Lu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|