1
|
Erkine AM, Oliveira MA, Class CA. The Enigma of Transcriptional Activation Domains. J Mol Biol 2024; 436:168766. [PMID: 39214280 DOI: 10.1016/j.jmb.2024.168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Activation domains (ADs) of eukaryotic gene activators remain enigmatic for decades as short, extremely variable sequences which often are intrinsically disordered in structure and interact with an uncertain number of targets. The general absence of specificity increasingly complicates the utilization of the widely accepted mechanism of AD function by recruitment of coactivators. The long-standing enigma at the heart of molecular biology demands a fundamental rethinking of established concepts. Here, we review the experimental evidence supporting a novel mechanistic model of gene activation, based on ADs functioning via surfactant-like near-stochastic interactions with gene promoter nucleosomes. This new model is consistent with recent information-rich experimental data obtained using high-throughput synthetic biology and bioinformatics analysis methods, including machine learning. We clarify why the conventional biochemical principle of specificity for sequence, structures, and interactions fails to explain activation domain function. This perspective provides connections to the liquid-liquid phase separation model, signifies near-stochastic interactions as fundamental for the biochemical function, and can be generalized to other cellular functions.
Collapse
|
2
|
Xiao K, Liu L, He R, Rollins JA, Li A, Zhang G, He X, Wang R, Liu J, Zhang X, Zhang Y, Pan H. The Snf5-Hsf1 transcription module synergistically regulates stress responses and pathogenicity by maintaining ROS homeostasis in Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2024; 241:1794-1812. [PMID: 38135652 DOI: 10.1111/nph.19484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023]
Abstract
The SWI/SNF complex is guided to the promoters of designated genes by its co-operator to activate transcription in a timely and appropriate manner to govern development, pathogenesis, and stress responses in fungi. Nevertheless, knowledge of the complexes and their co-operator in phytopathogenic fungi is still fragmented. We demonstrate that the heat shock transcription factor SsHsf1 guides the SWI/SNF complex to promoters of heat shock protein (hsp) genes and antioxidant enzyme genes using biochemistry and pharmacology. This is accomplished through direct interaction with the complex subunit SsSnf5 under heat shock and oxidative stress. This results in the activation of their transcription and mediates histone displacement to maintain reactive oxygen species (ROS) homeostasis. Genetic results demonstrate that the transcription module formed by SsSnf5 and SsHsf1 is responsible for regulating morphogenesis, stress tolerance, and pathogenicity in Sclerotinia sclerotiorum, especially by directly activating the transcription of hsp genes and antioxidant enzyme genes counteracting plant-derived ROS. Furthermore, we show that stress-induced phosphorylation of SsSnf5 is necessary for the formation of the transcription module. This study establishes that the SWI/SNF complex and its co-operator cooperatively regulate the transcription of hsp genes and antioxidant enzyme genes to respond to host and environmental stress in the devastating phytopathogenic fungi.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ruonan He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Guiping Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xiaoyue He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Rui Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| |
Collapse
|
3
|
D'Alessio Y, D'Alfonso A, Camilloni G. Chromatin conformations of HSP12 during transcriptional activation in the Saccharomyces cerevisiae stationary phase. Adv Biol Regul 2023; 90:100986. [PMID: 37741159 DOI: 10.1016/j.jbior.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
During evolution, living cells have developed sophisticated molecular and physiological processes to cope with a variety of stressors. These mechanisms, which collectively constitute the Environmental Stress Response, involve the activation/repression of hundreds of genes that are regulated to respond rapidly and effectively to protect the cell. The main stressors include sudden increases in environmental temperature and osmolarity, exposure to heavy metals, nutrient limitation, ROS accumulation, and protein-damaging events. The growth stages of the yeast S. cerevisiae proceed from the exponential to the diauxic phase, finally reaching the stationary phase. It is in this latter phase that the main stressor events are more active. In the present work, we aim to understand whether the responses evoked by the sudden onset of a stressor, like what happens to cells going through the stationary phase, would be different or similar to those induced by a gradual increase in the same stimulus. To this aim, we studied the expression of the HSP12 gene of the HSP family of proteins, typically induced by stress conditions, with a focus on the role of chromatin in this regulation. Analyses of nucleosome occupancy and three-dimensional chromatin conformation suggest the activation of a different response pathway upon a sudden vs a gradual onset of a stress stimulus. Here we show that it is the three-dimensional chromatin structure of HSP12, rather than nucleosome remodeling, that becomes altered in HSP12 transcription during the stationary phase.
Collapse
Affiliation(s)
- Yuri D'Alessio
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Anna D'Alfonso
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
4
|
The Trisubstituted Isoxazole MMV688766 Exerts Broad-Spectrum Activity against Drug-Resistant Fungal Pathogens through Inhibition of Lipid Homeostasis. mBio 2022; 13:e0273022. [PMID: 36300931 PMCID: PMC9765174 DOI: 10.1128/mbio.02730-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida species are among the most prevalent causes of systemic fungal infection, posing a growing threat to public health. While Candida albicans is the most common etiological agent of systemic candidiasis, the frequency of infections caused by non-albicans Candida species is rising. Among these is Candida auris, which has emerged as a particular concern. Since its initial discovery in 2009, it has been identified worldwide and exhibits resistance to all three principal antifungal classes. Here, we endeavored to identify compounds with novel bioactivity against C. auris from the Medicines for Malaria Venture's Pathogen Box library. Of the five hits identified, the trisubstituted isoxazole MMV688766 emerged as the only compound displaying potent fungicidal activity against C. auris, as well as other evolutionarily divergent fungal pathogens. Chemogenomic profiling, as well as subsequent metabolomic and phenotypic analyses, revealed that MMV688766 disrupts cellular lipid homeostasis, driving a decrease in levels of early sphingolipid intermediates and fatty acids and a concomitant increase in lysophospholipids. Experimental evolution to further probe MMV688766's mode of action in the model fungus Saccharomyces cerevisiae revealed that loss of function of the transcriptional regulator HAL9 confers resistance to MMV688766, in part through the upregulation of the lipid-binding chaperone HSP12, a response that appears to assist in tolerating MMV688766-induced stress. The novel mode of action we have uncovered for MMV688766 against drug-resistant fungal pathogens highlights the broad utility of targeting lipid homeostasis to disrupt fungal growth and how screening structurally-diverse chemical libraries can provide new insights into resistance-conferring stress responses of fungi. IMPORTANCE As widespread antimicrobial resistance threatens to propel the world into a postantibiotic era, there is a pressing need to identify mechanistically distinct antimicrobial agents. This is of particular concern when considering the limited arsenal of drugs available to treat fungal infections, coupled with the emergence of highly drug-resistant fungal pathogens, including Candida auris. In this work, we demonstrate that existing libraries of drug-like chemical matter can be rich resources for antifungal molecular scaffolds. We discovered that the small molecule MMV688766, from the Pathogen Box library, displays previously undescribed broad-spectrum fungicidal activity through perturbation of lipid homeostasis. Characterization of the mode of action of MMV688766 provided new insight into the protective mechanisms fungi use to cope with the disruption of lipid homeostasis. Our findings highlight that elucidating the genetic circuitry required to survive in the presence of cellular stress offers powerful insights into the biological pathways that govern this important phenotype.
Collapse
|
5
|
Singh AK, Mishra P, Kashyap SP, Karkute SG, Singh PM, Rai N, Bahadur A, Behera TK. Molecular insights into mechanisms underlying thermo-tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1040532. [PMID: 36388532 PMCID: PMC9645296 DOI: 10.3389/fpls.2022.1040532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Plant productivity is being seriously compromised by climate-change-induced temperature extremities. Agriculture and food safety are threatened due to global warming, and in many cases the negative impacts have already begun. Heat stress leads to significant losses in yield due to changes in growth pattern, plant phonologies, sensitivity to pests, flowering, grain filling, maturity period shrinkage, and senescence. Tomato is the second most important vegetable crop. It is very sensitive to heat stress and thus, yield losses in tomato due to heat stress could affect food and nutritional security. Tomato plants respond to heat stress with a variety of cellular, physiological, and molecular responses, beginning with the early heat sensing, followed by signal transduction, antioxidant defense, osmolyte synthesis and regulated gene expression. Recent findings suggest that specific plant organs are extremely sensitive to heat compared to the entire plant, redirecting the research more towards generative tissues. This is because, during sexual reproduction, developing pollens are the most sensitive to heat. Often, just a few degrees of temperature elevation during pollen development can have a negative effect on crop production. Furthermore, recent research has discovered certain genetic and epigenetic mechanisms playing key role in thermo-tolerance and have defined new directions for tomato heat stress response (HSR). Present challenges are to increase the understanding of molecular mechanisms underlying HS, and to identify superior genotypes with more tolerance to extreme temperatures. Several metabolites, genes, heat shock factors (HSFs) and microRNAs work together to regulate the plant HSR. The present review provides an insight into molecular mechanisms of heat tolerance and current knowledge of genetic and epigenetic control of heat-tolerance in tomato for sustainable agriculture in the future. The information will significantly contribute to improve breeding programs for development of heat tolerant cultivars.
Collapse
Affiliation(s)
- Achuit K. Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Pallavi Mishra
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Suhas G. Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Nagendra Rai
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Anant Bahadur
- Division of Crop Production, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Tusar K. Behera
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Jian Y, Shim WB, Ma Z. Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. STRESS BIOLOGY 2021; 1:18. [PMID: 37676626 PMCID: PMC10442046 DOI: 10.1007/s44154-021-00019-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses. In this review, we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the potentials in exploiting chromatin remodeling for management of crop disease are presented.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
8
|
Wang RX, Li YM, Chen R, Du HN. Transcriptional memory of different types of genes is generally maintained under various environmental conditions in Saccharomyces cerevisiae. J Genet Genomics 2021; 49:173-176. [PMID: 34728416 DOI: 10.1016/j.jgg.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Ru-Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Sahu RK, Singh S, Tomar RS. The ATP-dependent SWI/SNF and RSC chromatin remodelers cooperatively induce unfolded protein response genes during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194748. [PMID: 34454103 DOI: 10.1016/j.bbagrm.2021.194748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023]
Abstract
The SWI/SNF subfamily remodelers (SWI/SNF and RSC) generally promote gene expression by displacing or evicting nucleosomes at the promoter regions. Their action creates a nucleosome-depleted region where transcription machinery accesses the DNA. Their function has been shown critical for inducing stress-responsive transcription programs. Although the role of SWI/SNF and RSC complexes in transcription regulation of heat shock responsive genes is well studied, their involvement in other pathways such as unfolded protein response (UPR) and protein quality control (PQC) is less known. This study shows that SWI/SNF occupies the promoters of UPR, HSP and PQC genes in response to unfolded protein stress, and its recruitment at UPR promoters depends on Hac1 transcription factor and other epigenetic factors like Ada2 and Ume6. Disruption of SWI/SNF's activity does not affect the remodeling of these promoters or gene expression. However, inactivation of RSC and SWI/SNF together diminishes induction of most of the UPR, HSP and PQC genes tested. Furthermore, RSC and SWI/SNF colocalize at these promoters, suggesting that these two remodelers functionally cooperate to induce stress-responsive genes under proteotoxic conditions.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Sakshi Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
10
|
Antonazzi F, Di Felice F, Camilloni G. GCN5 enables HSP12 induction promoting chromatin remodeling not histone acetylation. Biochem Cell Biol 2021; 99:700-706. [PMID: 34102063 DOI: 10.1139/bcb-2020-0620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of stress responsive genes represents one of the best examples of gene induction and the relevance and involvement of different regulators may change for a given gene depending on the challenging stimulus. HSP12 gene is induced by very different stimuli, however the molecular response to the stress has been characterized in detail only for heat shock treatments. In this work we want to verify whether, the regulation of transcription induced by oxidative stress, utilizes the same epigenetic solutions relative to those employed in heat shock response. We also monitored HSP12 induction employing spermidine, a known acetyltransferase inhibitor, and observed an oxidative stress that synergizes with spermidine treatment. Our data show that during transcriptional response to H2O2, histone acetylation and chromatin remodeling occur. However, when the relevance of Gcn5p on these processes was studied, we observed that induction of transcription is GCN5 dependent and this does not rely on histone acetylation by Gcn5p despite its HAT activity. Chromatin remodeling accompanying gene activation is rather GCN5 dependent. Thus, GCN5 controls HSP12 transcription after H2O2 treatment by allowing chromatin remodeling and it is only partially involved in HSP12 histone acetylation regardless its HAT activity.
Collapse
Affiliation(s)
- Francesca Antonazzi
- Università degli Studi di Roma La Sapienza, 9311, Dipartimento di Biologia e Biotecnologie, Roma, Lazio, Italy;
| | - Francesca Di Felice
- Università degli Studi di Roma La Sapienza, 9311, Dipartimento di Biologia e Biotecnologie, Roma, Lazio, Italy;
| | - Giorgio Camilloni
- Università degli Studi di Roma La Sapienza, 9311, Dipartimento di Biologia e Biotecnologie, Piazzale A. Moro 5, Roma, Italy, 00185;
| |
Collapse
|
11
|
Reca S, Galello F, Ojeda L, Pautasso C, Cañonero L, Moreno S, Portela P, Rossi S. Chromatin remodeling and transcription of the TPK1 subunit of PKA during stress in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194599. [DOI: 10.1016/j.bbagrm.2020.194599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
|
12
|
Viéitez C, Martínez-Cebrián G, Solé C, Böttcher R, Potel CM, Savitski MM, Onnebo S, Fabregat M, Shilatifard A, Posas F, de Nadal E. A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress. Nucleic Acids Res 2020; 48:3455-3475. [PMID: 32064518 PMCID: PMC7144942 DOI: 10.1093/nar/gkaa081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cells have the ability to sense, respond and adapt to environmental fluctuations. Stress causes a massive reorganization of the transcriptional program. Many examples of histone post-translational modifications (PTMs) have been associated with transcriptional activation or repression under steady-state growth conditions. Comparatively less is known about the role of histone PTMs in the cellular adaptive response to stress. Here, we performed high-throughput genetic screenings that provide a novel global map of the histone residues required for transcriptional reprogramming in response to heat and osmotic stress. Of note, we observed that the histone residues needed depend on the type of gene and/or stress, thereby suggesting a 'personalized', rather than general, subset of histone requirements for each chromatin context. In addition, we identified a number of new residues that unexpectedly serve to regulate transcription. As a proof of concept, we characterized the function of the histone residues H4-S47 and H4-T30 in response to osmotic and heat stress, respectively. Our results uncover novel roles for the kinases Cla4 and Ste20, yeast homologs of the mammalian PAK2 family, and the Ste11 MAPK as regulators of H4-S47 and H4-T30, respectively. This study provides new insights into the role of histone residues in transcriptional regulation under stress conditions.
Collapse
Affiliation(s)
- Cristina Viéitez
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Gerard Martínez-Cebrián
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Clement M Potel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sara Onnebo
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Marc Fabregat
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Gutin J, Joseph‐Strauss D, Sadeh A, Shalom E, Friedman N. Genetic screen of the yeast environmental stress response dynamics uncovers distinct regulatory phases. Mol Syst Biol 2019; 15:e8939. [PMID: 31464369 PMCID: PMC6711295 DOI: 10.15252/msb.20198939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 11/09/2022] Open
Abstract
Cells respond to environmental fluctuations by regulating multiple transcriptional programs. This response can be studied by measuring the effect of environmental changes on the transcriptome or the proteome of the cell at the end of the response. However, the dynamics of the response reflect the working of the regulatory mechanisms in action. Here, we utilized a fluorescent stress reporter gene to track the dynamics of protein production in yeast responding to environmental stress. The response is modulated by changes in both the duration and rate of transcription. We probed the underlying molecular pathways controlling these two dimensions using a library of ~1,600 single- and double-mutant strains. Dissection of the effects of these mutants and the interactions between them identified distinct modulators of response duration and response rate. Using a combination of mRNA-seq and live-cell microscopy, we uncover mechanisms by which Msn2/4, Mck1, Msn5, and the cAMP/PKA pathway modulate the response of a large module of stress-induced genes in two discrete regulatory phases. Our results and analysis show that transcriptional stress response is regulated by multiple mechanisms that overlap in time and cellular location.
Collapse
Affiliation(s)
- Jenia Gutin
- School of Computer Science and Engineering and Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Daphna Joseph‐Strauss
- School of Computer Science and Engineering and Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Amit Sadeh
- School of Computer Science and Engineering and Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Eli Shalom
- School of Computer Science and Engineering and Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Nir Friedman
- School of Computer Science and Engineering and Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
14
|
Erkine AM. 'Nonlinear' Biochemistry of Nucleosome Detergents. Trends Biochem Sci 2018; 43:951-959. [PMID: 30297207 DOI: 10.1016/j.tibs.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
Abstract
The transcriptional activation domains (TADs) are critical for life, yet intrinsically disordered polypeptides with no specific consensus sequence, interacting with multiple targets via low-specificity fuzzy contacts. The recent integration of machine learning approaches in biochemistry allows analysis of large experimental datasets of functional TADs as a whole and clear observation of TAD features. The emerging picture describes TADs as sequences without consensus but with a variety of detergent-like mini-motifs enriched in negatively charged and aromatic amino acids. Comparison of the canonical direct coactivator recruitment model and a new model describing TADs as nucleosome detergents that trigger chromatin remodeling during gene activation helps solve a fundamental enigma of molecular biology spanning 30 years.
Collapse
|
15
|
Antonets KS, Kliver SF, Polev DE, Shuvalova AR, Andreeva EA, Inge-Vechtomov SG, Nizhnikov AA. Distinct mechanisms of phenotypic effects of inactivation and prionization of Swi1 protein in Saccharomyces cerevisiae. BIOCHEMISTRY (MOSCOW) 2017; 82:1147-1157. [DOI: 10.1134/s0006297917100078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor. Mol Cell Biol 2016; 36:1943-60. [PMID: 27185874 DOI: 10.1128/mcb.00005-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/04/2016] [Indexed: 11/20/2022] Open
Abstract
Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains.
Collapse
|
17
|
Abstract
Although prions were first discovered through their link to severe brain degenerative diseases in animals, the emergence of prions as regulators of the phenotype of the yeast Saccharomyces cerevisiae and the filamentous fungus Podospora anserina has revealed a new facet of prion biology. In most cases, fungal prions are carried without apparent detriment to the host cell, representing a novel form of epigenetic inheritance. This raises the question of whether or not yeast prions are beneficial survival factors or actually gives rise to a "disease state" that is selected against in nature. To date, most studies on the impact of fungal prions have focused on laboratory-cultivated "domesticated" strains of S. cerevisiae. At least eight prions have now been described in this species, each with the potential to impact on a wide range of cellular processes. The discovery of prions in nondomesticated strains of S. cerevisiae and P. anserina has confirmed that prions are not simply an artifact of "domestication" of this species. In this review, I describe what we currently know about the phenotypic impact of fungal prions. I then describe how the interplay between host genotype and the prion-mediated changes can generate a wide array of phenotypic diversity. How such prion-generated diversity may be of benefit to the host in survival in a fluctuating, often hazardous environment is then outlined. Prion research has now entered a new phase in which we must now consider their biological function and evolutionary significance in the natural world.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| |
Collapse
|
18
|
Gutin J, Sadeh A, Rahat A, Aharoni A, Friedman N. Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Mol Syst Biol 2015; 11:829. [PMID: 26446933 PMCID: PMC4631200 DOI: 10.15252/msb.20156451] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cells must quickly respond and efficiently adapt to environmental changes. The yeast Saccharomyces cerevisiae has multiple pathways that respond to specific environmental insults, as well as a generic stress response program. The later is regulated by two transcription factors, Msn2 and Msn4, that integrate information from upstream pathways to produce fast, tunable, and robust response to different environmental changes. To understand this integration, we employed a systematic approach to genetically dissect the contribution of various cellular pathways to Msn2/4 regulation under a range of stress and growth conditions. We established a high-throughput liquid handling and automated flow cytometry system and measured GFP levels in 68 single-knockout and 1,566 double-knockout strains that carry an HSP12-GFP allele as a reporter for Msn2/4 activity. Based on the expression of this Msn2/4 reporter in five different conditions, we identified numerous genetic and epistatic interactions between different components in the network upstream to Msn2/4. Our analysis gains new insights into the functional specialization of the RAS paralogs in the repression of stress response and identifies a three-way crosstalk between the Mediator complex, the HOG MAPK pathway, and the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jenia Gutin
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amit Sadeh
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Ayelet Rahat
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amir Aharoni
- Department of Life Science, National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nir Friedman
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| |
Collapse
|
19
|
Pérez-Landero S, Sandoval-Motta S, Martínez-Anaya C, Yang R, Folch-Mallol JL, Martínez LM, Ventura L, Guillén-Navarro K, Aldana-González M, Nieto-Sotelo J. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences. BMC SYSTEMS BIOLOGY 2015. [PMID: 26209979 PMCID: PMC4515323 DOI: 10.1186/s12918-015-0185-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory, learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS) as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological processes. Results Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase. Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response for Hsf1/Skn7 when PKA activity was low (cdc25Δ cells). Experimental results were used to propose an interaction scheme for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational model reproduced the experimental data and predicted complex interactions between the CS and the existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssa1 and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of Hsf1/Skn7, active only in theabsence of Tpk2. By averaging the network state over all its attractors, a good quantitative agreement between computational and experimental results was obtained, as the averages reflected more accurately the population measurements. Conclusions The assumption of PKA being one molecular entity has hindered the study of a wide range of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc.). We show that the differential roles of the CS are essential to understand the dynamics of the PKA-RN and its targets. Our systems level approach, which combined experimental results with theoretical modeling, unveils the relevance of the interaction scheme for the CS and offers quantitative predictions for several scenarios (WT vs. mutants in PKA-RN genes and growth at optimal temperature vs. heat shock). Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0185-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Pérez-Landero
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| | - Santiago Sandoval-Motta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Claudia Martínez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Runying Yang
- Present Address: Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Jorge Luis Folch-Mallol
- Present Address: Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Mor., Mexico.
| | - Luz María Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Larissa Ventura
- Present Address: Grupo La Florida México, Tlalnepantla, 54170, Edo. de Méx., Mexico.
| | | | - Maximino Aldana-González
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Jorge Nieto-Sotelo
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| |
Collapse
|
20
|
Erkina TY, Erkine A. ASF1 and the SWI/SNF complex interact functionally during nucleosome displacement, while FACT is required for nucleosome reassembly at yeast heat shock gene promoters during sustained stress. Cell Stress Chaperones 2015; 20:355-69. [PMID: 25416387 PMCID: PMC4326380 DOI: 10.1007/s12192-014-0556-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/14/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022] Open
Abstract
Histone chaperones are an integral part of the transcription regulatory machinery. We investigated the involvement of histone chaperones and their functional interactions with ATP-dependent chromatin remodeling complexes in the regulation of yeast heat shock genes. Strong functional interaction between the histone chaperone ASF1 and the ATP-dependent chromatin remodeling complex SWI/SNF is exhibited in synergistic diminishment of nucleosome displacement during heat shock in the ΔASF1/ΔSNF2 strain in comparison to individual ASF1 or SNF2 inactivation. A similar but less pronounced effect was observed for ISW1/ASF1 inactivation but not for ASF1/STH1 (RSC complex) combinatorial inactivation. The depletion of Spt16, which is a major subunit of the FACT histone chaperone complex, leads to a severe growth defect phenotype associated with unusual thermotolerance. The acquired thermotolerance in the Spt16-depleted strain is associated with a defect in the reassembly of nucleosomes at the promoters of heat shock genes during sustained heat stress, leading to increased recruitment of the transcriptional activator HSF and RNA polymerase II. The defect in nucleosome assembly associated with Spt16 depletion also leads to an increased tolerance to stress due to an increased concentration of NaCl.
Collapse
Affiliation(s)
- Tamara Y. Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
21
|
Mehrotra S, Galdieri L, Zhang T, Zhang M, Pemberton LF, Vancura A. Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:751-63. [PMID: 24907648 DOI: 10.1016/j.bbagrm.2014.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 01/07/2023]
Abstract
Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation. These histone hypoacetylation-activated genes (HHAAG) are normally repressed during exponential growth, when the cellular level of acetyl-CoA is high and global histone acetylation is also high. The HHAAG are induced during diauxic shift, when the levels of acetyl-CoA and global histone acetylation decrease. The histone hypoacetylation-induced activation of HHAAG is independent of Msn2/Msn4. The repression of HSP12, one of the HHAAG, is associated with well-defined nucleosomal structure in the promoter region, while histone hypoacetylation-induced activation correlates with delocalization of positioned nucleosomes or with reduced nucleosome occupancy. Correspondingly, unlike the majority of yeast genes, HHAAG are transcriptionally upregulated when expression of histone genes is reduced. Taken together, these results suggest a model in which histone acetylation is required for proper positioning of promoter nucleosomes and repression of HHAAG.
Collapse
Affiliation(s)
- Swati Mehrotra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Luciano Galdieri
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Tiantian Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Man Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Lucy F Pemberton
- Center for Cell Signalling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
22
|
Pautasso C, Rossi S. Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:275-87. [DOI: 10.1016/j.bbagrm.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/27/2022]
|
23
|
Kim S, Gross DS. Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and mediator tail subunits Med15 and Med16. J Biol Chem 2013; 288:12197-213. [PMID: 23447536 DOI: 10.1074/jbc.m112.449553] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Mediator complex is central to the regulation of gene transcription in eukaryotes because it serves as a physical and functional interface between upstream regulators and the Pol II transcriptional machinery. Nonetheless, its role appears to be context-dependent, and the detailed mechanism by which it governs the expression of most genes remains unknown. Here we investigate Mediator involvement in HSP (heat shock protein) gene regulation in the yeast Saccharomyces cerevisiae. We find that in response to thermal upshift, subunits representative of each of the four Mediator modules (Head, Middle, Tail, and Kinase) are rapidly, robustly, and selectively recruited to the promoter regions of HSP genes. Their residence is transient, returning to near-background levels within 90 min. Hsf1 (heat shock factor 1) plays a central role in recruiting Mediator, as indicated by the fact that truncation of either its N- or C-terminal activation domain significantly reduces Mediator occupancy, whereas removal of both activation domains abolishes it. Likewise, ablation of either of two Mediator Tail subunits, Med15 or Med16, reduces Mediator recruitment to HSP promoters, whereas deletion of both abolishes it. Accompanying the loss of Mediator, recruitment of RNA polymerase II is substantially diminished. Interestingly, Mediator antagonizes Hsf1 occupancy of non-induced promoters yet facilitates enhanced Hsf1 association with activated ones. Collectively, our observations indicate that Hsf1, via its dual activation domains, recruits holo-Mediator to HSP promoters in response to acute heat stress through cooperative physical and/or functional interactions with the Tail module.
Collapse
Affiliation(s)
- Sunyoung Kim
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | |
Collapse
|
24
|
Bokszczanin KL, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. FRONTIERS IN PLANT SCIENCE 2013; 4:315. [PMID: 23986766 PMCID: PMC3750488 DOI: 10.3389/fpls.2013.00315] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/27/2013] [Indexed: 05/17/2023]
Abstract
Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response (HSR) and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of HSR mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant HSR. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on HSR of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen HSR and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into this process.
Collapse
Affiliation(s)
- Kamila L. Bokszczanin
- GenXPro GmbH, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| |
Collapse
|
25
|
Huebert DJ, Gasch AP. Defining flexible vs. inherent promoter architectures: the importance of dynamics and environmental considerations. Nucleus 2012; 3:399-403. [PMID: 22751015 PMCID: PMC3474658 DOI: 10.4161/nucl.21172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The degree to which nucleosome positioning regulates transcription is an ongoing debate. To address this question, we recently followed dynamic changes in nucleosome occupancy, transcription factor binding and gene expression in yeast cells responding to oxidative stress. Integrating across these dynamic processes revealed new insights into the functions of nucleosome reorganization. Here, we used our data to address the extent to which upstream promoter architecture is a static feature inherent to specific genes vs. a dynamic platform that changes across conditions. Our results argue that, while some aspects of promoter architecture are fixed across environments, the level to which promoters are "open" or "covered" by nucleosomes depends on the conditions investigated.
Collapse
Affiliation(s)
- Dana J Huebert
- Program in Cellular and Molecular Biology; University of Wisconsin-Madison; Madison, WI USA
| | | |
Collapse
|
26
|
Dueñas-Sánchez R, Gutiérrez G, Rincón AM, Codón AC, Benítez T. Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers' strains. FEMS Yeast Res 2012; 12:625-36. [PMID: 22591337 DOI: 10.1111/j.1567-1364.2012.00813.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
Bakers' yeast-producing companies grow cells under respiratory conditions, at a very high growth rate. Some desirable properties of bakers' yeast may be altered if fermentation rather than respiration occurs during biomass production. That is why differences in gene expression patterns that take place when industrial bakers' yeasts are grown under fermentative, rather than respiratory conditions, were examined. Macroarray analysis of V1 strain indicated changes in gene expression similar to those already described in laboratory Saccharomyces cerevisiae strains: repression of most genes related to respiration and oxidative metabolism and derepression of genes related to ribosome biogenesis and stress resistance in fermentation. Under respiratory conditions, genes related to the glyoxylate and Krebs cycles, respiration, gluconeogenesis, and energy production are activated. DOG21 strain, a partly catabolite-derepressed mutant derived from V1, displayed gene expression patterns quite similar to those of V1, although lower levels of gene expression and changes in fewer number of genes as compared to V1 were both detected in all cases. However, under fermentative conditions, DOG21 mutant significantly increased the expression of SNF1 -controlled genes and other genes involved in stress resistance, whereas the expression of the HXK2 gene, involved in catabolite repression, was considerably reduced, according to the pleiotropic stress-resistant phenotype of this mutant. These results also seemed to suggest that stress-resistant genes control desirable bakers' yeast qualities.
Collapse
|
27
|
Sanz AB, García R, Rodríguez-Peña JM, Díez-Muñiz S, Nombela C, Peterson CL, Arroyo J. Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Mol Biol Cell 2012; 23:2805-17. [PMID: 22621902 PMCID: PMC3395667 DOI: 10.1091/mbc.e12-04-0278] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the transcriptional program triggered by cell wall stress is coordinated by Slt2/Mpk1, the mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, and is mostly mediated by the transcription factor Rlm1. Here we show that the SWI/SNF chromatin-remodeling complex plays a critical role in orchestrating the transcriptional response regulated by Rlm1. swi/snf mutants show drastically reduced expression of cell wall stress-responsive genes and hypersensitivity to cell wall-interfering compounds. On stress, binding of RNA Pol II to the promoters of these genes depends on Rlm1, Slt2, and SWI/SNF. Rlm1 physically interacts with SWI/SNF to direct its association to target promoters. Finally, we observe nucleosome displacement at the CWI-responsive gene MLP1/KDX1, which relies on the SWI/SNF complex. Taken together, our results identify the SWI/SNF complex as a key element of the CWI MAPK pathway that mediates the chromatin remodeling necessary for adequate transcriptional response to cell wall stress.
Collapse
Affiliation(s)
- A Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci 2012; 37:118-25. [DOI: 10.1016/j.tibs.2011.11.007] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/08/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
29
|
Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators. Mol Cell Biol 2012; 32:1645-53. [PMID: 22354995 DOI: 10.1128/mcb.06170-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response to stressful stimuli requires rapid, precise, and dynamic gene expression changes that must be coordinated across the genome. To gain insight into the temporal ordering of genome reorganization, we investigated dynamic relationships between changing nucleosome occupancy, transcription factor binding, and gene expression in Saccharomyces cerevisiae yeast responding to oxidative stress. We applied deep sequencing to nucleosomal DNA at six time points before and after hydrogen peroxide treatment and revealed many distinct dynamic patterns of nucleosome gain and loss. The timing of nucleosome repositioning was not predictive of the dynamics of downstream gene expression change but instead was linked to nucleosome position relative to transcription start sites and specific cis-regulatory elements. We measured genome-wide binding of the stress-activated transcription factor Msn2p over time and found that Msn2p binds different loci with different dynamics. Nucleosome eviction from Msn2p binding sites was common across the genome; however, we show that, contrary to expectation, nucleosome loss occurred after Msn2p binding and in fact required Msn2p. This negates the prevailing model that nucleosomes obscuring Msn2p sites regulate DNA access and must be lost before Msn2p can bind DNA. Together, these results highlight the complexities of stress-dependent chromatin changes and their effects on gene expression.
Collapse
|
30
|
Erkina TY, Erkine AM. Detection of transcriptional activators, co-activators, and chromatin remodeling by chromatin immunoprecipitation coupled with real-time PCR. Methods Mol Biol 2012; 809:279-289. [PMID: 22113283 DOI: 10.1007/978-1-61779-376-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Investigation of DNA-protein interactions is a key approach in understanding mechanisms of gene regulation. The method described allows detection of dynamic DNA-protein interactions occurring at gene promoters in living cells during the time scale of seconds and minutes. The combination of chromatin immunoprecipitation with real-time PCR allows for detection of changes in activator and co-activator content of any promoter during transcriptional activation. The described method is most applicable to investigation of processes resulting in nucleosome loss at gene promoters during the induction of transcription. The approach is also applicable to any dynamic process involving DNA-protein interactions.
Collapse
Affiliation(s)
- Tamara Y Erkina
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | | |
Collapse
|
31
|
Sadeh A, Movshovich N, Volokh M, Gheber L, Aharoni A. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Mol Biol Cell 2011; 22:3127-38. [PMID: 21757539 PMCID: PMC3164460 DOI: 10.1091/mbc.e10-12-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Msn2 and Msn4 transcription factors play a major role in yeast response to a variety of stress conditions. A systematic approach to the identification of Msn2/4 activators or suppressors shows that the majority of the Msn2 protein regulatory network acts to fine-tune its activity following yeast exposure to diverse stress conditions. The Msn2 and Msn4 transcription factors play major roles in the yeast general stress response by mediating the transcription of hundreds of genes. Despite extensive information on Msn2/4–mediated gene expression profiles, much less is known regarding the network of proteins that regulate its activity. Here we describe a systematic approach designed to examine the roles of 35 Msn2/4 partners in regulating Msn2/4 transcriptional activity in the face of four different environmental conditions. Our analysis indicates that single deletions of 26 Msn2/4 partners significantly affect Msn2/4 transcription activity under four different conditions. The low functional redundancy of the Msn2 regulatory network indicates that Msn2/4 activity is finely tuned by many of Msn2/4 partners to provide an optimized stress response through differential activation, nuclear localization, degradation, and chromatin remodeling. Our specific analysis of Msn2 activity showed that a relatively large number of partners act to suppress Msn2 activity under nonstress conditions through independent mechanisms, including cytoplasmic retention, proteosome-mediated Msn2 degradation, and chromatin remodeling. Such negative regulation is crucial to minimize the cost of uncontrolled stress response gene expression and ensures a high growth rate in the absence of stress.
Collapse
Affiliation(s)
- Amit Sadeh
- Departments of Life Science, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
32
|
Tolkunov D, Zawadzki KA, Singer C, Elfving N, Morozov AV, Broach JR. Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters. Mol Biol Cell 2011; 22:2106-18. [PMID: 21508315 PMCID: PMC3113774 DOI: 10.1091/mbc.e10-10-0826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Most promoters in yeast contain a nucleosome-depleted region (NDR), but the mechanisms by which NDRs are established and maintained in vivo are currently unclear. We have examined how genome-wide nucleosome placement is altered in the absence of two distinct types of nucleosome remodeling activity. In mutants of both SNF2, which encodes the ATPase component of the Swi/Snf remodeling complex, and ASF1, which encodes a histone chaperone, distinct sets of gene promoters carry excess nucleosomes in their NDRs relative to wild-type. In snf2 mutants, excess promoter nucleosomes correlate with reduced gene expression. In both mutants, the excess nucleosomes occupy DNA sequences that are energetically less favorable for nucleosome formation, indicating that intrinsic histone-DNA interactions are not sufficient for nucleosome positioning in vivo, and that Snf2 and Asf1 promote thermodynamic equilibration of nucleosomal arrays. Cells lacking SNF2 or ASF1 still accomplish the changes in promoter nucleosome structure associated with large-scale transcriptional reprogramming. However, chromatin reorganization in the mutants is reduced in extent compared to wild-type cells, even though transcriptional changes proceed normally. In summary, active remodeling is required for distributing nucleosomes to energetically favorable positions in vivo and for reorganizing chromatin in response to changes in transcriptional activity.
Collapse
Affiliation(s)
- Denis Tolkunov
- Department of Physics and Astronomy and BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
33
|
Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A 2010; 108:680-5. [PMID: 21187411 DOI: 10.1073/pnas.1017570108] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolving lineages face a constant intracellular threat: most new coding sequence mutations destabilize the folding of the encoded protein. Misfolded proteins form insoluble aggregates and are hypothesized to be intrinsically cytotoxic. Here, we experimentally isolate a fitness cost caused by toxicity of misfolded proteins. We exclude other costs of protein misfolding, such as loss of functional protein or attenuation of growth-limiting protein synthesis resources, by comparing growth rates of budding yeast expressing folded or misfolded variants of a gratuitous protein, YFP, at equal levels. We quantify a fitness cost that increases with misfolded protein abundance, up to as much as a 3.2% growth rate reduction when misfolded YFP represents less than 0.1% of total cellular protein. Comparable experiments on variants of the yeast gene orotidine-5'-phosphate decarboxylase (URA3) produce similar results. Quantitative proteomic measurements reveal that, within the cell, misfolded YFP induces coordinated synthesis of interacting cytosolic chaperone proteins in the absence of a wider stress response, providing evidence for an evolved modular response to misfolded proteins in the cytosol. These results underscore the distinct and evolutionarily relevant molecular threat of protein misfolding, independent of protein function. Assuming that most misfolded proteins impose similar costs, yeast cells express almost all proteins at steady-state levels sufficient to expose their encoding genes to selection against misfolding, lending credibility to the recent suggestion that such selection imposes a global constraint on molecular evolution.
Collapse
|
34
|
Sakurai H, Enoki Y. Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 2010; 277:4140-9. [PMID: 20945530 DOI: 10.1111/j.1742-4658.2010.07829.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock factor (HSF) is an evolutionarily conserved stress-response regulator that activates the transcription of heat shock protein genes, whose products maintain protein homeostasis under normal physiological conditions, as well as under conditions of stress. The promoter regions of the target genes contain a heat shock element consisting of multiple inverted repeats of the pentanucleotide sequence nGAAn. A single HSF of yeast can bind to heat shock elements that differ in the configuration of the nGAAn units and can regulate the transcription of various genes that function not only in stress resistance, but also in a broad range of biological processes. Mammalian cells have four HSF family members involved in different, but in some cases similar, biological functions, including stress resistance, cell differentiation and development. Mammalian HSF family members exhibit differential specificity for different types of heat shock elements, which, together with cell type-specific expression of HSFs is important in determining the target genes of each HSF. This minireview focuses on the molecular mechanisms of DNA recognition, chromatin modulation and gene expression by yeast and mammalian HSFs.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan.
| | | |
Collapse
|
35
|
Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14. Proc Natl Acad Sci U S A 2010; 107:19254-9. [PMID: 20974913 DOI: 10.1073/pnas.1009650107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally devoid of physically repressive nucleosomes, consistent with the contemporaneous binding of the large RNA polymerase II transcription machinery. The histone acetyltransferase p300 is also detected at active gene promoters, flanked by regions of histone hyperacetylation. Although the correlation between histone tail acetylation and gene activation is firmly established, the mechanisms by which acetylation facilitates this fundamental biological process remain poorly understood. To explore the role of acetylation in nucleosome dynamics, we utilized an immobilized template carrying a natural promoter reconstituted with various combinations of wild-type and mutant histones. We find that the histone H3 N-terminal tail is indispensable for activator, p300, and acetyl-CoA-dependent nucleosome eviction mediated by the histone chaperone Nap1. Significantly, we identify H3 lysine 14 as the essential p300 acetylation substrate required for dissociation of the histone octamer from the promoter DNA. Together, a total of 11 unique mutant octamer sets corroborated these observations and revealed a striking correlation between nucleosome eviction and strong activator and acetyl-CoA-dependent transcriptional activation. These novel findings uncover an exclusive role for H3 lysine 14 acetylation in facilitating the ATP-independent and transcription-independent disassembly of promoter nucleosomes by Nap1. Furthermore, these studies directly couple nucleosome disassembly with strong, activator-dependent transcription.
Collapse
|
36
|
Hansen JC, Nyborg JK, Luger K, Stargell LA. Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol 2010; 224:289-99. [PMID: 20432449 DOI: 10.1002/jcp.22150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The "chromogenome" is defined as the structural and functional status of the genome at any given moment within a eukaryotic cell. This article focuses on recently uncovered relationships between histone chaperones, post-translational acetylation of histones, and modulation of the chromogenome. We emphasize those chaperones that function in a replication-independent manner, and for which three-dimensional structural information has been obtained. The emerging links between histone acetylation and chaperone function in both yeast and higher metazoans are discussed, including the importance of nucleosome-free regions. We close by posing many questions pertaining to how the coupled action of histone chaperones and acetylation influences chromogenome structure and function.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
37
|
Ruiz-Roig C, Viéitez C, Posas F, de Nadal E. The Rpd3L HDAC complex is essential for the heat stress response in yeast. Mol Microbiol 2010; 76:1049-62. [PMID: 20398213 DOI: 10.1111/j.1365-2958.2010.07167.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.
Collapse
Affiliation(s)
- Clàudia Ruiz-Roig
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Erkina TY, Zou Y, Freeling S, Vorobyev VI, Erkine AM. Functional interplay between chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Res 2009; 38:1441-9. [PMID: 20015969 PMCID: PMC2836563 DOI: 10.1093/nar/gkp1130] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin remodeling is an essential part of transcription initiation. We show that at heat shock gene promoters functional interactions between individual ATP-dependent chromatin remodeling complexes play critical role in both nucleosome displacement and Pol II recruitment. Using HSP12, HSP82 and SSA4 gene promoters as reporters, we demonstrated that while inactivation of SNF2, a critical ATPase of the SWI/SNF complex, primarily affects the HSP12 promoter, depletion of STH1- a SNF2 homolog from the RSC complex reduces histone displacement and abolishes the Pol II recruitment at all three promoters. From these results, we conclude that redundancy between SWI/SNF and RSC complexes is only partial and likely is affecting different chromatin remodeling steps. While inactivation of other individual ATP-dependent chromatin remodeling complexes negligibly affects reporter promoters, combinatorial inactivation of SNF2 and ISW1 has a synergistic effect by diminishing histone loss during heat induction and eliminating Pol II recruitment. Importantly, it also eliminates preloading of HSF on HSP82 and SSA4 promoters before heat shock and diminishes HSF binding during heat shock. These observations suggest that prior action of chromatin remodeling complexes is necessary for the activator binding.
Collapse
Affiliation(s)
- T Y Erkina
- College of Pharmacy and Health Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208, USA
| | | | | | | | | |
Collapse
|
39
|
Kremer SB, Gross DS. SAGA and Rpd3 chromatin modification complexes dynamically regulate heat shock gene structure and expression. J Biol Chem 2009; 284:32914-31. [PMID: 19759026 DOI: 10.1074/jbc.m109.058610] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The chromatin structure of heat shock protein (HSP)-encoding genes undergoes dramatic alterations upon transcriptional induction, including, in extreme cases, domain-wide nucleosome disassembly. Here, we use a combination of gene knock-out, in situ mutagenesis, chromatin immunoprecipitation, and expression assays to investigate the role of histone modification complexes in regulating heat shock gene structure and expression in Saccharomyces cerevisiae. Two histone acetyltransferases, Gcn5 and Esa1, were found to stimulate HSP gene transcription. A detailed chromatin immunoprecipitation analysis of the Gcn5-containing SAGA complex (signified by Spt3) revealed its presence within the promoter of every heat shock factor 1-regulated gene examined. The occupancy of SAGA increased substantially upon heat shock, peaking at several HSP promoters within 30-45 s of temperature upshift. SAGA was also efficiently recruited to the coding regions of certain HSP genes (where its presence mirrored that of pol II), although not at others. Robust and rapid recruitment of repressive, Rpd3-containing histone deacetylase complexes was also seen and at all HSP genes examined. A detailed analysis of HSP82 revealed that both Rpd3(L) and Rpd3(S) complexes (signified by Sap30 and Rco1, respectively) were recruited to the gene promoter, yet only Rpd3(S) was recruited to its open reading frame. A consensus URS1 cis-element facilitated the recruitment of each Rpd3 complex to the HSP82 promoter, and this correlated with targeted deacetylation of promoter nucleosomes. Collectively, our observations reveal that SAGA and Rpd3 complexes are rapidly and synchronously recruited to heat shock factor 1-activated genes and suggest that their opposing activities modulate heat shock gene chromatin structure and fine-tune transcriptional output.
Collapse
Affiliation(s)
- Selena B Kremer
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | |
Collapse
|
40
|
Abstract
Activated transcription in eukaryotes requires the aid of numerous co-factors to overcome the physical barriers chromatin poses to activation, bridge the gap between activators and polymerase, and ensure appropriate regulation. S. cerevisiae has long been a model organism for studying the role of co-activators in the steps leading up to gene activation. Detailed studies on the recruitment of these co-activators have been carried out for more than a dozen promoters. Taking a step back to survey these results, however, suggests that there are few generalizations that could be used to guide future studies of uncharacterized promoters.
Collapse
Affiliation(s)
- Rhiannon Biddick
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
41
|
Wijeratne SSK, Camporeale G, Zempleni J. K12-biotinylated histone H4 is enriched in telomeric repeats from human lung IMR-90 fibroblasts. J Nutr Biochem 2009; 21:310-6. [PMID: 19369050 DOI: 10.1016/j.jnutbio.2009.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 12/22/2008] [Accepted: 01/08/2009] [Indexed: 10/20/2022]
Abstract
Covalent modifications of histones play a role in regulating telomere attrition and cellular senescence. Biotinylation of lysine (K) residues in histones, mediated by holocarboxylase synthetase (HCS), is a novel diet-dependent mechanism to regulate chromatin structure and gene expression. We have previously shown that biotinylation of K12 in histone H4 (H4K12bio) is a marker for heterochromatin and is enriched in pericentromeric alpha satellite repeats. Here, we hypothesized that H4K12bio is also enriched in telomeres. We used human IMR-90 lung fibroblasts and immortalized IMR-90 cells overexpressing human telomerase (hTERT) in order to examine histone biotinylation in young and senescent cells. Our studies suggest that one out of three histone H4 molecules in telomeres is biotinylated at K12 in hTERT cells. The abundance of H4K12bio in telomeres decreased by 42% during telomere attrition in senescent IMR-90 cells; overexpression of telomerase prevented the loss of H4K12bio. Possible confounders such as decreased expression of HCS and biotin transporters were formally excluded in this study. Collectively, these data suggest that H4K12bio is enriched in telomeric repeats and represents a novel epigenetic mark for cell senescence.
Collapse
Affiliation(s)
- Subhashinee S K Wijeratne
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583-0806, USA
| | | | | |
Collapse
|
42
|
Schnitzler GR. Control of Nucleosome Positions by DNA Sequence and Remodeling Machines. Cell Biochem Biophys 2008; 51:67-80. [DOI: 10.1007/s12013-008-9015-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 12/24/2022]
|
43
|
Jensen MM, Christensen MS, Bonven B, Jensen TH. Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae. FEBS J 2008; 275:2956-64. [DOI: 10.1111/j.1742-4658.2008.06451.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|