1
|
Liang Y, Chen P, Wang S, Cai L, Zhu F, Jiang Y, Li L, Zhu L, Heng Y, Zhang W, Pan Y, Wei W, Jia L. SCF FBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells. Autophagy 2024; 20:1984-1999. [PMID: 38726865 PMCID: PMC11346525 DOI: 10.1080/15548627.2024.2353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Zhu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen J, Zhu X, Wang Z, Rützler M, Lu Q, Xu H, Andersson R, Dai Y, Shen Z, Calamita G, Xie S, Bai Y, Chen B. Inhibition of aquaporin-9 ameliorates severe acute pancreatitis and associated lung injury by NLRP3 and Nrf2/HO-1 pathways. Int Immunopharmacol 2024; 137:112450. [PMID: 38906007 DOI: 10.1016/j.intimp.2024.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Inflammation, apoptosis and oxidative stress play crucial roles in the deterioration of severe acute pancreatitis-associated acute respiratory distress syndrome (SAP-ARDS). Unfortunately, despite a high mortality rate of 45 %[1], there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies[2]. This study investigated the potential therapeutic role and mechanisms of AQP9 inhibitor RG100204 in two animal models of severe acute pancreatitis, inducing acute respiratory distress syndrome: 1) a sodium-taurocholate induced rat model, and 2) and Cerulein and lipopolysaccharide induced mouse model. RG100204 treatment led to a profound reduction in inflammatory cytokine expression in pancreatic, and lung tissue, in both models. In addition, infiltration of CD68 + and CD11b + cells into these tissues were reduced in RG100204 treated SAP animals, and edema and SAP associated tissue damage were improved. Moreover, we demonstrate that RG100204 reduced apoptosis in the lungs of rat SAP animals, and reduces NF-κB signaling, NLRP3, expression, while profoundly increasing the Nrf2-dependent anti oxidative stress response. We conclude that AQP9 inhibition is a promising strategy for the treatment of pancreatitis and its systemic complications, such as ARDS.
Collapse
Affiliation(s)
- Jiawei Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiandong Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Ziqiong Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Michael Rützler
- ApoGlyx AB, Lund, Sweden, & Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Qiaohong Lu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongjie Xu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yinwei Dai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Zouwen Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Shangjing Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Bicheng Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
da Silva IV, Mlinarić M, Lourenço AR, Pérez-Garcia O, Čipak Gašparović A, Soveral G. Peroxiporins and Oxidative Stress: Promising Targets to Tackle Inflammation and Cancer. Int J Mol Sci 2024; 25:8381. [PMID: 39125952 PMCID: PMC11313477 DOI: 10.3390/ijms25158381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Rita Lourenço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Olivia Pérez-Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
4
|
Charlestin V, Tan E, Arias-Matus CE, Wu J, Miranda-Vergara MC, Lee M, Wang M, Nannapaneni DT, Tennakoon P, Blagg BSJ, Ashfeld BL, Kaliney W, Li J, Littlepage LE. Evaluation of the Mammalian Aquaporin Inhibitors Auphen and Z433927330 in Treating Breast Cancer. Cancers (Basel) 2024; 16:2714. [PMID: 39123442 PMCID: PMC11311482 DOI: 10.3390/cancers16152714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
AQPs contribute to breast cancer progression and metastasis. We previously found that genetic inhibition of Aqp7 reduces primary tumor burden and metastasis in breast cancer. In this study, we utilized two AQP inhibitors, Auphen and Z433927330, to evaluate the efficacy of therapeutic inhibition of AQPs in breast cancer treatment. The inhibitors were evaluated in breast cancer for both cytotoxicity and metabolic stability assays across both murine and human breast cancer cell lines. Both AQP inhibitors also affected the expression of other AQP transcripts and proteins, which demonstrates compensatory regulation between AQP family members. As a single agent, Auphen treatment in vivo extended overall survival but did not impact primary or metastatic tumor burden. However, Auphen treatment made cells more responsive to chemotherapy (doxorubicin) or endocrine treatment (tamoxifen, fulvestrant). In fact, treatment with Tamoxifen reduced overall AQP7 protein expression. RNA-seq of breast cancer cells treated with Auphen identified mitochondrial metabolism genes as impacted by Auphen and may contribute to reducing mammary tumor progression, lung metastasis, and increased therapeutic efficacy of endocrine therapy in breast cancer. Interestingly, we found that Auphen and tamoxifen cooperate to reduce breast cancer cell viability, which suggests that Auphen treatment makes the cells more susceptible to Tamoxifen. Together, this study highlights AQPs as therapeutic vulnerabilities of breast cancer metastasis that are promising and should be exploited. However, the pharmacologic results suggest additional chemical refinements and optimization of AQP inhibition are needed to make these AQP inhibitors appropriate to use for therapeutic benefit in overcoming endocrine therapy resistance.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Elijah Tan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Carlos Eduardo Arias-Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Junmin Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Maria Cristina Miranda-Vergara
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
- Biotechnology Department, Life and Health Sciences Deanship, Universidad Popular Autonoma del Estado de Puebla (UPAEP University), 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
| | - Man Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Dharma T. Nannapaneni
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Parinda Tennakoon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - William Kaliney
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| | - Jun Li
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (V.C.); (P.T.); (B.S.J.B.); (B.L.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA (J.L.)
| |
Collapse
|
5
|
Zhou H, Wang W, Xu H, Liang Y, Ding J, Lv M, Ren B, Peng H, Fu YX, Zhu M. Metabolic reprograming mediated by tumor cell-intrinsic type I IFN signaling is required for CD47-SIRPα blockade efficacy. Nat Commun 2024; 15:5759. [PMID: 38982116 PMCID: PMC11233683 DOI: 10.1038/s41467-024-50136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Type I interferons have been well recognized for their roles in various types of immune cells during tumor immunotherapy. However, their direct effects on tumor cells are less understood. Oxidative phosphorylation is typically latent in tumor cells. Whether oxidative phosphorylation can be targeted for immunotherapy remains unclear. Here, we find that tumor cell responsiveness to type I, but not type II interferons, is essential for CD47-SIRPα blockade immunotherapy in female mice. Mechanistically, type I interferons directly reprogram tumor cell metabolism by activating oxidative phosphorylation for ATP production in an ISG15-dependent manner. ATP extracellular release is also promoted by type I interferons due to enhanced secretory autophagy. Functionally, tumor cells with genetic deficiency in oxidative phosphorylation or autophagy are resistant to CD47-SIRPα blockade. ATP released upon CD47-SIRPα blockade is required for antitumor T cell response induction via P2X7 receptor-mediated dendritic cell activation. Based on this mechanism, combinations with inhibitors of ATP-degrading ectoenzymes, CD39 and CD73, are designed and show synergistic antitumor effects with CD47-SIRPα blockade. Together, these data reveal an important role of type I interferons on tumor cell metabolic reprograming for tumor immunotherapy and provide rational strategies harnessing this mechanism for enhanced efficacy of CD47-SIRPα blockade.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Hairong Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Jiyu Ding
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Mengjie Lv
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Boyang Ren
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hua Peng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| | - Mingzhao Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
da Silva IV, Pimpão C, Paccetti-Alves I, Thomas SR, Barateiro A, Casini A, Soveral G. Blockage of aquaporin-3 peroxiporin activity by organogold compounds affects melanoma cell adhesion, proliferation and migration. J Physiol 2024; 602:3111-3129. [PMID: 38323926 DOI: 10.1113/jp284155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Aquaporin-3 (AQP3) is a membrane channel with dual aquaglyceroporin/peroxiporin activity, facilitating the diffusion of water, glycerol and H2O2 across cell membranes. AQP3 shows aberrant expression in melanoma and its role in cell adhesion, migration and proliferation is well described. Gold compounds were shown to modulate AQP3 activity with reduced associated toxicity, making them promising molecules for cancer therapy. In this study, we validated the phenotype resulting from AQP3-silencing of two melanoma cell lines, MNT-1 and A375, which resulted in decreased H2O2 permeability. Subsequently, the AQP3 inhibitory effect of a new series of organogold compounds derived from Auphen, a potent AQP3 inhibitor, was first evaluated in red blood cells (RBCs) that highly express AQP3, and then in HEK-293T cells with AQP3 overexpression to ascertain the compounds' specificity. The first screening in RBCs unveiled two organogold compounds as promising blockers of AQP3 permeability. Moderate reduction of glycerol permeability but drastic inhibition of H2O2 permeability was detected for some of the gold derivatives in both AQP3-overexpressing cells and human melanoma cell lines. Additionally, all compounds were effective in impairing cell adhesion, proliferation and migration, although in a cell type-dependent manner. In conclusion, our data show that AQP3 peroxiporin activity is crucial for melanoma progression and highlight organogold compounds as promising AQP3 inhibitors with implications in melanoma cell adhesion, proliferation and migration, unveiling their potential as anticancer drugs against AQP3-overexpressing tumours. KEY POINTS: AQP3 affects cellular redox balance. Gold compounds inhibit AQP3 permeability in melanoma cells. AQP3 is involved in cell adhesion, proliferation and migration of melanoma. Blockage of AQP3 peroxiporin activity impairs melanoma cell migration. Gold compounds are potential anticancer drug leads for AQP3-overexpressing cancers.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sophie R Thomas
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Mlinarić M, Lučić I, Tomljanović M, Tartaro Bujak I, Milković L, Čipak Gašparović A. AQP3 and AQP5 Modulation in Response to Prolonged Oxidative Stress in Breast Cancer Cell Lines. Antioxidants (Basel) 2024; 13:626. [PMID: 38929065 PMCID: PMC11200458 DOI: 10.3390/antiox13060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaporins are membrane pores regulating the transport of water, glycerol, and other small molecules across membranes. Among 13 human aquaporins, six have been shown to transport H2O2 and are therefore called peroxiporins. Peroxiporins are implicated in cancer development and progression, partly due to their involvement in H2O2 transport. Oxidative stress is linked to breast cancer development but is also a mechanism of action for conventional chemotherapy. The aim of this study is to investigate the effects of prolonged oxidative stress on Aquaporin 3 (AQP3), Aquaporin 5 (AQP5), and signaling pathways in breast cancer cell lines of different malignancies alongside a non-tumorigenic breast cell line. The prolonged oxidative stress caused responses in viability only in the cancer cell lines, while it affected cell migration in the MCF7 cell line. Changes in the localization of NRF2, a transcription factor involved in oxidative stress response, were observed only in the cancer cell lines, and no effects were recorded on its downstream target proteins. Moreover, the prolonged oxidative stress caused changes in AQP3 and AQP5 expression only in the cancer cell lines, in contrast to their non-malignant counterparts. These results suggest peroxiporins are potential therapeutic targets in cancer treatment. However, further research is needed to elucidate their role in the modulation of therapy response, highlighting the importance of research on this topic.
Collapse
Affiliation(s)
- Monika Mlinarić
- Laboratory for Membrane Transport and Signaling, Division of Molecular Medicine, Ruđer Bošković Institute, HR10000 Zagreb, Croatia; (M.M.); (I.L.); (M.T.); (L.M.)
| | - Ivan Lučić
- Laboratory for Membrane Transport and Signaling, Division of Molecular Medicine, Ruđer Bošković Institute, HR10000 Zagreb, Croatia; (M.M.); (I.L.); (M.T.); (L.M.)
| | - Marko Tomljanović
- Laboratory for Membrane Transport and Signaling, Division of Molecular Medicine, Ruđer Bošković Institute, HR10000 Zagreb, Croatia; (M.M.); (I.L.); (M.T.); (L.M.)
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, HR10000 Zagreb, Croatia;
| | - Lidija Milković
- Laboratory for Membrane Transport and Signaling, Division of Molecular Medicine, Ruđer Bošković Institute, HR10000 Zagreb, Croatia; (M.M.); (I.L.); (M.T.); (L.M.)
| | - Ana Čipak Gašparović
- Laboratory for Membrane Transport and Signaling, Division of Molecular Medicine, Ruđer Bošković Institute, HR10000 Zagreb, Croatia; (M.M.); (I.L.); (M.T.); (L.M.)
| |
Collapse
|
8
|
Li K, Deng Z, Lei C, Ding X, Li J, Wang C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024; 13:441. [PMID: 38474405 DOI: 10.3390/cells13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the endogenous antioxidant defense system. Its involvement in cell senescence, apoptosis, and series diseases has been demonstrated. Advances in carcinogenic research have revealed oxidative stress as a pivotal pathophysiological pathway in tumorigenesis and to be involved in lung cancer, glioma, hepatocellular carcinoma, leukemia, and so on. This review combs the effects of oxidative stress on tumorigenesis on each phase and cell fate determination, and three features are discussed. Oxidative stress takes part in the processes ranging from tumorigenesis to tumor death via series pathways and processes like mitochondrial stress, endoplasmic reticulum stress, and ferroptosis. It can affect cell fate by engaging in the complex relationships between senescence, death, and cancer. The influence of oxidative stress on tumorigenesis and progression is a multi-stage interlaced process that includes two aspects of promotion and inhibition, with mitochondria as the core of regulation. A deeper and more comprehensive understanding of the effects of oxidative stress on tumorigenesis is conducive to exploring more tumor therapies.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Zhangyuzi Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Chunran Lei
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Xiaoqing Ding
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Jing Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
9
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
10
|
Wang Q, Lin B, Wei H, Wang X, Nie X, Shi Y. AQP3 Promotes the Invasion and Metastasis in Cervical Cancer by Regulating NOX4-derived H 2O 2 Activation of Syk/PI3K/Akt Signaling Axis. J Cancer 2024; 15:1124-1137. [PMID: 38230207 PMCID: PMC10788729 DOI: 10.7150/jca.91360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Unrestrained chronic inflammation leads to the abnormal activity of NOX4 and the subsequent production of excessive hydrogen peroxide (H2O2). Excessive H2O2 signaling triggered by prolonged inflammation is thought to be one of the important reasons for the progression of some types of cancer including cervical cancer. Aquaporin 3 (AQP3) is a member of the water channel protein family, and it remains unknown whether AQP3 can regulate the transmembrane transport of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4)-derived H2O2 induced by the stimulation of inflammatory factors to facilitate the malignant progression in cervical cancer. In this study, cervical cancer HeLa cell line was respectively treated with diphenyleneiodonium (DPI), N-Acetylcysteine (NAC) or lentivirus-shRNA- AQP3. Plate cloning, cell migration or transwell invasion assays, etc. were performed to detect the invasive and migration ability of the cells. Western blot and CO-IP were used to analyze the mechanism of AQP3 regulating H2O2 conduction. Finally, in vivo assays were performed for validation in nude mice. AQP3 Knockdown, DPI or NAC treatments all reduced intracellular H2O2 influx, and the activation of Syk/PI3K/Akt signal axis was inhibited, the migration and invasive ability of the cells was attenuated. In vivo assays confirmed that the excessive H2O2 transport through AQP3 enhanced the infiltration and metastasis of cervical cancer. These results suggest that AQP3 activates H2O2/Syk/PI3K/Akt signaling axis through regulating NOX4-derived H2O2 transport to contribute to the progression of cervical cancer, and AQP3 may be a potential target for the clinical treatment of advanced cervical cancer.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Bingjie Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Hongjian Wei
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Xin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| |
Collapse
|
11
|
Pellavio G, Demichelis MP, Sommi P, Anselmi-Tamburini U, Scotti C, Laforenza U. Polyacrylic-Coated Solid Nanoparticles Increase the Aquaporin Permeability to Hydrogen Peroxide. Int J Mol Sci 2023; 25:372. [PMID: 38203543 PMCID: PMC10778986 DOI: 10.3390/ijms25010372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Aquaporins (AQPs) allow the diffusion of hydrogen peroxide (H2O2) and act as ROS scavenging systems, which are important for controlling the redox state of cells. Recently, cerium oxide nanoparticles were found to increase the water and H2O2 permeability by modulating AQPs. To further analyze the action of nanoparticles (NPs) on AQP, we examined the effect of the NPs presenting different core compositions (CeO2, Gd2O3, Fe3O4, and TiO2), hydrodynamic sizes, and surface functionalization. The NPs produced an increase in H2O and H2O2 permeability as a general trend. The hydrodynamic sizes of the NPs in the range of 22-100 nm did not produce any significant effect. The chemical nature of the NPs' core did not modify the effect and its intensity. On the other hand, the NPs' functionalized surface plays a major role in influencing both water and H2O2 permeability. The results suggest that NPs can play a significant role in controlling oxidative stress in cells and might represent an innovative approach in the treatment of a number of pathologies associated with an increased oxidative status.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (P.S.)
| | | | - Patrizia Sommi
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (P.S.)
| | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (P.S.)
- Center for Health Technologies (CHT), University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Milković L, Mlinarić M, Lučić I, Čipak Gašparović A. The Involvement of Peroxiporins and Antioxidant Transcription Factors in Breast Cancer Therapy Resistance. Cancers (Basel) 2023; 15:5747. [PMID: 38136293 PMCID: PMC10741870 DOI: 10.3390/cancers15245747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is still the leading cause of death in women of all ages. The reason for this is therapy resistance, which leads to the progression of the disease and the formation of metastases. Multidrug resistance (MDR) is a multifactorial process that leads to therapy failure. MDR involves multiple processes and many signaling pathways that support each other, making it difficult to overcome once established. Here, we discuss cellular-oxidative-stress-modulating factors focusing on transcription factors NRF2, FOXO family, and peroxiporins, as well as their possible contribution to MDR. This is significant because oxidative stress is a consequence of radiotherapy, chemotherapy, and immunotherapy, and the activation of detoxification pathways could modulate the cellular response to therapy and could support MDR. These proteins are not directly responsible for MDR, but they support the survival of cancer cells under stress conditions.
Collapse
Affiliation(s)
| | | | | | - Ana Čipak Gašparović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.M.); (M.M.); (I.L.)
| |
Collapse
|
13
|
Shareena G, Kumar D. Epigenetics of Epstein Barr virus - A review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166838. [PMID: 37544529 DOI: 10.1016/j.bbadis.2023.166838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Epstein Barr is the first-in-human oncogenic virus, closely related to numerous lymphoproliferative and malignant diseases, including HL, BL, NPC, and GC. EBV establishes life-long persistence infection portraying a biphasic viral life cycle: latent period and lytic replication. B-cells serve as critical regions for EBV latent genes, wherein viral gene expression is suppressed, promoting viral genome maintenance and immune recognition evasion. Upon its lytic reactivation, viral gene expression induces its replication, progeny production, and transmission. Dysregulations of epigenetic regulation in expressions of TSGs lead to carcinogenesis. Several studies reveal that EBV is associated with aberrant viral DNA and host genome methylation patterns, promoting immune monitoring, recognition evasiveness and host cell persistence. Among other epigenetic modifications, DNA methylation suppresses the majority of viral latent gene promoters, sparing a few, and acts as a prerequisite for activating EBV's lytic cycle, giving rise to viral progeny. It affects the host's epigenome via reprogramming cells to oncogenic, long-lasting phenotypes, as evident in several malignancies. At each phase of its life cycle, EBV exploits cellular mechanisms of epigenetic regulation, implying its unique host-pathogen relationship. This review summarized the DNA methylation's regulatory roles on several EBV-related promoter regions, along with the host genome in pathological conditions, highlights viral genes involved in a latent, lytic and latent-lytic phase of EBV infection. Moreover, it provides diagrammatic insights into methylation-based pathways in EBV.
Collapse
Affiliation(s)
- Gadde Shareena
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India; UC Davis Comprehensive Cancer Center, Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Mu K, Kitts DD. Intestinal polyphenol antioxidant activity involves redox signaling mechanisms facilitated by aquaporin activity. Redox Biol 2023; 68:102948. [PMID: 37922763 PMCID: PMC10643476 DOI: 10.1016/j.redox.2023.102948] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Ascertaining whether dietary polyphenols evoke an antioxidant or prooxidant activity, which translates to a functional role required to maintain intestinal cell homeostasis continues to be an active and controversial area of research for food chemists and biochemists alike. We have proposed that the paradoxical function of polyphenols to autoxidize to generate H2O2 is a required first step in the capacity of some plant phenolics to function as intracellular antioxidants. This is based on the fact that cell redox homeostasis is achieved by a balance between H2O2 formation and subsequent outcomes of antioxidant systems function. Maintaining optimal extracellular and intracellular H2O2 concentrations is required for cell survival, since low levels are important to upregulate endogenous antioxidant capacity; whereas, concentrations that go beyond homeostatic control typically result in an inflammatory response, growth arrest, or eventual cell death. Aquaporins (AQPs) are a family of water channel membrane proteins that facilitate cellular transportation of water and other small molecule-derived solutes, such as H2O2, in all organisms. In the intestine, AQPs act as gatekeepers to regulate intracellular uptake of H2O2, generated from extracellular polyphenol autoxidation, thus enabling an intracellular cell signaling responses to mitigate onset of oxidative stress and intestinal inflammation. In this review, we highlight the potential role of AQPs to control important underlying mechanisms that define downstream regulation of intestinal redox homeostasis, specifically. It has been established that polyphenols that undergo oxidation to the quinone form, resulting in subsequent adduction to a thiol group on Keap1-Nrf2 complex, trigger Nrf2 activation and a cascade of indirect intracellular antioxidant effects. Here, we propose a similar mechanism that involves H2O2 generated from specific dietary polyphenols with a predisposition to undergo autoxidation. The ultimate bioactivity is regulated and expressed by AQP membrane function and thus, by extension, represents expression of an intracellular antioxidant chemoprotection mechanism.
Collapse
Affiliation(s)
- Kaiwen Mu
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada
| | - David D Kitts
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
15
|
Tanaka M, Yasui M, Hara-Chikuma M. Aquaporin 3 inhibition suppresses the mitochondrial respiration rate and viability of multiple myeloma cells. Biochem Biophys Res Commun 2023; 676:158-164. [PMID: 37517218 DOI: 10.1016/j.bbrc.2023.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Aquaporin 3 (AQP3) is a member of the aquaporin water channel family expressed by numerous cell types, including some cancer cells. Accumulating evidence suggests that AQP3 inhibition may impede cancer progression, but drugs targeting AQP3 are still in the early pre-clinical stage of development. Here, we examined the effect of AQP3 inhibition on multiple myeloma (MM), an incurable plasma cell malignancy. Four MM cell lines were cultured in the presence of an anti-AQP3 monoclonal antibody (mAb), the AQP3 inhibitor DFP00173, or corresponding controls, and the effects on cell viability, proliferation, apoptosis, and mitochondrial respiration capacity were compared. Both anti-AQP3 mAb and DFP00173 reduced cell growth, mitochondrial respiration rate, and electron transport chain complex I activity. Both agents also potentiated the antiproliferative efficacy of the anticancer drug venetoclax. Administration of the anti-AQP3 mAb to immunodeficient mice inoculated with RPMI8226 or KMS-11 MM cells significantly suppressed tumor growth. These data provide evidence that AQP3 blockade can suppress MM cell growth in vitro and tumor growth in mice. Thus, AQP3 inhibition may be an effective therapeutic strategy for MM.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan; Keio Advanced Institute for Water Biology and Medicine, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan.
| |
Collapse
|
16
|
Chen M, Peng Q, Tan Z, Xu S, Wang Y, Wu A, Xiao W, Wang Q, Xie H, Li J, Shi W, Deng Z. Targeting Aquaporin-3 Attenuates Skin Inflammation in Rosacea. Int J Biol Sci 2023; 19:5160-5173. [PMID: 37928265 PMCID: PMC10620828 DOI: 10.7150/ijbs.86207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Rosacea is a common inflammatory skin disorder mediated by the dysregulation of both keratinocytes and T cells. Here, we report that aquaporin 3 (AQP3), a channel protein that mediates the transport of water/glycerol, was highly expressed in the epidermis and CD4+ T cells of both rosacea patients and experimental mice. Specifically, AQP3 deletion blocked the development of rosacea-like skin inflammation in model mice with LL37-induced rosacea-like disease. We also present mechanistic evidence showing that AQP3 was essential to the activation of NF-κB signaling and subsequent production of disease-characteristic chemokines in keratinocytes. Moreover, we show that AQP3 was upregulated during T cell differentiation and promotes helper T (Th) 17 differentiation possibly via the activation of STAT3 signaling. Our findings reveal that AQP3-mediated activation of NF-κB in keratinocytes and activation of STAT3 in CD4+ T cells acted synergistically and contributed to the inflammation in rosacea.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Aike Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Lopes PA, Fonseca E, da Silva IV, Vigia E, Paulino J, Soveral G. Aquaporins Transcripts with Potential Prognostic Value in Pancreatic Cancer. Genes (Basel) 2023; 14:1694. [PMID: 37761834 PMCID: PMC10530795 DOI: 10.3390/genes14091694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer is anticipated to be the second leading cause of cancer-related death by 2030. Aquaporins (AQPs), a family of water channel proteins, have been linked to carcinogenesis. The aim of this study was to determine AQP gene expression in pancreatic cancer tissues and to validate aquaporins as possible diagnosis and/or prognosis genes. The relative gene expression levels of AQP1, AQP3, AQP5, and AQP9 were analyzed using real-time quantitative PCR (RT-qPCR) in 24 paired pancreatic tumors and adjacent healthy tissues according to variables such as age, gender, and tumor invasiveness and aggressiveness. AQPs transcripts were detected in both healthy and tumor tissues. While AQP1 was downregulated in the tumor samples, AQP3 was particularly overexpressed in low-grade invasive tumors. Interestingly, most of the strong positive Pearson correlation coefficients found between AQPs in healthy tissues were lost when analyzing the tumor tissues, suggesting disruption of the coordinated AQP-gene expression in pancreatic cancer.
Collapse
Affiliation(s)
- Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Elisabete Fonseca
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.F.); (I.V.d.S.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.F.); (I.V.d.S.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Emanuel Vigia
- Hepatobiliopancreatic and Transplantation Center, Hospital de Curry Cabral-CHULC, 1050-099 Lisbon, Portugal;
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Jorge Paulino
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Hospital da Luz, 1500-650 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.F.); (I.V.d.S.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
18
|
Nicosia M, Lee J, Beavers A, Kish D, Farr GW, McGuirk PR, Pelletier MF, Lathia JD, Fairchild RL, Valujskikh A. Water channel aquaporin 4 is required for T cell receptor mediated lymphocyte activation. J Leukoc Biol 2023; 113:544-554. [PMID: 36805947 PMCID: PMC10848298 DOI: 10.1093/jleuko/qiad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins are a family of ubiquitously expressed transmembrane water channels implicated in a broad range of physiological functions. We have previously reported that aquaporin 4 (AQP4) is expressed on T cells and that treatment with a small molecule AQP4 inhibitor significantly delays T cell mediated heart allograft rejection. Using either genetic deletion or small molecule inhibitor, we show that AQP4 supports T cell receptor mediated activation of both mouse and human T cells. Intact AQP4 is required for optimal T cell receptor (TCR)-related signaling events, including nuclear translocation of transcription factors and phosphorylation of proximal TCR signaling molecules. AQP4 deficiency or inhibition impairs actin cytoskeleton rearrangements following TCR crosslinking, causing inferior TCR polarization and a loss of TCR signaling. Our findings reveal a novel function of AQP4 in T lymphocytes and identify AQP4 as a potential therapeutic target for preventing TCR-mediated T cell activation.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Ashley Beavers
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Danielle Kish
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - George W. Farr
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Paul R. McGuirk
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Marc F. Pelletier
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
19
|
Luo Y, Vivaldi Marrero E, Choudhary V, Bollag WB. Phosphatidylglycerol to Treat Chronic Skin Wounds in Diabetes. Pharmaceutics 2023; 15:1497. [PMID: 37242739 PMCID: PMC10222993 DOI: 10.3390/pharmaceutics15051497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review proposes the use of dioleoylphosphatidylglycerol (DOPG) to enhance diabetic wound healing. Initially, the characteristics of diabetic wounds are examined, focusing on the epidermis. Hyperglycemia accompanying diabetes results in enhanced inflammation and oxidative stress in part through the generation of advanced glycation end-products (AGEs), in which glucose is conjugated to macromolecules. These AGEs activate inflammatory pathways; oxidative stress results from increased reactive oxygen species generation by mitochondria rendered dysfunctional by hyperglycemia. These factors work together to reduce the ability of keratinocytes to restore epidermal integrity, contributing to chronic diabetic wounds. DOPG has a pro-proliferative action on keratinocytes (through an unclear mechanism) and exerts an anti-inflammatory effect on keratinocytes and the innate immune system by inhibiting the activation of Toll-like receptors. DOPG has also been found to enhance macrophage mitochondrial function. Since these DOPG effects would be expected to counteract the increased oxidative stress (attributable in part to mitochondrial dysfunction), decreased keratinocyte proliferation, and enhanced inflammation that characterize chronic diabetic wounds, DOPG may be useful in stimulating wound healing. To date, efficacious therapies to promote the healing of chronic diabetic wounds are largely lacking; thus, DOPG may be added to the armamentarium of drugs to enhance diabetic wound healing.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Edymarie Vivaldi Marrero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Mlinarić M, Lučić I, Milković L, da Silva IV, Tartaro Bujak I, Musani V, Soveral G, Čipak Gašparović A. AQP3-Dependent PI3K/Akt Modulation in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24098133. [PMID: 37175840 PMCID: PMC10179317 DOI: 10.3390/ijms24098133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Aquaporin 3 (AQP3) is a peroxiporin, a membrane protein that channels hydrogen peroxide in addition to water and glycerol. AQP3 expression also correlates with tumor progression and malignancy and is, therefore, a potential target in breast cancer therapy. In addition, epithelial growth factor receptor (EGFR) plays an important role in breast cancer. Therefore, we investigated whether disruption of the lipid raft harboring EGFR could affect AQP3 expression, and conversely, whether AQP3 silencing would affect the EGFR/phosphoinositide-3-kinase (PI3K)/Protein kinase B (PKB or Akt) signaling pathway in breast cancer cell lines with different malignant capacities. We evaluated H2O2 uptake, cell migratory capacity, and expression of PI3K, pAkt/Akt in three breast cancer cell lines, MCF7, SkBr3, and SUM159PT, and in the nontumorigenic breast epithelial cell line MCF10A. Our results show different responses between the tested cell lines, especially when compared to the nontumorigenic cell line. Neither lipid raft disruption nor EGF stimuli had an effect on PI3K/Akt pathway in MCF10A cell line. AQP3-silencing in SkBr3 and SUM159PT showed that AQP3 can modulate PI3K/Akt activation in these cells. Interestingly, SUM159PT cells increase nuclear factor-E2-related factor 2 (NRF2) in response to lipid raft disruption and EGF stimuli, suggesting an oxidative-dependent response to these treatments. These results suggest that in breast cancer cell lines, AQP3 is not directly related to PI3K/Akt pathway but rather in a cell-line-dependent manner.
Collapse
Affiliation(s)
- Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan Lučić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ivana Tartaro Bujak
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | |
Collapse
|
21
|
Paccetti-Alves I, Batista MSP, Pimpão C, Victor BL, Soveral G. Unraveling the Aquaporin-3 Inhibitory Effect of Rottlerin by Experimental and Computational Approaches. Int J Mol Sci 2023; 24:ijms24066004. [PMID: 36983077 PMCID: PMC10057066 DOI: 10.3390/ijms24066004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.
Collapse
Affiliation(s)
- Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta S P Batista
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Bruno L Victor
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
22
|
Wei Y, Huang N, Ye X, Liu M, Wei M, Huang Y. The postbiotic of hawthorn-probiotic ameliorating constipation caused by loperamide in elderly mice by regulating intestinal microecology. Front Nutr 2023; 10:1103463. [PMID: 37006920 PMCID: PMC10061020 DOI: 10.3389/fnut.2023.1103463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Background Constipation is common gastrointestinal disorder with high prevalence and recurrence, making people suffering. However, the treatment for constipation remains ineffectual. We aimed to the study the effects and mechanisms of postbiotic of hawthorn-probiotic on loperamide modeled old KM mice. Methods Constipated mice were grouped and treated with 10% lactulose (Y), hawthorn group (S), probiotic group (F) and postbiotic of hawthorn-probiotic (FS). Fecal changes were observed. AQP3 and Enac-γ were measured by RT-qPCR and Western blotting, intestinal barrier by H&E and immunofluorescence staining, cell proliferation and apoptosis by CCK8 and flow cytometry. Gut microbiota was further determined by 16 s rRNA sequence of feces. Results Postbiotic of hawthorn-probiotic improved intestinal movement and pathomorphology, elevated AQP3, Enac-γ and mucin-2 expression, accompanied by decreased serum TNF-α and cell apoptosis, but increased proliferation. Furthermore, it modified the gut microbiota of constipated mice, featured by upregulation of Lactobacillaceae. Conclusion Postbiotic of hawthorn-probiotic relieved constipation by combined effects of regulating intestinal water and sodium metabolism, maintain intestinal barrier and gut microflora.Graphical Abstract.
Collapse
Affiliation(s)
- Yu Wei
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Na Huang
- The Eighth School of Clinical Medicine (Foshan Hospital of TCM), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Ye
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Meng Liu
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Meilian Wei
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yali Huang
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Aquaporin-mediated dysregulation of cell migration in disease states. Cell Mol Life Sci 2023; 80:48. [PMID: 36682037 DOI: 10.1007/s00018-022-04665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 01/23/2023]
Abstract
Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.
Collapse
|
24
|
Edamana S, Pedersen SF, Nejsum LN. Aquaporin water channels affect the response of conventional anticancer therapies of 3D grown breast cancer cells. Biochem Biophys Res Commun 2023; 639:126-133. [PMID: 36481356 DOI: 10.1016/j.bbrc.2022.11.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Aquaporin (AQP) water channels facilitate water transport across cellular membranes and are essential in regulation of body water balance. Moreover, several AQPs are overexpressed or ectopically expressed in breast cancer. Interestingly, several in vitro studies have suggested that AQPs can affect the response to conventional anticancer chemotherapies. Therefore, we took a systematic approach to test how AQP1, AQP3 and AQP5, which are often over-/ectopically expressed in breast cancer, affect total viability of 3-dimensional (3D) breast cancer cell spheroids when treated with the conventional anticancer chemotherapies Cisplatin, 5-Fluorouracil (5-FU) and Doxorubicin, a Combination of the three drugs as well as the Combination plus the Ras inhibitor Salirasib. Total viability of spheroids overexpressing AQP1 were decreased by all treatments except for 5-FU, which increased total viability by 20% compared to DMSO treated controls. All treatments reduced viability of spheroids overexpressing AQP3. In contrast, only Doxorubicin, Combination and Combination + Salirasib reduced total viability of spheroids overexpressing AQP5. Thus, this study supports a significant role of AQPs in the response to conventional chemotherapies. Evaluating the role of individual proteins that contribute to resistance to chemotherapies is essential in advancing personalized medicine in breast carcinomas.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Stine F Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Universitetsparken 13, 2100, København Ø, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
25
|
Abulizi A, Dawuti A, Yang B. Aquaporins in Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:303-315. [PMID: 36717503 DOI: 10.1007/978-981-19-7415-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent researches have demonstrated that aquaporins (AQPs), including water-selective channels, aquaglyceroporins and superaquaporins, are generally expressed in various tumors, such as lung, colorectal, liver, brain, breast tumors, etc. Therefore, it is imperative to study the accurate relationship between AQPs and tumor, which may provide innovative approaches to treat and prevent tumor development. In this chapter, we mainly reviewed the expression and pathophysiological function of AQPs in tumor, and summarize recent work on AQPs in tumor. Although, the underlying mechanism of AQP in tumor is not very clear, growing evidences suggest that cell migration, adhesion, angiogenesis, and division contribute to tumor development, in which AQPs might be involved. Therefore, it is still necessary to conduct further studies to determine the specific roles of AQPs in the tumor.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| | - Awaguli Dawuti
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
26
|
Xu L, Guo X, Wang W, Li C. Classification and Gene Structure of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:1-13. [PMID: 36717483 DOI: 10.1007/978-981-19-7415-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, 13 AQPs, distributed widely in specific cell types in various organs and tissues, have been characterized in humans. A pair of NPA boxes forming a pore is highly conserved among all aquaporins and is also key residues for the classification of AQP superfamily into four groups according to primary sequences. AQPs may also be classified based on their transport properties. So far, chromosome localization and gene structure of 13 human AQPs have been identified, which is definitely helpful for studying phenotypes and potential targets in naturally occurring and synthetic mutations in human or cells.
Collapse
Affiliation(s)
- Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiangdong Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Yu C, Zhang X, Wang J, Song H, Liu W, Luo B. Molecular mechanism of aquaporin 3 (AQP3) regulating by LMP2A and its crosstalk with 4E-BP1 via ERK signaling pathway in EBV-associated gastric cancer. Virus Res 2022; 322:198947. [PMID: 36181978 DOI: 10.1016/j.virusres.2022.198947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
Aquaporin 3(AQP3) is involved in epithelial-mesenchymal transformation of tumor cells and is closely related to the occurrence and development of tumors. However, the regulatory mechanism and function of AQP3 in EBV-associated gastric cancer (EBVaGC) are still poorly understood. This study aims to explore the regulatory effect of EBV on AQP3 and the cross talk of AQP3 with EIF4E-binding proteins 1(4E-BP1) in EBVaGC. The effect of LMP2A on the expression of AQP3 and 4E-BP1 was analyzed using real-time PCR and western blotting. The biological functions of AQP3 and 4E-BP1 in gastric cancer cells were detected by cell biological experiments. In addition, we examined the role of mTOR and ERK signaling pathways in the LMP2A/AQP3/4E-BP1 regulatory axis. We found that LMP2A could down-regulate AQP3 expression by inhibiting the activation of mTOR signaling pathway, and further promote autophagy and migration of gastric cancer cells. AQP3 up-regulated the expression of 4E-BP1 and its phosphorylated protein by activating ERK signaling pathway, thus promoting the autophagy and proliferation of gastric cancer cells. In conclusion, EBV-encoded LMP2A inhibits AQP3 expression, and further participates in cell proliferation, migration and autophagy through the mTOR/AQP3/ERK/4E-BP1 axis.
Collapse
Affiliation(s)
- Caixia Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Xing Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Jiayi Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China; Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Hui Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China; Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao University, No. 6 Tongfu Road, Qingdao 266034, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
28
|
Li D, Lu J, Zhang Q, Zhou Y, Li L, Zhu H, Li T. Insights into an NEk2 inhibitory profile of nitidine chloride by molecular docking and biological evaluation. BMC Chem 2022; 16:75. [PMID: 36210464 PMCID: PMC9549606 DOI: 10.1186/s13065-022-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Deregulation of NEK2(NIMA-related serine/threonine 2) confers chemotherapeutic resistance to apoptosis and is closely correlated with poor prognosis in hepatocellular carcinoma (HCC). Here, we find that nanoparticles are prepared through hemisynthesis from natural nitidine chloride (NC) with enhanced antitumor activity. Nitidine chloride nanoparticle (TPGS-FA/NC) treatment show good therapy effect in Li-7 hepatocellular carcinoma cells. Additionally, molecular docking technologies are aimed at NEK2 protein (PDB ID: 6SGD) to analyze the detailed binding interactions with the potent target. NC participates in interactions with Asp159 residue. These studies advance the understanding of the modification of nitidine chloride substituent and provide useful drug design information for liver cancer treatment.
Collapse
Affiliation(s)
- Danni Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi, China.
| | - Jiahao Lu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi, China
| | - Qiying Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi, China
| | - Yuzhu Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi, China
| | - Long Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi, China
| | - Hua Zhu
- College of Pharmacy, Guangxi University for Chinese Medicine, No.13, Wu He street, Qingxiu District, Nanning, 530200, Guangxi, China
| | - Tong Li
- College of Pharmacy, Guangxi University for Chinese Medicine, No.13, Wu He street, Qingxiu District, Nanning, 530200, Guangxi, China
| |
Collapse
|
29
|
Tanaka M, Ito A, Shiozawa S, Hara-Chikuma M. Anti-tumor effect of aquaporin 3 monoclonal antibody on syngeneic mouse tumor model. Transl Oncol 2022; 24:101498. [PMID: 35932594 PMCID: PMC9358462 DOI: 10.1016/j.tranon.2022.101498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Anti-AQP3 mAb suppressed tumor growth in syngeneic mouse tumor models. Administration of anti-AQP3 mAb to mice bearing carcinoma increased the M1/M2 ratio of TAMs. Administration of anti-AQP3 mAb improved the mitochondrial function of T cells in the TME. Anti-AQP3 mAb reduced carcinoma-mediated polarization of monocytes into M2-like TAMs.
Aquaporin-3 (AQP3), a water channel protein, has been found to be involved in cancer progression via water and small molecule transport function. However, drug development targeting AQP3 has not yet begun. Here, we showed that a recently established anti-AQP3 monoclonal antibody (mAb) suppresses tumor growth in allograft mouse colorectal tumor models produced using CT26 or MC38 cancer cells. Administration of the anti-AQP3 mAb to BALB/c mice with transplanted CT26 cells increased the M1/M2 ratio of tumor-associated macrophages (TAM) and improved the mitochondrial function of T cells in the tumor microenvironment (TME). Administration of anti-AQP3 mAb also restored the TAM-induced decrease in T cell proliferation. Macrophage depletion in wild-type mice counteracted the antitumor effect of anti-AQP3 mAb in the mouse tumor model, suggesting that one of the primary targets of anti-AQP3 mAb is macrophages. In in vitro studies using mice bone marrow monocytes and human monocyte THP-1 cells, anti-AQP3 mAb attenuated carcinoma cell-mediated polarization of monocytes into M2-like TAMs. These data suggest that anti-AQP3 mAb suppresses tumor growth by attenuating immunosuppressive M2-like TAMs, which in turn maintains the antitumor function of T cells in the TME. Thus, the anti-AQP3 mAb is a potential cancer therapy that functions by targeting TAMs.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Anmi Ito
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Seiji Shiozawa
- Center for Integrated Medical Research, School of Medicine, Keio University,160-8582, Japan; Institute of Animal Experimentation, School of Medicine, Kurume University, 830-0011, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
30
|
Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 2022; 12:988119. [PMID: 36212456 PMCID: PMC9532844 DOI: 10.3389/fonc.2022.988119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaporins (AQPs) are a family of small transmembrane proteins that selectively transport water and other small molecules and ions following an osmotic gradient across cell plasma membranes. This enables them to regulate numerous functions including water homeostasis, fat metabolism, proliferation, migration, and adhesion. Previous structural and functional studies highlight a strong biological relationship between AQP protein expression, localization, and key biological functions in normal and cancer tissues, where aberrant AQP expression correlates with tumorigenesis and metastasis. In this review, we discuss the roles of AQP1, AQP3, AQP4, AQP5, and AQP7 in breast cancer progression and metastasis, including the role of AQPs in the tumor microenvironment, to highlight potential contributions of stromal-derived to epithelial-derived AQPs to breast cancer. Emerging evidence identifies AQPs as predictors of response to cancer therapy and as targets for increasing their sensitivity to treatment. However, these studies have not evaluated the requirements for protein structure on AQP function within the context of breast cancer. We also examine how AQPs contribute to a patient's response to cancer treatment, existing AQP inhibitors and how AQPs could serve as novel predictive biomarkers of therapy response in breast cancer. Future studies also should evaluate AQP redundancy and compensation as mechanisms used to overcome aberrant AQP function. This review highlights the need for additional research into how AQPs contribute molecularly to therapeutic resistance and by altering the tumor microenvironment.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Carlos E. Arias Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
- Department of Biotechnology, Universidad Popular Autónoma del Estado de Puebla, Pue, Mexico
| | - Zachary T. Walker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Kevin Carthy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
31
|
Pellavio G, Sommi P, Anselmi-Tamburini U, DeMichelis MP, Coniglio S, Laforenza U. Cerium Oxide Nanoparticles Regulate Oxidative Stress in HeLa Cells by Increasing the Aquaporin-Mediated Hydrogen Peroxide Permeability. Int J Mol Sci 2022; 23:ijms231810837. [PMID: 36142747 PMCID: PMC9506032 DOI: 10.3390/ijms231810837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Some aquaporins (AQPs) allow the diffusion of hydrogen peroxide (H2O2), the most abundant ROS, through the cell membranes. Therefore, the possibility of regulating the AQP-mediated permeability to H2O2, and thus ROS scavenging, appears particularly important for controlling the redox state of cells in physiological and pathophysiological conditions. Several compounds have been screened and characterized for this purpose. This study aimed to analyze the effect of cerium oxide nanoparticles (CNPs) presenting antioxidant activity on AQP functioning. HeLa cells express AQP3, 6, 8, and 11, able to facilitate H2O2. AQP3, 6, and 8 are expressed in the plasma membrane and intracellularly, while AQP11 resides only in intracellular structures. CNPs but not cerium ions treatment significantly increased the water and H2O2 permeability by interacting with AQP3, 6, and especially with AQP8. CNPs increased considerably the AQP-mediated water diffusion in cells with oxidative stress. Functional experiments with silenced HeLa cells revealed that CNPs increased the H2O2 diffusion mainly by modulating the AQP8 permeability but also the AQP3 and AQP6, even if to a lesser extent. Current findings suggest that CNPs represent a promising pharmaceutical agent that might potentially be used in numerous pathologies involving oxidative stress as tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Patrizia Sommi
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | | | | | - Stefania Coniglio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-98-7568
| |
Collapse
|
32
|
Zhong L, Xia Y, He T, Wenjie S, Jinxia A, Lijun Y, Hui G. Polymeric photothermal nanoplatform with the inhibition of aquaporin 3 for anti-metastasis therapy of breast cancer. Acta Biomater 2022; 153:505-517. [PMID: 36115652 DOI: 10.1016/j.actbio.2022.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022]
Abstract
Metastasis, as one of major challenges in the cancer treatment, is responsible for the high mortality of breast cancer. It has been reported that breast cancer cell invasion and metastasis are related to aquaporin 3 (AQP3), which is the transmembrane transport channel for H2O2 molecules. Moreover, there is agreement that preventing the metastasis of breast tumor cells in combination with inhibiting the tumor growth is a promising strategy for cancer chemotherapy. Herein, we constructed a flexible photothermal crosslinked polymeric nanovehicle for the delivery of the AQP3 inhibitor, [AuCl2(phen)]+Cl- (Auphen). The polymeric nanovehicle (pOMPC-Dex) is comprised of three modules: 1) pOEGMA-co-pMEO2MA serves as the temperature-responsive segment; 2) pCyanineMA acts as the near-infrared (NIR) optical absorbing motif for photothermal therapy and is conjugated with pOEGMA-co-pMEO2MA to obtain NIR light stimuli-responsive drug release; and 3) pPBAMA-Dex functions as an acidic tumor microenvironment-responsive unit. Auphen was encapsulated into a nanovehicle (Auphen@pOMPC-Dex) through electrostatic interactions. The designed nanoplatform showed a pH- and NIR light stimuli-responsive drug release profile and exhibited the strong inhibition of intracellular H2O2 uptake by breast cancer cells, which led to the inhibition of breast cancer cell migration and invasion in vitro. In a breast cancer mouse model, Auphen@pOMPC-Dex markedly reduced the number of lung metastases in tumor-bearing mice due to the combined suppression of tumor growth and metastasis. Consequently, the fabricated Auphen@pOMPC-Dex may provide a new strategy for the development of comprehensive oncotherapies. STATEMENT OF SIGNIFICANCE: High mortality due to metastasis-induced breast cancer has been a key issue that needs to be addressed. It has been reported that aquaporin 3 (AQP3), a transmembrane transport channel for H2O2 molecules was found to have an accelerated effect on breast cancer cell migration. Hence, a flexible crosslinked polymeric nanoplatform with the inhibition of AQP3 was designed to inhibit metastasis of breast cancer cells. At the same time, we combined suppression of tumor growth with photothermal therapy to enhance the anticancer therapy effect.
Collapse
Affiliation(s)
- Luo Zhong
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yang Xia
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Tan He
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Shi Wenjie
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - An Jinxia
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Yang Lijun
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Gao Hui
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, PR China.
| |
Collapse
|
33
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
34
|
Wang Y, Guo Y, Zhuang T, Xu T, Ji M. SP1-Induced Upregulation of lncRNA LINC00659 Promotes Tumour Progression in Gastric Cancer by Regulating miR-370/AQP3 Axis. Front Endocrinol (Lausanne) 2022; 13:936037. [PMID: 35957833 PMCID: PMC9361049 DOI: 10.3389/fendo.2022.936037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Growing evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in various human tumors. LncRNA LINC00659 (LINC00659) is a newly identified lncRNA and its roles in tumors remain largely unclear. In this study, we elucidated the potential functions and molecular mechanisms of LINC00659 on the biological behaviors of gastric cancer (GC), and also explored its clinical significance. We firstly demonstrated that LINC00659 levels were distinctly up-regulated in both GC specimens and cells using bioinformatics analysis and RT-PCR. The results of ChIP assays and luciferase reporter assays confirmed that upregulation of LINC00659 was activated by SP1 in GC. Clinical assays revealed that higher levels of LINC00659 were associated with TNM stage, lymphatic metastasis, and poorer prognosis. Moreover, LINC00659 was confirmed to be an independent prognostic marker for the patients with GC using multivariate assays. Lost-of-function assays indicated that knockdown of LINC00659 suppressed the proliferation, metastasis, and EMT progress of GC cells in vitro. Mechanistic investigation indicated that LINC00659 served as a competing endogenous RNA (ceRNA) for miR-370, thereby resulting in the upregulation of leading to the depression of its endogenous target gene AQP3. Overall, our present study revealed that the LINC00659/miR-370/AQP3 axis contributes to GC progression, which may provide clues for the exploration of cancer biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Yao Wang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Guo
- School of Medicine Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins, which were initially characterized as a novel protein family that plays a vital role in transcellular and transepithelial water movement. AQP1, AQP2, AQP4, AQP5, and AQP8 are primarily water selective, whereas AQP3, AQP7, AQP9, and AQP10 (called “aqua-glyceroporins”) also transport glycerol and other small solutes. Recently, multiple reports have suggested that AQPs have important roles in cancer cell growth, migration, invasion, and angiogenesis, each of which is important in human carcinogenesis. Here, we review recent data concerning the involvement of AQPs in tumor growth, angiogenesis, and metastasis and explore the expression profiles from various resected cancer samples to further dissect the underlying molecular mechanisms. Moreover, we discuss the potential role of AQPs during the development of genomic instability and performed modeling to describe the integration of binding between AQPs with various SH3 domain binning adaptor molecules. Throughout review and discussion of numerous reports, we have tried to provide key evidence that AQPs play key roles in tumor biology, which may provide a unique opportunity in designing a novel class of anti-tumor agents.
Collapse
Affiliation(s)
- Chul So Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - David Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - Sung Koo Kang
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| |
Collapse
|
36
|
Mohammad S, O’Riordan CE, Verra C, Aimaretti E, Alves GF, Dreisch K, Evenäs J, Gena P, Tesse A, Rützler M, Collino M, Calamita G, Thiemermann C. RG100204, A Novel Aquaporin-9 Inhibitor, Reduces Septic Cardiomyopathy and Multiple Organ Failure in Murine Sepsis. Front Immunol 2022; 13:900906. [PMID: 35774785 PMCID: PMC9238327 DOI: 10.3389/fimmu.2022.900906] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis. In this study we described the initial characterization and effects of a novel small molecule AQP9 inhibitor, RG100204, in a cecal ligation and puncture (CLP) induced model of polymicrobial infection. In vitro, RG100204 blocked mouse AQP9 H2O2 permeability in an ectopic CHO cell expression system and abolished the LPS induced increase in superoxide anion and nitric oxide in FaO hepatoma cells. Pre-treatment of CLP-mice with RG100204 (25 mg/kg p.o. before CLP and then again at 8 h after CLP) attenuated the hypothermia, cardiac dysfunction (systolic and diastolic), renal dysfunction and hepatocellular injury caused by CLP-induced sepsis. Post-treatment of CLP-mice with RG100204 also attenuated the cardiac dysfunction (systolic and diastolic), the renal dysfunction caused by CLP-induced sepsis, but did not significantly reduce the liver injury or hypothermia. The most striking finding was that oral administration of RG100204 as late as 3 h after the onset of polymicrobial sepsis attenuated the cardiac and renal dysfunction caused by severe sepsis. Immunoblot quantification demonstrated that RG100204 reduced activation of the NLRP3 inflammasome pathway. Moreover, myeloperoxidase activity in RG100204 treated lung tissue was reduced. Together these results indicate that AQP9 may be a novel drug target in polymicrobial sepsis.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| | - Caroline E. O’Riordan
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Chiara Verra
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Johan Evenäs
- Red Glead Discovery Akiebolag (AB), Lund, Sweden
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Angela Tesse
- Nantes Université, Instite National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Rescherche Scientifique (CNRS), l’institut du Thorax, Nantes, France
| | - Michael Rützler
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Apoglyx Akiebolag (AB), Lund, Sweden
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| |
Collapse
|
37
|
Pellavio G, Martinotti S, Patrone M, Ranzato E, Laforenza U. Aquaporin-6 May Increase the Resistance to Oxidative Stress of Malignant Pleural Mesothelioma Cells. Cells 2022; 11:cells11121892. [PMID: 35741021 PMCID: PMC9221246 DOI: 10.3390/cells11121892] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer of the pleural surface and is associated with previous asbestos exposure. The chemotherapy drug is one of the main treatments, but the median survival ranges from 8 to 14 months from diagnosis. The redox homeostasis of tumor cells should be carefully considered since elevated levels of ROS favor cancer cell progression (proliferation and migration), while a further elevation leads to ferroptosis. This study aims to analyze the functioning/role of aquaporins (AQPs) as a hydrogen peroxide (H2O2) channel in epithelial and biphasic MPM cell lines, as well as their possible involvement in chemotherapy drug resistance. Results show that AQP-3, -5, -6, -9, and -11 were expressed at mRNA and protein levels. AQP-6 was localized in the plasma membrane and intracellular structures. Compared to normal mesothelial cells, the water permeability of mesothelioma cells is not reduced by exogenous oxidative stress, but it is considerably increased by heat stress, making these cells resistant to ferroptosis. Functional experiments performed in mesothelioma cells silenced for aquaporin-6 revealed that it is responsible, at least in part, for the increase in H2O2 efflux caused by heat stress. Moreover, mesothelioma cells knocked down for AQP-6 showed a reduced proliferation compared to mock cells. Current findings suggest the major role of AQP-6 in providing mesothelioma cells with the ability to resist oxidative stress that underlies their resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Mauro Patrone
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-98-7568
| |
Collapse
|
38
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
39
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
40
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
41
|
Huang S, Zhu W, Zhang F, Chen G, Kou X, Yang X, Ouyang G, Shen J. Silencing of Pyruvate Kinase M2 via a Metal-Organic Framework Based Theranostic Gene Nanomedicine for Triple-Negative Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56972-56987. [PMID: 34797638 DOI: 10.1021/acsami.1c18053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triple-negative breast cancer (TNBC) is typically associated with poor prognosis due to its only partial response to chemotherapy and lack of clinically established targeted therapies coupled with an aggressive disease course. Aerobic glycolysis is a hallmark of reprogrammed metabolic activity in cancer cells, which can be repressed by small-interfering RNA (siRNA). However, the lack of effective carriers to deliver vulnerable siRNA restricts the clinical potentials of glycolysis-based gene therapy for TNBC. Herein, we develop a tumor-targeted, biomimetic manganese dioxide (MnO2)-shrouded metal-organic framework (MOF) based nanomedicine to deliver siRNA against pyruvate kinase muscle isozyme M2 (siPKM2), wherein PKM2 is a rate-limiting enzyme in glycolysis, to inhibit the reprogrammed glycolysis of TNBC. This MOF-based genetic nanomedicine shows excellent monodispersity and stability and protects siPKM2 against degradation by nucleases. The nanomedicine not only substantially blocks the glycolytic pathway but also improves intracellular hypoxia in TNBC cells, with a resultant O2-enhanced anticancer effect. In the mice orthotopic TNBC model, the nanomedicine shows a remarkable therapeutic effect. Meanwhile, the Mn2+ ions released from acid microenvironment-responsive MnO2 enable in vivo monitoring of the therapeutic process with magnetic resonance imaging (MRI). Our study shows great promise with this MRI-visible MOF-based nanomedicine for treating TNBC by inhibition of glycolysis via the RNA interference.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wangshu Zhu
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xieqing Yang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
42
|
Peptide Nanoparticle-Mediated Combinatorial Delivery of Cancer-Related siRNAs for Synergistic Anti-Proliferative Activity in Triple Negative Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14100957. [PMID: 34681181 PMCID: PMC8540820 DOI: 10.3390/ph14100957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancer (TNBC) is one of the deadliest types of cancer for women of different age groups. Frequently this cancer does not respond to conservative treatment. Combinatorial RNAi can be suggested as an advanced approach to TNBC therapy. Due to the fact that TNBC cells overexpress chemokine receptor 4 we used modular L1 peptide-based nanoparticles modified with CXCR4 ligand for combinatorial delivery of siRNAs suppressing major transduction pathways. TNBC cell line MDA-MB-231 was used as a cellular model. Genes encoding the AQP3, CDC20, and COL4A2 proteins responsible for proliferative activity in TNBC cells were selected as RNAi targets. The siRNA binding ability of the carrier was studied at different charge ratios. The silencing specificity was demonstrated for all siRNAs studied. Alamar Blue proliferation assay has shown significant reduction in the anti-proliferative activity after combinatorial siRNA transfection compared to single siRNA delivery. The most significant synergistic effect has been demonstrated for combinatorial transfection of anti-COL4A2 and anti-CDC20 siRNAs what resulted in 1.5-2 fold inhibition of proliferation and migration of TNBC cells. Based on our findings, we have concluded that combinatorial treatment by CXCR4-ligand modified L1-polyplexes formed with AQP3, CDC20, and COL4A2 siRNAs effectively inhibits proliferation of TNBC cells and can be suggested as useful tool for RNAi-mediated cancer therapy.
Collapse
|
43
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
44
|
Wang Y, Chen D, Liu Y, Zhang Y, Duan C, Otkur W, Chen H, Liu X, Xia T, Qi H, Piao HL, Liu HX. AQP3-mediated H 2 O 2 uptake inhibits LUAD autophagy by inactivating PTEN. Cancer Sci 2021; 112:3278-3292. [PMID: 34091997 PMCID: PMC8353907 DOI: 10.1111/cas.15008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023] Open
Abstract
It is widely accepted that redox reprogramming participates in malignant transformation of lung adenocarcinoma (LUAD). However, the source of excessive reactive oxygen species (ROS) and the downstream signaling regulatory mechanism are complicated and unintelligible. In the current study, we newly identified the aquaporin 3 (AQP3) as a LUAD oncogenic factor with capacity to transport exogenous hydrogen peroxide (H2 O2 ) and increase intracellular ROS levels. Subsequently, we demonstrated that AQP3 was necessary for the facilitated diffusion of exogenous H2 O2 in LUAD cells and that the AQP3-dependent transport of H2 O2 accelerated cell growth and inhibited rapamycin-induced autophagy. Mechanistically, AQP3-mediated H2 O2 uptake increased intracellular ROS levels to inactivate PTEN and activate the AKT/mTOR pathway to subsequently inhibit autophagy and promote proliferation in LUAD cells. Finally, we suggested that AQP3 depletion retarded subcutaneous tumorigenesis in vivo and simultaneously decreased ROS levels and promoted autophagy. These findings underscore the importance of AQP3-induced oxidative stress in malignant transformation and suggest a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yong Zhang
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Chao Duan
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
45
|
Unexpected localization of AQP3 and AQP4 induced by migration of primary cultured IMCD cells. Sci Rep 2021; 11:11930. [PMID: 34099798 PMCID: PMC8185088 DOI: 10.1038/s41598-021-91369-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Aquaporin-2-4 (AQP) are expressed in the principal cells of the renal collecting duct (CD). Beside their role in water transport across membranes, several studies showed that AQPs can influence the migration of cells. It is unknown whether this also applies for renal CD cells. Another fact is that the expression of these AQPs is highly modulated by the external osmolality. Here we analyzed the localization of AQP2-4 in primary cultured renal inner medullary CD (IMCD) cells and how osmolality influences the migration behavior of these cells. The primary IMCD cells showed a collective migration behavior and there were no differences in the migration speed between cells cultivated either at 300 or 600 mosmol/kg. Acute increase from 300 to 600 mosmol/kg led to a marked reduction and vice versa an acute decrease from 600 to 300 mosmol/kg to a marked increase in migration speed. Interestingly, none of the analyzed AQPs were localized at the leading edge. While AQP3 disappeared within the first 2-3 rows of cells, AQP4 was enriched at the rear end. Further analysis indicated that migration induced lysosomal degradation of AQP3. This could be prevented by activation of the protein kinase A, inducing localization of AQP3 and AQP2 at the leading edge and increasing the migration speed.
Collapse
|
46
|
Pellavio G, Laforenza U. Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie 2021; 188:45-51. [PMID: 34087390 DOI: 10.1016/j.biochi.2021.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Aquaporins (AQPs) are transmembrane water channels and some of them are permeable in addition to water to other small solutes including hydrogen peroxide. The sperm cells of mammals and fishes express different AQPs, although there is no agreement in the literature on their localization. In humans, AQP3 and AQP11 are expressed mainly in the tail, AQP7 in the head and AQP8 in the midpiece. Thanks to the results of experiments with KO mice and to data obtained by comparing sub-fertile patients with normospermic subjects, the importance of AQPs for the normal functioning of sperms to ensure normal fertility emerged. AQP3, AQP7 and AQP11 appeared involved in the sperm volume regulation, a key role for fertility because osmoadaptation protect the sperm against a swelling and tail bending that could affect sperm motility. AQP8 seems to have a fundamental role in regulating the elimination of hydrogen peroxide, the most abundant reactive oxygen species (ROS), and therefore in the response to oxidative stress. In this review, the human AQPs expression, their localization and functions, as well as their relevance in normal fertility are discussed. To understand better the AQPs role in human sperm functionality, the results of studies obtained in other animal species were also considered.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy.
| |
Collapse
|
47
|
Alkhalifa H, Mohammed F, Taurin S, Greish K, Taha S, Fredericks S. Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy. Oncol Lett 2021; 21:458. [PMID: 33907568 PMCID: PMC8063341 DOI: 10.3892/ol.2021.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cryoablation is an emerging type of treatment for cancer. The sensitization of tumors using cryosensitizing agents prior to treatment enhances ablation efficiency and may improve clinical outcomes. Water efflux, which is regulated by aquaporin channels, contributes to cancer cell damage achieved through cryoablation. An increase in aquaporin (AQP) 3 is cryoprotective, whereas its inhibition augments cryodamage. The present study aimed to investigate aquaporin (AQP1, AQP3 and AQP5) gene expression and cellular localization in response to cryoinjury. Cultured breast cancer cells (MDA-MB-231 and MCF-7) were exposed to freezing to induce cryoinjury. RNA and protein extracts were then analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Localization of aquaporins was studied using immunocytochemistry. Additionally, cells were transfected with small interfering RNA to silence aquaporin gene expression and cell viability was assessed using the Sulforhodamine B assay. Cryoinjury did not influence gene expression of AQPs, except for a 4-fold increase of AQP1 expression in MDA-MD-231 cells. There were no clear differences in AQP protein expression for either cell lines upon exposure to frozen and non-frozen temperatures, with the exception of fainter AQP5 bands for non-frozen MCF-7 cells. The exposure of cancer cells to freezing temperatures altered the localization of AQP1 and AQP3 proteins in both MCF-7 and MDA-MD-231 cells. The silencing of AQP1, AQP3 and AQP5 exacerbated MDA-MD-231 cell damage associated with freezing compared with control siRNA. This was also observed with AQP3 and AQP5 silencing in MCF-7 cells. Inhibition of aquaporins may potentially enhance cryoinjury. This cryosensitizing process may be used as an adjunct to breast cancer cryotherapy, especially in the border area targeted by cryoablation where freezing temperatures are not cold enough to induce cellular damage.
Collapse
Affiliation(s)
- Haifa Alkhalifa
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
- Department of Science, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Fatima Mohammed
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| | - Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Khaled Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Salim Fredericks
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| |
Collapse
|
48
|
Oberska P, Jedrzejczak-Silicka M, Michałek K, Grabowska M. Initial assessment of suitability of MCF-7 and HepG2 cancer cell lines for AQP3 research in cancer biology. Acta Histochem 2021; 123:151716. [PMID: 33933702 DOI: 10.1016/j.acthis.2021.151716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Cancer cell lines are widely used as in vitro models to elucidate biological processes in cancer, and as a tool to evaluate anticancer agents. In fact, the use of an appropriate cancer cell line in cancer research is crucial for investigating new, potential factors involved in carcinogenesis. One of them is aquaporin-3 (AQP3), which is a small, hydrophobic, integral membrane protein with a predominant role in water and glycerol transport. Recently, altered expression of AQP3 has been reported in many types of cancer. Increasing evidence strongly suggests that AQP3 plays a key role in cancer cell proliferation, migration and invasion. In this study, we performed an insightful characteristic of AQP3 location and its protein expression in MCF-7 human breast adenocarcinoma and HepG2 hepatocellular carcinoma cell lines in the context of cancer biology using immunocytochemistry, immunofluorescence and Western blot analyses. AQP3 was found to be located in the cell membrane and cytoplasm of MCF-7 cells, and in the cytoplasm and nuclear membrane of HepG2 cells. Immunoblotting of proteins derived from both cell lines revealed a clear band with a molecular weight of approx. 30 kDa representing an unglycosylated form of AQP3. However, the expression of this protein was higher in MCF-7 than in HepG2. Concluding, our results clearly indicated variability in both the expression levels and subcellular location of the AQP3 protein in MCF-7 and HepG2 cell lines. This leads to the possibility that the expression patterns and subcellular location of AQP3 in the tested cancer cell lines are tissue-of-origin specific, and may be related to the aggressiveness of cancer cells and their mobility.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270, Szczecin, Poland
| | - Magdalena Jedrzejczak-Silicka
- Laboratory of Cytogenetics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270, Szczecin, Poland.
| | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210, Szczecin, Poland
| |
Collapse
|
49
|
AQP3 and AQP5-Potential Regulators of Redox Status in Breast Cancer. Molecules 2021; 26:molecules26092613. [PMID: 33947079 PMCID: PMC8124745 DOI: 10.3390/molecules26092613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome-remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.
Collapse
|
50
|
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11:4839-4857. [PMID: 33754031 PMCID: PMC7978298 DOI: 10.7150/thno.56747] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Collapse
|